DE102019129264B4 - Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle - Google Patents

Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle Download PDF

Info

Publication number
DE102019129264B4
DE102019129264B4 DE102019129264.6A DE102019129264A DE102019129264B4 DE 102019129264 B4 DE102019129264 B4 DE 102019129264B4 DE 102019129264 A DE102019129264 A DE 102019129264A DE 102019129264 B4 DE102019129264 B4 DE 102019129264B4
Authority
DE
Germany
Prior art keywords
voltage
signal
time
falling
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102019129264.6A
Other languages
English (en)
Other versions
DE102019129264A1 (de
Inventor
Manfred Maurus
Peter Kimbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFM Electronic GmbH
Original Assignee
IFM Electronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFM Electronic GmbH filed Critical IFM Electronic GmbH
Priority to DE102019129264.6A priority Critical patent/DE102019129264B4/de
Priority to US17/769,968 priority patent/US20220412817A1/en
Priority to CN202080075901.0A priority patent/CN114616448A/zh
Priority to PCT/EP2020/079481 priority patent/WO2021083736A1/de
Publication of DE102019129264A1 publication Critical patent/DE102019129264A1/de
Application granted granted Critical
Publication of DE102019129264B4 publication Critical patent/DE102019129264B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • G01D1/16Measuring arrangements giving results other than momentary value of variable, of general application giving a value which is a function of two or more values, e.g. product or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle (10), die einen Messkondensator (CM) und einen Referenzkondensator (CR) aufweist, die mit einer internen Erregerspannung UE0in Form eines alternierenden Rechtecksignals beaufschlagt werden, und der Druckmesswert p aus den Kapazitätswerten des Messkondensators (CM) und des Referenzkondensators (CR) gewonnen wird,wobei die Erregerspannung UE0mittels des Messkondensators (CM) durch Integration in ein ansteigendes bzw. abfallendes Spannungssignal UCOMgewandelt wird,und wobei das Spannungssignal UCOMeinem Komparator-Oszillator (SG) zugeführt wird, wodurch die Erregerspannung UE0generiert wird,dadurch gekennzeichnet,dass von dem Spannungssignal UCOMwährend des abfallenden und/oder des ansteigenden Signalverlaufs zu wenigstens zwei definierten Zeitpunkten t1, t2die entsprechenden Spannungswerte U1, U2erfasst werden und anhand der beiden Wertepaare t1;U1und t2;U2eine Geradengleichung U = f(t) ermittelt wird,wobei mithilfe der Geradengleichung U = f(t) innerhalb des abfallenden bzw. ansteigenden Signalverlaufs der Zeitpunkt txerrechnet wird, an dem der im Komparator-Oszillator (SG) als Schwellwert bzw. Umschaltpunkt eingestellte Spannungswert Uxerreicht wird,wobei- entweder der Zeitpunkt txmit dem tatsächlichen Umschaltzeitpunkt des Komparator-Oszillators (SG) verglichen und bei signifikanter Abweichung ein Fehlersignal erzeugt wird- oder durch den Zeitpunkt txein fiktiver Umschaltpunkt des Komparator-Oszillators (SG) definiert und daraus eine fiktive Arbeitsfrequenz berechnet wird und bei signifikanter Abweichung dieser fiktiven Arbeitsfrequenz von der tatsächlichen Arbeitsfrequenz des Komparator-Oszillators (SG) ein Fehlersignal erzeugt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors.
  • Kapazitive Drucksensoren bzw. Druckmessgeräte werden in vielen Industriebereichen zur Druckmessung eingesetzt. Sie weisen häufig eine keramische Druckmesszelle, als Messwandler für den Prozessdruck, und eine Auswerteelektronik zur Signalverarbeitung auf.
  • Kapazitive Druckmesszellen bestehen aus einem keramischen Grundkörper und einer Membran, wobei zwischen dem Grundkörper und der Membran ein Glaslotring angeordnet ist. Der sich dadurch ergebende Hohlraum zwischen Grundkörper und Membran ermöglicht die längsgerichtete Beweglichkeit der Membran infolge eines Druckeinflusses. Dieser Hohlraum wird daher auch als Messkammer bezeichnet. An der Unterseite der Membran und an der gegenüberliegenden Oberseite des Grundkörpers sind jeweils Elektroden vorgesehen, die zusammen einen Messkondensator bilden. Durch Druckeinwirkung kommt es zu einer Verformung der Membran, was eine Kapazitätsänderung des Messkondensators zur Folge hat.
  • Mit Hilfe einer Auswerteeinheit wird die Kapazitätsänderung erfasst und in einen Druckmesswert umgewandelt. In der Regel dienen diese Drucksensoren zur Überwachung oder Steuerung von Prozessen. Sie sind deshalb häufig mit übergeordneten Steuereinheiten (SPS) verbunden.
  • Aus der DE 198 51 506 C1 ist ein kapazitiver Drucksensor bekannt, bei dem der Druckmesswert aus dem Quotienten zweier Kapazitätswerte, eines Messkondensators und eines Referenzkondensators, ermittelt wird. In dieser Patentschrift ist eine Druckmesszelle zwar nicht speziell beschrieben, die dargestellte Schaltung und das beschriebene Verfahren ist aber für kapazitive Druckmesszellen geeignet. Das Besondere an diesem Druckmessgerät ist, dass für die Auswertung des Messsignals am Ausgang, als Maß für den erfassten Druckmesswert, lediglich die Amplitude des Rechtecksignals relevant ist, unabhängig von dessen Frequenz.
  • Aus der EP 0 569 573 B1 ist eine Schaltungsanordnung für einen kapazitiven Drucksensor bekannt, bei dem ebenfalls ein Quotientenverfahren zur Druckauswertung eingesetzt wird.
  • Quotientenverfahren gehen in der Regel von folgenden Druckabhängigkeiten aus: p C R C M   bzw .    p C R C M   1   oder   p C M C R C M + C R   ,
    Figure DE102019129264B4_0001
    wobei CM die Kapazität des Messkondensators, CR die Kapazität des Referenzkondensators und p den zu bestimmenden Prozessdruck bezeichnet. Denkbar ist auch die Möglichkeit, CM und CR im Quotienten zu vertauschen. Das angegeben Beispiel mit CM im Nenner stellt allerdings zugunsten der Eigenlinearisierung die gebräuchlichste Form dar. Im Folgenden wird daher von dieser Ausführungsform ausgegangen, sofern nicht anders angegeben.
  • Die Zuverlässigkeit bei kapazitiven Drucksensoren gewinnt immer mehr an Bedeutung. Eine Optimierung des Messprinzips bei Drucksensoren in Bezug auf mögliche Kriechströme auf der - dem zu messenden Medium abgewandten - Messzellen-Rückseite oder in Teilen der Auswertelektronik zum Zwecke der Eliminierung von möglicherweise durch die Umgebung eingetragenen und zur Kondensierung neigenden Luftfeuchteanteilen wird angestrebt.
  • Als allgemeiner Stand der Technik bzgl. einer Funktionsüberwachung von kapazitiven Drucksensoren wird die DE 103 33 154 A1 und die DE 10 2014 201 529 A1 genannt.
  • Die DE 197 08 330 C1 und die EP 2 738 535 A1 stellen weitere Dokumente dar, die den technologischen Hintergrund definieren.
  • Schließlich sind DE 10 2018 118 645 B3 und die DE 10 2018 118 646 B3 zu nennen, die jeweils ein Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors offenbaren. Der DE 10 2018 118 645 B3 liegt die Erkenntnis zugrunde, dass es im Nenndruckbereich des Drucksensors einen festen Zusammenhang zwischen Pulshöhe bzw. Amplitude und Periodendauer bzw. Frequenz gibt und dass durch einen Mediumseintritt in die Messkammer - verursacht durch einen Membranbruch oder durch Eintritt über den Entlüftungskanal - das aus dem oben dargestellten Quotienten aus Messkapazität CM und Referenzkapazität CR gebildete Rechtecksignal signifikant verändert wird. In der DE 10 2018 118 646 B3 geht es darum, dass Feuchtigkeit auf der dem zu messenden Medium abgewandten Messzellen-Rückseite oder in Teilen der Auswerteelektronik und die daraus resultierenden Kriechströme eine Veränderung des in Form eines alternierenden Rechtecksignals vorliegenden Messsignals nach sich zieht. Anstatt gleichmäßiger Rechteckimpulse mit einer während der Pulsbreite konstanten Amplitude bzw. Pulshöhe ist bei dem fehlerbehafteten Messsignal die Amplitude bzw. Pulshöhe nicht mehr konstant, sondern ist während der Pulsdauer ansteigend oder abfallend.
  • Aufgabe der Erfindung ist es, ein Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors vorzuschlagen, durch das die Erkennung eines Fehlereinflusses auf das Messergebnis aufgrund von insbesondere feuchtigkeitsbedingten Kriechströmen ermöglicht wird.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Die Erfindung beruht auf der Erkenntnis, dass Feuchtigkeit auf der dem zu messenden Medium abgewandten Messzellen-Rückseite oder in Teilen der Auswerteelektronik und die daraus resultierenden Kriechströme eine Veränderung des vom Messkondensator im Zusammenspiel mit einem Komparator-Oszillator erzeugten dreieckförmigen Spannungssignals UCOM nach sich zieht. Anstatt eines gleichmäßig linear ansteigenden und abfallenden Verlaufs stellt sich in dem Fall ein bauchartiger Verlauf ein. Konkret sieht der Verlauf dann so aus, dass sich sowohl während des ansteigenden Verlaufs des Dreiecksignals als auch während des abfallenden Verlaufs der Anstieg zunächst zunimmt und dann abnimmt. Je nachdem, wie groß der resitive Einfluss ist, stellt sich ein mehr oder weniger starker bauchartiger Verlauf ein.
  • Das erfindungsgemäße Verfahren sieht zur Erkennung derartiger Signalverläufe vor, dass von dem dreieckförmigen Spannungssignal UCOM während des abfallenden und/oder des ansteigenden Signalverlaufs zu wenigstens zwei definierten Zeitpunkten t1, t2 die entsprechenden Spannungswerte U1, U2 erfasst werden und anhand der beiden Wertepaare t1;U1 und t2;U2 eine Geradengleichung U = f(t) ermittelt wird. Mithilfe dieser Geradengleichung U = f(t) kann innerhalb des abfallenden bzw. ansteigenden Signalverlaufs der Zeitpunkt tx errechnet werden, an dem der im Komparator-Oszillator als Schwellwert bzw. Umschaltpunkt eingestellte Spannungswert Ux erreicht wird. Für die Analyse und damit für die Fehleranzeige gibt es nun zwei Möglichkeiten: entweder wird ein Fehlersignal erzeugt, wenn der Zeitpunkt tx von dem tatsächlichen Umschaltzeitpunkt des Komparator-Oszillators signifikant abweicht oder wenn die fiktive Arbeitsfrequenz, die durch den zum Zeitpunkt tx definierten fiktiven Umschaltpunkt des Komparator-Oszillators berechnet wird, von der tatsächlichen Arbeitsfrequenz des Komparator-Oszillators signifikant abweicht.
  • Somit ist es möglich, mit der vorhandenen Auswerteschaltung und damit ohne zusätzliche Bauteile durch eine geschickte Signalauswertung eine Funktionsüberwachung der Druckmesszelle eines kapazitiven Drucksensors durchzuführen und durch Kriechströme hervorgerufene resistive Fehlereinflüsse schnell und frühzeitig zu erkennen.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Es zeigen schematisch:
    • 1 ein Blockdiagramm eines kapazitiven Druckmessgeräts,
    • 2 eine schematische Schnittdarstellung einer kapazitiven Druckmesszelle,
    • 3 eine bekannte Auswerteschaltung für eine kapazitive Druckmesszelle gemäß 2,
    • 4 eine Gegenüberstellung eines fehlerfreien Spannungssignals und eines durch Kriechströme beeinflussten Spannungssignals gemäß einer ersten Ausführungsform des erfindungsgemäßen Verfahrens,
    • 5 eine Gegenüberstellung eines fehlerfreien Spannungssignals und eines durch Kriechströme beeinflussten Spannungssignals gemäß einer zweiten Ausführungsform des erfindungsgemäßen Verfahrens und
    • 6 die Auswerteschaltung aus 3, ergänzt um einen Mikrocontroller zur Durchführung des erfindungsgemäßen Verfahrens.
  • Bei der nachfolgenden Beschreibung der bevorzugten Ausführungsformen bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.
  • In 1 ist ein Blockdiagramm eines typischen kapazitiven Druckmessgeräts dargestellt, der zur Messung eines Prozessdrucks p (z. B. von Öl, Milch, Wasser etc.) eingesetzt wird. Das Druckmessgerät 1 ist als Zwei-Leiter-Gerät ausgeführt und besteht im Wesentlichen aus einer Druckmesszelle 10 und einer Auswerteelektronik 20. Die Auswerteelektronik 20 weist eine analoge Auswerteschaltung 30 und einen Mikrocontroller µC auf, in dem das analoge Ausgangssignal der Auswerteschaltung 20 digitalisiert und weiterverarbeitet wird. Der Mikrocontroller µC stellt das Auswerteergebnis als digitales oder analoges Ausgangssignal z. B. einer SPS zur Verfügung. Zur Energieversorgung ist das Druckmessgerät 1 an eine Spannungsversorgungsleitung (12 - 36 V) angeschlossen.
  • 2 zeigt eine typische kapazitive Druckmesszelle 10, wie sie vielfältig bei kapazitiven Druckmessgeräten eingesetzt wird, in schematischer Darstellung. Die Druckmesszelle 10 besteht im Wesentlichen aus einem Grundkörper 12 und einer Membran 14, die über einen Glaslotring 16 miteinander verbunden sind. Der Grundkörper 12 und die Membran 14 begrenzen einen Hohlraum 19, der - vorzugsweise nur bei niedrigen Druckbereichen bis 50 bar - über einen Entlüftungskanal 18 mit der Rückseite der Druckmesszelle 10 verbunden ist.
  • Sowohl auf dem Grundkörper 12 als auch auf der Membran 14 sind mehrere Elektroden vorgesehen, die einen Referenzkondensator CR und einen Messkondensator CM bilden. Der Messkondensator CM wird durch die Membranelektrode ME und die Mittelelektrode M gebildet, der Referenzkondensator CR durch die Ringelektrode R und die Membranelektrode ME.
  • Der Prozessdruck p wirkt auf die Membran 14, die sich entsprechend der Druckbeaufschlagung mehr oder weniger durchbiegt, wobei sich im Wesentlichen der Abstand der Membranelektrode ME zur Mittelelektrode M ändert. Dies führt zu einer entsprechenden Kapazitätsänderung des Messkondensators CM . Der Einfluss auf den Referenzkondensator CR ist geringer, da sich der Abstand zwischen Ringelektrode R und Membranelektrode ME weniger stark verändert als der Abstand zwischen Membranelektrode ME zur Mittelelektrode M.
  • Im Folgenden wird zwischen der Bezeichnung des Kondensators und seinem Kapazitätswert nicht unterschieden. CM und CR bezeichnen deshalb sowohl den Mess- bzw. Referenzkondensator an sich, als auch jeweils dessen Kapazität.
  • In 3 ist eine bekannte Auswerteschaltung 30 für die Druckmesszelle 10 näher dargestellt. Der Messkondensator CM ist zusammen mit einem Widerstand R1 in einem Integrierzweig IZ und der Referenzkondensator CR zusammen mit einem Widerstand R2in einem Differenzierzweig DZ angeordnet. Am Eingang des Integrierzweigs IZ liegt eine Rechteckspannung UE0 an, die vorzugsweise symmetrisch um 0 Volt alterniert. Die Eingangsspannung UE0 wird über den Widerstand R1 und den Messkondensator CM mithilfe eines Operationsverstärkers OP1, der als Integrator arbeitet, in ein linear ansteigendes bzw. abfallendes Spannungssignal (je nach Polarität der Eingangsspannung) umgewandelt, das am Ausgang COM des Integrierzweigs IZ ausgegeben wird. Der Messpunkt P1 liegt dabei durch den Operationsverstärker OP1 virtuell auf Masse.
  • Der Ausgang COM ist mit einem Schwellwert-Komparator SG verbunden, der einen Rechteckgenerator RG ansteuert. Sobald das Spannungssignal UCOM am Ausgang COM einen Schwellwert über- bzw. unterschreitet, ändert der Komparator SG sein Ausgangssignal, woraufhin der Rechteckgenerator RG seine Ausgangsspannung jeweils invertiert.
  • Der Differenzierzweig DZ besteht weiter aus einem Operationsverstärkers OP2, einem Spannungsteiler mit den beiden Widerständen R5 und R6 und einem Rückführungswiderstand R7. Der Ausgang des Operationsverstärkers OP2 ist mit einer Sample-and-Hold-Schaltung S&H verbunden. Am Ausgang der Sample-and-Hold-Schaltung S&H liegt die Messspannung UMess an, aus der der Prozessdruck p, der auf die Druckmesszelle 10 wirkt, gewonnen wird.
  • Nachfolgend ist die Funktion dieser Messschaltung näher erläutert. Der Operationsverstärker OP1 sorgt dafür, dass der Verbindungspunkt P1 zwischen dem Widerstand R1 und dem Messkondensator CM virtuell auf Masse gehalten wird. Dadurch fließt ein konstanter Strom I1, über den Widerstand R1, der den Messkondensator CM solange auflädt, bis die Rechteckspannung UE0 ihr Vorzeichen wechselt.
  • Aus 3 ist ersichtlich, dass für den Fall R1= R2 und CM = CR der Messpunkt P2 im Differenzierzweig DZ sogar dann auf dem gleichen Potenzial wie der Messpunkt P1, also auf Masseniveau, liegt, wenn die Verbindung zwischen dem Messpunkt P2 und dem Operationsverstärker OP2 nicht vorhanden wäre. Dies gilt nicht nur in diesem speziellen Fall, sondern immer dann, wenn die Zeitkonstanten R1 * CM und R2 * CR zueinander gleich sind. Beim Nullpunktabgleich wird dieser Zustand über die variablen Widerstände R1 bzw. R2 entsprechend eingestellt. Wenn sich die Kapazität des Messkondensators CM durch Druckeinwirkung ändert, ist die Bedingung der Gleichheit der Zeitkonstanten im Integrierzweig IZ und im Differenzierzweig DZ nicht mehr gegeben und das Potenzial am Messpunkt P2 würde vom Wert Null abweichen. Dieser Änderung wird aber unmittelbar von dem Operationsverstärker OP2 entgegengewirkt, da der Operationsverstärker OP2 den Verbindungspunkt P2 weiterhin virtuell auf Masse hält. Am Ausgang des Operationsverstärkers OP2 liegt deshalb eine Rechteckspannung UR an, deren Amplitude vom Quotienten der beiden Zeitkonstanten abhängt. Man kann leicht zeigen, dass die Amplitude direkt proportional zum Prozessdruck p ~ CR /CM - 1 ist, wobei die Abhängigkeit im Wesentlichen linear ist. Die Amplitude lässt sich über den Spannungsteiler, der durch die beiden Widerstände R5 und R6 gebildet wird, einstellen.
  • Über eine Sample&Hold-Schaltung S&H werden die positive und negative Amplitude A+ bzw. A- des Rechtecksignals betragsmäßig addiert, der Betrag A als Messspannung UMess am Ausgang des Operationsverstärkers OP3 ausgegeben und an den Mikrocontroller µC (nicht gezeigt) weitergeleitet. Sie könnte aber auch direkt als Analogwert ausgegeben werden. Die Amplitude der Eingangsspannung UE0, die am Ausgang des Rechteckgenerators RG anliegt, wird in Abhängigkeit der Messspannung UMess eingestellt, um eine bessere Linearität zu erzielen. Hierfür ist ein Spannungsteiler bestehend aus den Widerständen R20 und R10 vorgesehen. Dieser Spannungsteiler ist mit einer Referenzspannung VREF verbunden und vorteilhafterweise abgleichbar.
  • Die positive Betriebsspannung V+ liegt typischerweise bei +2,5 V und die negative Betriebsspannung V- bei -2,5 V.
  • In 4 ist eine erste Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Zum einen ist das linear ansteigende bzw. abfallendes Spannungssignal UCOM gezeigt, das maßgeblich durch den Messkondensator CM bestimmt ist und am Ausgang COM des Integrierzweigs IZ ausgegeben wird. Die durchgezogene Linie stellt dabei den Idealverlauf dar. Abhängig von den eingestellten Umschaltpunkten im Komparator-Oszillator SG wird daraus die Rechteckspannung UE0 generiert, die symmetrisch um 0 Volt alterniert.
  • Durch die strichpunktierte Linie ist der Signalverlauf des Spannungssignals UCOM dargestellt, wie er sich in dem Fall einstellt, wenn bspw. durch Feuchtigkeit auf der Rückseite der Druckmesszelle 10 oder in Teilen der Auswerteelektronik Kriechströme entstehen. Anstatt eines gleichmäßig linear ansteigenden und abfallenden Verlaufs stellt sich in dem Fall ein bauchartiger Verlauf ein. Konkret sieht der Verlauf dann so aus, dass sich sowohl während des ansteigenden Verlaufs des Dreiecksignals als auch während des abfallenden Verlaufs der Anstieg zunächst zunimmt und dann abnimmt. Je nachdem, wie groß der resistive Einfluss ist, stellt sich ein mehr oder weniger starker bauchartiger Verlauf ein.
  • Erfindungsgemäß wird von dem Spannungssignal UCOM während des abfallenden und/oder des ansteigenden Signalverlaufs zu wenigstens zwei definierten Zeitpunkten t1, t2 die entsprechenden Spannungswerte U1, U2 erfasst werden und anhand der beiden Wertepaare t1; U1 und t2; U2 eine Geradengleichung U = f(t) ermittelt. In 4 ist beispielhaft der Fall dargestellt, dass eine Gerade in den ansteigenden Signalverlauf gelegt ist. Der Zeitpunkt t1 entspricht hier dem Umschaltzeitpunkt vom abfallenden in den ansteigenden Signalverlauf, während der Zeitpunkt t2 in der Mitte des ansteigenden Signalverlaufs liegt, sozusagen bei einem Viertel bzw. einem Dreiviertel einer Periode.
  • Deutlich zu erkennen ist, dass im Falle eines bauchartigen Verlaufs des Spannungssignals UCOM die Gerade am entgegengesetzten Umschaltpunkt den im Komparator SG definierten Schwellwert Ux zum Zeitpunkt tx deutlich früher erreicht als der tatsächliche Umschaltzeitpunkt. Dieser Zeitpunkt tx lässt sich anhand der Geradengleichung leicht berechnen. Durch Vergleich von tx mit dem tatsächlichen Umkehrzeitpunkt ergibt sich eine Zeitdifferenz Δt. Sollte nun der Zeitpunkt tx signifikant von dem tatsächlichen Umschaltzeitpunkt abweichen, d.h. die Zeitdifferenz Δt den Wert null signifikant übersteigen, deutet das auf Kriechströme und damit auf resistive Einflüsse auf die Messgenauigkeit hin. Als Ergebnis wird dem Anwender diese Situation in Form eines Fehlersignals angezeigt.
  • 5 stellt eine zweite Ausführungsform des erfindungsgemäßen Verfahrens dar. Die Ausgangssituation sowie der grundsätzliche Erfindungsgedanke in Form der Geradenbildung ist dabei identisch mit 4. Der Unterschied besteht in der Fehlererkennung. Während in der ersten Ausführungsform gemäß 4 die Fehlererkennung mittels Zeitauswertung erfolgt, steht in der zweiten Ausführungsform gemäß 5 die Auswertung der Arbeitsfrequenz im Mittelpunkt.
  • Der bei Erreichen der Schwellwertspannung Ux errechnete Zeitpunkt tx wird als fiktiver Umschaltpunkt des Komparator-Oszillators SG definiert und daraus eine fiktive Arbeitsfrequenz berechnet. Verdeutlicht werden soll das durch den gestrichelten Verlauf des Dreiecksignals nach dem Umschaltpunkt. Im Fehlerfall stellt sich eine fiktive Periodenhälfte ein, die kürzer ist als die tatsächliche Periodenhälfte. Entsprechend hochgerechnet verkürzt sich die fiktive Periodendauer insgesamt gegenüber der tatschlichen Periodendauer, so dass sich ein Frequenzunterschied einstellt. Bei Vergleich der beiden Arbeitsfrequenzen und Erkennen einer signifikanten Abweichung dieser fiktiven Arbeitsfrequenz von der tatsächlichen Arbeitsfrequenz des Komparator-Oszillators SG deutet dies wiederrum auf Kriechströme und damit auf resistive Einflüsse auf die Messgenauigkeit hin, was dem Anwender in Form eines Fehlersignals angezeigt wird.
  • 6 zeigt im Grundsatz die aus 3 bekannte Auswerteschaltung, welche jedoch um einen Mikrocontroller µC ergänzt ist. In diesen Mikrocontroller µC ist zum einen der Komparator-Oszillator SG aus 3 integriert und zum anderen enthält er die für die Durchführung des erfindungsgemäßen Verfahrens notwendigen Einheiten: einen Timer 60, eine erste Verarbeitungseinheit 70 und eine CPU 50 als Haupt-Verarbeitungseinheit. Die sich außerhalb des Mikrocontrollers µC befindlichen Elemente sind im Wesentlichen identisch und deshalb auch identisch bezeichnet. Zur Vermeidung von Wiederholungen wird im Folgenden nur auf die für die Erfindung wesentlichen Elemente eingegangen.
  • Das Ausgangssignal des Schwellwert-Komparators SG wird zum einen wieder zurückgeführt, um den Rechteckgenerator RG anzusteuern, was bereits aus 3 bekannt ist. Zum anderen wird dieses Signal dem Timer 60 zugeführt. In dem Timer 60 wird das zeitliche Periodenverhalten des Dreiecksignals protokolliert, insbesondere hinsichtlich des Erreichens der gesetzten Schwellwerte. Daraus wird je nachdem, ob die erste oder zweite Ausführungsform angewendet wird, der tatsächliche Umschaltzeitpunkt des Dreiecksignals UCOM bzw. dessen Periodendauer abgleitet, welche jeweils der CPU 50 zugeführt wird.
  • Die erste Verarbeitungseinheit 70 ist ein Modul mit A/D-Wandler und CPU-Ressourcen, wobei natürlich auch die anderen Eingänge integrierte A/D-Wandler aufweisen. Dieses Modul 70 kann selbstverständlich auch in die CPU-Einheit 50 integriert sein. In dieser ersten Verarbeitungseinheit 70 erfolgt die Ermittlung der Geradengleichung U = f(t). In der CPU 50 selbst erfolgt dann zum einen die Berechnung des Zeitpunkts tx, zu dem der gesetzte Schwellwert fiktiv von der Gerade erreicht wird und anschließend der Vergleich der Umschaltzeitpunkte oder der daraus abgeleiteten Periodendauern bzw. Arbeitsfrequenzen. Bei signifikanter Abweichung der beiden Umschaltzeitpunkte bzw. der beiden Periodendauern von einem vorgegebenen Toleranzband wird ein Fehlersignal generiert, welches am Ausgang diag_out ausgegeben wird.
  • Der aktuell gemessene Druckwert in Form des aus 3 bekannten Spannungssignals UR wird unverändert auf den Ausgang switch_out bzw. analog_out des Mikrocontrollers µC gegeben, um die gemessenen Druckwerte als Schalt- oder Analogsignal auszugeben. Die aus 3 bekannte Sample&Hold-Schaltung S&H als Teil der dort gezeigten Auswerteschaltung ist dann ebenfalls in den Mikrocontroller µC integriert und dort funktional identisch nachgebildet.
  • Bezugszeichenliste
  • 1
    Druckmessgerät
    10
    Druckmesszelle
    12
    Grundkörper
    14
    Membran
    16
    Glaslotring
    18
    Entlüftungskanal
    19
    Hohlraum
    20
    Auswerteelektronik
    30
    Auswerteschaltung
    50
    Haupt-Verarbeitungseinheit, CPU
    60
    Timer
    70
    erste Verarbeitungseinheit
    CM
    Messkondensator
    CR
    Referenzkondensator
    M
    Mittelelektrode
    R
    Ringelektrode
    ME
    Membranelektrode
    IZ
    Integrierzweig
    DZ
    Differenzierzweig
    SG
    Schwellwert-Komparator
    RG
    Rechteckgenerator

Claims (4)

  1. Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle (10), die einen Messkondensator (CM) und einen Referenzkondensator (CR) aufweist, die mit einer internen Erregerspannung UE0 in Form eines alternierenden Rechtecksignals beaufschlagt werden, und der Druckmesswert p aus den Kapazitätswerten des Messkondensators (CM) und des Referenzkondensators (CR) gewonnen wird, wobei die Erregerspannung UE0 mittels des Messkondensators (CM) durch Integration in ein ansteigendes bzw. abfallendes Spannungssignal UCOM gewandelt wird, und wobei das Spannungssignal UCOM einem Komparator-Oszillator (SG) zugeführt wird, wodurch die Erregerspannung UE0 generiert wird, dadurch gekennzeichnet, dass von dem Spannungssignal UCOM während des abfallenden und/oder des ansteigenden Signalverlaufs zu wenigstens zwei definierten Zeitpunkten t1, t2 die entsprechenden Spannungswerte U1, U2 erfasst werden und anhand der beiden Wertepaare t1;U1 und t2;U2 eine Geradengleichung U = f(t) ermittelt wird, wobei mithilfe der Geradengleichung U = f(t) innerhalb des abfallenden bzw. ansteigenden Signalverlaufs der Zeitpunkt tx errechnet wird, an dem der im Komparator-Oszillator (SG) als Schwellwert bzw. Umschaltpunkt eingestellte Spannungswert Ux erreicht wird, wobei - entweder der Zeitpunkt tx mit dem tatsächlichen Umschaltzeitpunkt des Komparator-Oszillators (SG) verglichen und bei signifikanter Abweichung ein Fehlersignal erzeugt wird - oder durch den Zeitpunkt tx ein fiktiver Umschaltpunkt des Komparator-Oszillators (SG) definiert und daraus eine fiktive Arbeitsfrequenz berechnet wird und bei signifikanter Abweichung dieser fiktiven Arbeitsfrequenz von der tatsächlichen Arbeitsfrequenz des Komparator-Oszillators (SG) ein Fehlersignal erzeugt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Zeitpunkt t1 dem Umschaltzeitpunkt des Spannungssignals UCOM entspricht.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Zeitpunkt t2 in der ersten Hälfte des abfallenden bzw. ansteigenden Signalverlaufs liegt.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Zeitpunkt t2 in der Mitte des abfallenden bzw. ansteigenden Signalverlaufs liegt.
DE102019129264.6A 2019-10-30 2019-10-30 Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle Active DE102019129264B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102019129264.6A DE102019129264B4 (de) 2019-10-30 2019-10-30 Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
US17/769,968 US20220412817A1 (en) 2019-10-30 2020-10-20 Method For Monitoring The Function of a Capacitive Pressure Measurement Cell
CN202080075901.0A CN114616448A (zh) 2019-10-30 2020-10-20 用于监测电容式压力测量单元的功能的方法
PCT/EP2020/079481 WO2021083736A1 (de) 2019-10-30 2020-10-20 Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019129264.6A DE102019129264B4 (de) 2019-10-30 2019-10-30 Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle

Publications (2)

Publication Number Publication Date
DE102019129264A1 DE102019129264A1 (de) 2021-05-06
DE102019129264B4 true DE102019129264B4 (de) 2021-07-15

Family

ID=72944174

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019129264.6A Active DE102019129264B4 (de) 2019-10-30 2019-10-30 Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle

Country Status (4)

Country Link
US (1) US20220412817A1 (de)
CN (1) CN114616448A (de)
DE (1) DE102019129264B4 (de)
WO (1) WO2021083736A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022120883B3 (de) 2022-08-18 2023-08-03 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
DE102023120514A1 (de) 2022-08-03 2024-02-08 Ifm Electronic Gmbh Kapazitive Druckmesszelle und Druckmessgerät mit einer solchen Druckmesszelle, insbesondere zum Einsatz in einer explosionsgefährdeten Umgebung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105693B3 (de) 2022-03-10 2023-03-16 Ifm Electronic Gmbh Verfahren zum Betreiben einer Druckmesszelle eines kapazitiven Drucksensors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569573B1 (de) 1991-11-28 1996-04-10 Endress + Hauser Gmbh + Co. Kapazitive druckmessanordnung mit hoher linearität
DE19708330C1 (de) 1997-02-16 1998-05-28 Ifm Electronic Gmbh Auswerteverfahren für kapazitive Sensoren
DE19851506C1 (de) 1998-11-09 2000-10-19 Ifm Electronic Gmbh Auswerteverfahren für kapazitive Sensoren
DE10333154A1 (de) 2003-07-22 2005-02-24 Vega Grieshaber Kg Verfahren und Schaltungsanordnung zum Auswerten einer Messkapazität
EP2738535A1 (de) 2012-11-30 2014-06-04 Sensata Technologies, Inc. Analog-Frontend-Kompensation
DE102014201529A1 (de) 2014-01-28 2015-07-30 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Druckmessumformers sowie Druckmessumformer
DE102018118645B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102018118646B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838528A1 (de) * 1998-02-05 1999-08-19 Elan Schaltelemente Gmbh & Co Verfahren und Vorrichtung zur Auswertung der Kapazität eines kapazitiven Sensors, insbesondere eines Personendetektors
US6496348B2 (en) * 1998-03-10 2002-12-17 Mcintosh Robert B. Method to force-balance capacitive transducers
DE10023305C2 (de) * 2000-05-15 2002-10-17 Grieshaber Vega Kg Verfahren zur Ansteuerung einer Wandlereinrichtung in Füllstandmessgeräten und Vorrichtung zur Durchführung des Verfahrens
US7724001B2 (en) * 2006-03-29 2010-05-25 Rosemount Inc. Capacitance sensing circuit
KR101020541B1 (ko) * 2007-11-21 2011-03-09 기아자동차주식회사 차량용 승객 식별 장치 및 방법
US8830180B2 (en) * 2008-04-10 2014-09-09 Atmel Corporation Capacitive position sensor
DE102010062622A1 (de) * 2010-12-08 2012-06-14 Ifm Electronic Gmbh Verfahren zur Selbstüberwachung einer keramischen Druckmesszelle eines kapazitiven Drucksensors und eine Auswerteschaltung zur Durchführung des Verfahrens
DE102011083133B4 (de) * 2011-09-21 2019-01-24 Ifm Electronic Gmbh Verfahren zur Selbstüberwachung einer keramischen Druckmesszelle eines kapazitiven Drucksensors und eine Auswerteschaltung zur Durchführung des Verfahrens
JP6357090B2 (ja) * 2014-12-02 2018-07-11 株式会社堀場エステック 静電容量型センサ
US9976924B2 (en) * 2015-04-20 2018-05-22 Infineon Technologies Ag System and method for a MEMS sensor
US9602088B1 (en) * 2015-09-11 2017-03-21 Texas Instruments Incorporated Ultra-low power comparator with sampling control loop adjusting frequency and/or sample aperture window
CN108225495A (zh) * 2016-12-12 2018-06-29 中国航空工业集团公司西安航空计算技术研究所 一种电容式液位传感器在线测量系统及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569573B1 (de) 1991-11-28 1996-04-10 Endress + Hauser Gmbh + Co. Kapazitive druckmessanordnung mit hoher linearität
DE19708330C1 (de) 1997-02-16 1998-05-28 Ifm Electronic Gmbh Auswerteverfahren für kapazitive Sensoren
DE19851506C1 (de) 1998-11-09 2000-10-19 Ifm Electronic Gmbh Auswerteverfahren für kapazitive Sensoren
DE10333154A1 (de) 2003-07-22 2005-02-24 Vega Grieshaber Kg Verfahren und Schaltungsanordnung zum Auswerten einer Messkapazität
EP2738535A1 (de) 2012-11-30 2014-06-04 Sensata Technologies, Inc. Analog-Frontend-Kompensation
DE102014201529A1 (de) 2014-01-28 2015-07-30 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Druckmessumformers sowie Druckmessumformer
DE102018118645B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102018118646B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023120514A1 (de) 2022-08-03 2024-02-08 Ifm Electronic Gmbh Kapazitive Druckmesszelle und Druckmessgerät mit einer solchen Druckmesszelle, insbesondere zum Einsatz in einer explosionsgefährdeten Umgebung
DE102022120883B3 (de) 2022-08-18 2023-08-03 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle

Also Published As

Publication number Publication date
CN114616448A (zh) 2022-06-10
US20220412817A1 (en) 2022-12-29
DE102019129264A1 (de) 2021-05-06
WO2021083736A1 (de) 2021-05-06

Similar Documents

Publication Publication Date Title
DE102019129264B4 (de) Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
EP2606330B1 (de) Verfahren zur selbstüberwachung einer keramischen druckmesszelle eines kapazitiven drucksensors und eine auswerteschaltung zur durchführung des verfahrens
EP2994725B1 (de) Verfahren und vorrichtung zur überwachung zumindest einer medienspezifischen eigenschaft eines mediums für eine füllstandsmessung
DE102020122128B3 (de) Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
DE102018118646B3 (de) Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102010049488B4 (de) Verfahren zum Testen eines Laborgeräts und entsprechend ausgestattetes Laborgerät
WO2020025519A1 (de) Verfahren zur funktionsüberwachung einer druckmesszelle eines kapazitiven drucksensors
DE102011083133B4 (de) Verfahren zur Selbstüberwachung einer keramischen Druckmesszelle eines kapazitiven Drucksensors und eine Auswerteschaltung zur Durchführung des Verfahrens
EP0419769A2 (de) Verfahren zur fortlaufenden Ueberwachung eines Elektrodensystems für potentiometrische Messungen
DE102022105693B3 (de) Verfahren zum Betreiben einer Druckmesszelle eines kapazitiven Drucksensors
EP2233890A2 (de) Kapazitiver Sensor und Verfahren zur kapazitiven Erfassung eines Objektabstandes
DE102022120883B3 (de) Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
DE102018126382B3 (de) Kapazitiver Drucksensor
DE102020100675A1 (de) Kapazitiver Drucksensor mit Temperaturerfassung
DE102018105234B4 (de) Verfahren zum Betreiben eines kapazitiven Druckmessgeräts
DE4001274C2 (de)
EP3404430B1 (de) Verfahren zur überwachung eines betriebs einer binären schnittstelle und entsprechende binäre schnittstelle
EP0456168A2 (de) Vorrichtung zur Analog-Ditial-Wandlung einer Messgrösse, die von in Brückenschaltung angeordneten Sensoren erzeugt wird, insbesondere von Dehnungsmessstreifen in einer Wägezelle
DE102012223706A1 (de) Feldgerät mit einem Analogausgang
DE102024100586A1 (de) Verfahren zum Betreiben einer Druckmesszelle eines kapazitiven Drucksensors
DE102007043388B4 (de) Verfahren zur Auflösungserhöhung eines A/D-Wandlers sowie elektronische Schaltung zur Umsetzung dieses Verfahrens
DE102018121463A1 (de) Kapazitiver Drucksensor mit einer Druckmesszelle und einer Auswerteeinheit, die räumlich getrennt voneinander angeordnet sind
DE4405380A1 (de) Hochauflösender, integrierender Analog/Digital-Wandler
DE102004041766A1 (de) Messschaltung zum Messen einer elektrischen Grösse sowie ein Messverfahren
EP3696514A1 (de) Sensoranordnung und verfahren zum betrieb einer sensoranordnung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final