DE102019124144A1 - Entfernungsmesssystem - Google Patents

Entfernungsmesssystem Download PDF

Info

Publication number
DE102019124144A1
DE102019124144A1 DE102019124144.8A DE102019124144A DE102019124144A1 DE 102019124144 A1 DE102019124144 A1 DE 102019124144A1 DE 102019124144 A DE102019124144 A DE 102019124144A DE 102019124144 A1 DE102019124144 A1 DE 102019124144A1
Authority
DE
Germany
Prior art keywords
light
measuring system
phase
distance measuring
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019124144.8A
Other languages
English (en)
Inventor
Holger Bette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PMDtechnologies AG
Original Assignee
PMDtechnologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PMDtechnologies AG filed Critical PMDtechnologies AG
Priority to DE102019124144.8A priority Critical patent/DE102019124144A1/de
Publication of DE102019124144A1 publication Critical patent/DE102019124144A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone

Abstract

Entfernungsmesssystem, bei dem ein Punktlichtmuster mit einem vorzugsweise lichtstarken Objektiven derart kombiniert wird, dass eine durch Bildfehler bedingte Unschärfe und eine geringe Schärfentiefe überwaunden wird.

Description

  • Die Erfindung betrifft ein Entfernungsmesssystem zum Betreiben eines solchen nach Gattung der unabhängigen Ansprüche.
  • Mit Enfernungsmesssystem können insbesondere auch Lichtlaufzeitkamerasystem mit umfasst sein.
  • Mit Lichtlaufzeitkamerasystem sollen hier insbesondere Systeme umfasst sein, die Entfernungen direkt aus der Lichtlaufzeit ermitteln oder die Lichtlaufzeit aus der Phasenverschiebung einer emittierten und empfangenen Strahlung gewinnen. Als Lichtlaufzeit bzw. 3D-Kameras sind insbesondere PMD-Kameras mit Photomischdetektoren (PMD) geeignet, wie sie u.a. in der DE 197 04 496 A1 beschrieben und beispielsweise von der Firma ‚ifm electronic GmbH‘ oder ‚pmdtechnologies ag‘ als O3D-Kamera bzw. als CamBoard zu beziehen sind. Die PMD-Kamera erlaubt insbesondere eine flexible Anordnung der Lichtquelle und des Detektors, die sowohl in einem Gehäuse als auch separat angeordnet werden können.
  • Aus der DE 197 04 496 A1 ist ferner die Bestimmung einer Entfernung bzw. einer entsprechenden Phasenverschiebung des von einem Objekt reflektierten Lichts bekannt. Insbesondere wird offenbart, die Sendermodulation gezielt um 90°, 180° oder 270° zu verschieben, um aus diesen vier Phasenmessungen über eine arctan-Funktion eine Phasenverschiebung und somit eine Entfernung zu bestimmen.
  • Aufgabe der Erfindung ist es, die Entfernungsmessung eines Lichtlaufzeitkamerasystems zu verbessern.
  • Die Aufgabe wird in vorteilhafter Weise durch das erfindungsgemäße Lichtlaufzeitkamerasystem nach Gattung der unabhängigen Ansprüche gelöst.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Es zeigen:
    • 1 schematisch ein Lichtlaufzeitkamerasystem,
    • 2 eine modulierte Integration erzeugter Ladungsträger,
    • 3 einen Querschnitt durch einen PMD-Lichtlaufzeitsensor mit Potentialverteilung,
    • 4 einen zeitlichen Verlauf der Integrationsspannungen an einem Lichtlaufzeitpixel,
    • 5 Verläufe der Ladungsintegration abhängig von der Phasenverschiebung und -lage,
    • 6 eine Relation der Phasenverschiebung in einem IQ-Diagramm,
    • 7 einen Modulationsverlauf über vier Phasenlagen,
    • 8 eine Variante mit scharfer Abbildung,
    • 9 ein Lichtpunktmuster mit großen Abständen,
    • 10 eine Lichtpunktequelle mit verschiedenen Lichtpunktabständen.
  • Bei der nachfolgenden Beschreibung der bevorzugten Ausführungsformen bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.
  • 1 zeigt eine Messsituation für eine optische Entfernungsmessung mit einer Lichtlaufzeitkamera, wie sie beispielsweise aus der DE 197 04 496 A1 bekannt ist.
  • Das Lichtlaufzeitkamerasystem 1 umfasst eine Sendeeinheit bzw. ein Beleuchtungsmodul 10 mit einer Beleuchtung 12 und einer dazugehörigen Strahlformungsoptik 15 sowie eine Empfangseinheit bzw. Lichtlaufzeitkamera 20 mit einer Empfangsoptik 25 und einem Lichtlaufzeitsensor 22.
  • Der Lichtlaufzeitsensor 22 weist mindestens ein Laufzeitpixel, vorzugsweise auch ein Pixel-Array auf und ist insbesondere als PMD-Sensor ausgebildet. Die Empfangsoptik 25 besteht typischerweise zur Verbesserung der Abbildungseigenschaften aus mehreren optischen Elementen. Die Strahlformungsoptik 15 der Sendeeinheit 10 kann beispielsweise als Reflektor oder Linsenoptik ausgebildet sein. In einer sehr einfachen Ausgestaltung kann ggf. auch auf optische Elemente sowohl empfangs- als auch sendeseitig verzichtet werden.
  • Das Messprinzip dieser Anordnung basiert im Wesentlichen darauf, dass ausgehend von der Phasenverschiebung des emittierten und empfangenen Lichts die Laufzeit und somit die zurückgelegte Wegstrecke des empfangenen Lichts ermittelt werden kann. Zu diesem Zwecke werden die Lichtquelle 12 und der Lichtlaufzeitsensor 22 über einen Modulator 30 gemeinsam mit einem bestimmten Modulationssignal Mo mit einer Basisphasenlage φ0 beaufschlagt. Im dargestellten Beispiel ist ferner zwischen dem Modulator 30 und der Lichtquelle 12 ein Phasenschieber 35 vorgesehen, mit dem die Basisphase φ0 des Modulationssignals Mo der Lichtquelle 12 um definierte Phasenlagen φvar verschoben werden kann. Für typische Phasenmessungen werden vorzugsweise Phasenlagen von φvar = 0°, 90°, 180°, 270° verwendet.
  • Entsprechend des eingestellten Modulationssignals sendet die Lichtquelle 12 ein intensitätsmoduliertes Signal Sp1 mit der ersten Phasenlage p1 bzw. p1 = φ0 + φvar aus. Dieses Signal Sp1 bzw. die elektromagnetische Strahlung wird im dargestellten Fall von einem Objekt 40 reflektiert und trifft aufgrund der zurückgelegten Wegstrecke entsprechend phasenverschoben Δφ(tL) mit einer zweiten Phasenlage p2 = φ0 + φvar + Δφ(tL) als Empfangssignal Sp2 auf den Lichtlaufzeitsensor 22. Im Lichtlaufzeitsensor 22 wird das Modulationssignal Mo mit dem empfangenen Signal Sp2 gemischt, wobei aus dem resultierenden Signal die Phasenverschiebung bzw. die Objektentfernung d ermittelt wird.
  • Ferner weist das System ein Modulationssteuergerät 27 auf, das in Abhängigkeit der vorliegenden Messaufgabe die Phasenlage φvar das Modulationssignal Mo verändert und/oder über einen Frequenzoszillator 38 die Modulationsfrequenz einstellt.
  • Als Beleuchtungsquelle bzw. Lichtquelle 12 eignen sich vorzugsweise Infrarot-Leuchtdioden. Selbstverständlich sind auch andere Strahlungsquellen in anderen Frequenzbereichen denkbar, insbesondere kommen auch Lichtquellen im sichtbaren Frequenzbereich in Betracht.
  • Das Grundprinzip der Phasenmessung ist schematisch in 2 dargestellt. Die obere Kurve zeigt den zeitlichen Verlauf des Modulationssignals M0 mit der die Beleuchtung 12 und der Lichtlaufzeitsensor 22 angesteuert werden. Das vom Objekt 40 reflektierte Licht trifft als Empfangssignal Sp2 entsprechend seiner Lichtlaufzeit tL phasenverschoben Δφ(tL) auf den Lichtlaufzeitsensor 22. Der Lichtlaufzeitsensor 22 sammelt die photonisch erzeugten Ladungen q über mehrere Modulationsperioden in der Phasenlage des Modulationssignals Mo in einem ersten Akkumulationsgate Ga und in einer um 180° verschobenen Phasenlage M0 + 180° in einem zweiten Akkumulationsgate Gb. Aus dem Verhältnis der im ersten und zweiten Gate Ga, Gb gesammelten Ladungen qa, qb lässt sich die Phasenverschiebung Δφ(tL) und somit eine Entfernung d des Objekts bestimmen.
  • 3 zeigt einen Querschnitt durch einen Pixel eines Photomischdetektors wie er beispielsweise aus der DE 197 04 496 C2 bekannt ist. Die Modulationsphotogates Gam, G0, Gbm bilden den lichtsensitiven Bereich eines PMD-Pixels. Entsprechend der an den Modulationsgates Gam, G0, Gbm angelegten Spannung werden die photonisch erzeugten Ladungen q entweder zum einen oder zum anderen Akkumulationsgate bzw. Integrationsknoten Ga, Gb gelenkt. Die Integrationsknoten können als Gate oder auch als Diode ausgebildet sein.
  • 3b zeigt einen Potenzialverlauf, bei dem die Ladungen q in Richtung des ersten Integrationskonten Ga abfliesen, während das Potenzial gemäß 3c die Ladung q in Richtung des zweiten Integrationsknoten Gb fließen lässt. Die Potenziale werden entsprechend der anliegenden Modulationssignale vorgegeben. Je nach Anwendungsfall liegen die Modulationsfrequenzen vorzugsweise in einem Bereich von 1 bis 100 MHz. Bei einer Modulationsfrequenz von beispielsweise 1 MHz ergibt sich eine Periodendauer von einer Mikrosekunde, so dass das Modulationspotenzial dementsprechend alle 500 Nanosekunden wechselt.
  • In 3a ist ferner eine Ausleseeinheit 400 dargestellt, die gegebenenfalls bereits Bestandteil eines als CMOS ausgebildeten PMD-Lichtlaufzeitsensors sein kann. Die als Kapazitäten bzw. Dioden ausgebildeten Integrationsknoten Ga, Gb integrieren die photonisch erzeugten Ladungen über eine Vielzahl von Modulationsperioden. In bekannter Weise kann die dann an den Gates Ga, Gb anliegende Spannung beispielsweise über die Ausleseeinheit 400 hochohmig abgegriffen werden. Die Integrationszeiten sind vorzugsweise so zu wählen, dass für die zu erwartende Lichtmenge der Lichtlaufzeitsensor bzw. die Integrationsknoten und/oder die lichtsensitiven Bereiche nicht in Sättigung geraten.
  • In 4 ist ein typischer zeitlicher Verlauf der an den Integrationsknoten Ga, Gb während einer Phasenmessung anliegenden Spannung Ua, Ub. Ausgehend von einer nach einem Reset an den Integrationsknoten anliegenden positiven Resetspannung UDRS fällt die Spannung aufgrund der akkumulierten Photoelektronen an beiden Integrationsknoten Ga, Gb ab. Entsprechend der Phasenverschiebung Δφ(tL) des empfangenen Signals fallen die Spannungen an den Integrationsknoten Ga, Gb unterschiedlich stark ab. Zum Ende der Integrationszeit tint wird die an den Integrationsknoten Ga, Gb anliegenden Spannung Ua, Ub ausgelesen. Die Spannungsdifferenz ΔU der beiden Spannungen Ua, Ub entspricht in bekannter Weise der Differenz Δq der an den Integrationsknoten Ga, Gb akkumulierten Ladung q. Die Integrationszeit tint ist vorzugsweise so bemessen, dass kein Integrationsknoten Ga, Gb bei einer üblichen Belichtung sein Sättigungspotential Us erreicht. Für größere Signalstärken kann auch eine so genannte SBI-Schaltung zur Signalkompensation vorgesehen sein. Derartige Schaltungen sind beispielsweise aus der DE 10 2004 016 626 A1 oder DE 10 2005 056 774 A1 bekannt.
  • 5a und 5b zeigen Verläufe der normierten Ladungsdifferenz Δq = qa - qb / (qa + qb) in Abhängigkeit der Phasenverschiebung Δφ(tL) des empfangenen Lichtsignals Sp2 mit unterschiedlichen Phasenlagen. Die 5a zeigt einen Verlauf für eine unverschobene Modulationsphase Mo mit einer Phasenlage φvar = 0°.
  • Bei einem Auftreffen des Signals Sp2 ohne Phasenverschiebung also Δφ(tL) = 0°, beispielsweise, wenn das Sendesignal Sp1 direkt auf den Sensor gelenkt wird, sind die Phasen der Modulation M0 und vom empfangenen Signal Sp2 identisch, so dass alle erzeugten Ladungsträger phasensynchron am ersten Integrationsknoten Ga erfasst werden und somit ein maximales Differenzsignal mit Δq = 1 anliegt.
  • Mit zunehmender Phasenverschiebung nimmt die am ersten Integrationsknoten Ga akkumulierte Ladung ab und am zweiten Integrationsknoten Gb zu. Bei einer Phasenverschiebung von Δφ(tL) = 90° sind die Ladungsträger qa, qb an beiden Integrationsknoten Ga, Gb gleich verteilt und die Ladungsdifferenz somit Null und nach 180° Phasenverschiebung „-1‟. Mit weiter zunehmender Phasenverschiebung nimmt die Ladung am ersten Gate Ga wieder zu, so dass im Ergebnis die Ladungsdifferenz wieder ansteigt, um dann bei 360° bzw. 0° wieder ein Maximum zu erreichen.
  • Mathematisch handelt es sich hierbei um eine Korrelationsfunktion des empfangenen Signals Sp2 mit dem modulierenden Signal M0 . q ( τ ) = 0 S p 2 ( t τ ) M 0 ( t ) d t
    Figure DE102019124144A1_0001
  • Bei einer Modulation mit einem Rechtecksignal ergibt sich wie bereits dargestellt als Korrelationsfunktion eine Dreiecksfunktion. Bei einer Modulation mit beispielsweise einem Sinussignal wäre das Ergebnis eine Kosinusfunktion.
  • Wie 5a zeigt, ist eine Messung der Phase mit einer Phasenlage nur bis zu einer Phasenverschiebung Δφ(tL) ≤ 180° eindeutig.
  • Zur maximalen Erfassung der Phasenverschiebung ist beispielsweise das IQ(Inphase-Quadratur) Verfahren bekannt, bei dem zwei Messungen mit um 90° verschobenen Phasenlagen durchgeführt werden, also beispielsweise mit der Phasenlage φvar = 0° und φvar = 90°. Das Ergebnis einer Messung mit der Phasenlage φvar = 90° ist in 5b dargestellt.
  • Die Beziehung dieser beiden Kurven lässt sich in bekannter Weise beispielsweise für sinusförmige Kurvenverläufe in einem IQ-Diagramm gem. 6 darstellen. In erster Näherung ist diese Darstellung ohne weiteres auch für die dargestellten Dreiecksfunktionen anwendbar.
  • Der Phasenwinkel lässt sich dann in bekannter Weise über eine arctan-Funktion bzw. arctan2-Funktion bestimmen: φ = a r c t a n Δ q ( 90 ) Δ q ( 0 )
    Figure DE102019124144A1_0002
  • Aufgrund des linearen Zusammenhangs zwischen Ladung und Spannung, lässt sich der Phasenwinkel ebenso über die Spannungsdifferenzen bestimmen: φ = a r c t a n Δ U ( 90 ) Δ U ( 0 )
    Figure DE102019124144A1_0003
  • Um beispielsweise Asymmetrien des Sensors zu kompensieren, können zusätzliche um 180° verschobene Phasenmessungen durchgeführt werden, so dass sich im Ergebnis der Phasenwinkel wie folgt bestimmen lässt. φ = Δ φ ( t L ) = a r c t a n Δ q ( 90 ) Δ q ( 270 ) Δ q ( 0 ) Δ q ( 180 )
    Figure DE102019124144A1_0004
  • Oder verkürzt formuliert: φ = Δ φ ( t L ) = a r c t a n a 2 a 4 a 1 a 3
    Figure DE102019124144A1_0005
  • Wobei die Indizes die jeweilige Phasenlage der Differenzen ai andeuten, mit a 1 = Δ q ( 0 )  usw .
    Figure DE102019124144A1_0006
  • Aus der Phasenverschiebung φ bzw. Δφ(tL) lassen sich für Objektabstände d, die kleiner sind als die halbe Wellenlänge λ der Modulationsfrequenz d ≤ λ/2, in bekannter Weise ein Abstand bestimmen. d = Δ φ ( t L ) λ 2 π 1 2
    Figure DE102019124144A1_0007
  • In 7 ist ein vollständiger Satz einer Entfernungsmessung mit vier Phasenlagen von 0°, 90°, 180° und 270° dargestellt. Im dargestellten Fall werden Ladungsträger jeweils über Modulationsperioden integriert und in jeder Phasenlage ein der Ladungsdifferenz entsprechender Wert a1, a2, a3, a4 ausgelesen, woraus sich wie bereits dargestellt eine Phasenverschiebung und ein entsprechender Entfernungswert ermitteln lässt.
  • In bisherigen ToF Systemen wird der 4 Phasen Algorithmus verwendet, um innerhalb eines Eindeutigkeitsbereichs die Phasenlage zu bestimmen. Bei diesem Algorithmus werden vier Stützstellen, die äquidistant im Eindeutigkeitsbereich von 0 bis 2π mit gleicher Modulationsfrequenz ermittelt und anschließend die Phasenlage der Grundwelle, die durch diese Stützstellen verläuft, berechnet. Der Eindeutigkeitsbereich wird durch einen Transformationsfaktor vom Bogenmaß in eine Distanz überführt.
  • Objekte in Abständen, die in Vielfachen dieses Eindeutigkeitsbereichs liegen (0 bis 2π), führen zu Mehrdeutigkeiten der Phasenlage. Diese Mehrdeutigkeiten können durch eine weitere Phasenmessung bzw. durch eine erneute Anwendung des 4 Phasenalgorithmus mit anderen, typischerweise einer niedrigeren Modulationsfrequenz in eine eindeutige Phasenlage überführt werden. Dieses Vorgehen impliziert demnach mindestens 8 Messungen bis ein eindeutiger Distanzwert berechnet werden kann.
  • Der Verlauf der Korrelationsfunktion bei einer Verwendung von rechteckförmigen Modulationssignalen ergibt wie gezeigt einen dreieckförmigen Verlauf der Korrelationsfunktion. In 8 sind zwei Korrelationen für unterschiedliche Frequenzen gezeigt. Die Funktion ist über der Distanz gezeichnet, um die Eindeutigkeitsbereiche und deren Wiederholung sichtbar darzustellen. Durch das Verhältnis der gewählten Modulationsfrequenzen (30MHz / 15 MHz) ist der Eindeutigkeitsbereich der maximalen Frequenz halb so groß, wie der der niedrigeren Frequenz.
  • Aktuell werden bei vielen ToF-Kameras, welche nach dem Phasen-ToF Verfahren arbeiten (z.B. PMD-Kameras) Szenerien komplett beleuchtet, d.h. FoV (field of view) ist nahezu identisch mit dem Fol (field of illumination).
  • Zum Ausgleich von Objektivvignettierung, Messabständen etc. wird desöfteren eine Beleuchtung mit erhöhten Intensitäten am Bildrand
  • Bei der vollständigen Beleuchtung ergeben sich folgende Probleme, welche mittels der neuen Idee vermindert bzw. gelöst werden können:
    • - Übersprechen von verschiedenen Bildteilen auf jedes Pixel bedingt durch Streulicht in der Empfangsoptik (Schmutz, Kratzer), Reflexen am Sensor oder an Linsen (Beschichtungen nicht Perfekt bzw. keine 100%ige Absorption im Sensor) etc.; d.h. die Abstandsinformationen eines nahen und eines fernen Objekts überlagert sich und kann sogar dominant werden, z.B. nahes weißes Objekt (oder sogar Retroreflektor) verursacht Streulicht auf Bildbereichen, welche in der Szene weit weg und/oder nur schwach reflektierend sind. Hier kann das Streusignal sogar größer sein, als das eigentliche Messsignal.
    • - Übersprechen/Überlagerung von verschiedenen Beleuchtungsanteilen schon in der Szene, d.h. ein Bildpunkt wird in der Szene sowohl direkt von der Beleuchtung der ToF Kamera beleuchtet, als auch indirekt via eines Reflexes (z.B. direkt auf Wand vs. Erst auf Fensterscheibe und dann auf Wand)
    • - Übersprechen/Überlagerung von Beleuchtungsanteilen aus der Messszene (rücklaufendes Licht) und direktem Licht aus dem Sender (hinlaufendes Licht), z.B., wenn Senderstrahlung in Empfangsweg hineingekoppelt wird, etwa bei gemeinsam genutztem Fenster für Sende und Empfangsweg. Hier kann Senderlicht in das Fenster eingekoppelt werden (Schmutz, Kratzer etc.) und aus demselben Grund vor dem Objektiv wieder ausgekoppelt werden
    • - Begrenzte Messreichweite aufgrund von:
      • o limitierter Versorgungs- oder Kühlleistung der Beleuchtung
      • o Problemen mit Augen- oder Hautsicherheit, siehe Normen/Gesetze:
        • IEC60825-1:2007, IEC60825-1:2014, OStrV-Gesetz, RICHTLINIE 2006/25/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 5. April 2006, IEC62471
  • Beleuchtung mit Punktlichtmuster anstelle homogenem Lichtprofil (Licht jeweils zeitlich moduliert, so dass ToF Messung möglich ist).
    Der Nachteil, dass ggf. nur so viele Messpunkte nutzbar sind, wie Lichtpunkte emittiert werden, wird in Kauf genommen, da dafür zum Ausgleich anderweitige Vorteile bestehen.
  • Aktuell werden bei vielen ToF-Kameras, welche nach dem Phasen-ToF Verfahren arbeiten (z.B. PMD-Kameras) Szenerien komplett beleuchtet, d.h. FoV (field of view) ist nahezu identisch mit dem Fol (field of illumination).
    Zum Ausgleich von Objektivvignettierung, Messabständen etc. wird desöfteren eine Beleuchtung mit erhöhten Intensitäten am Bildrand benutzt
  • Bei der vollständigen Beleuchtung ergeben sich folgende Probleme, welche mittels der neuen Idee vermindert bzw. gelöst werden können:
    • - Übersprechen von verschiedenen Bildteilen auf jedes Pixel bedingt durch Streulicht in der Empfangsoptik (Schmutz, Kratzer), Reflexen am Sensor oder an Linsen (Beschichtungen nicht Perfekt bzw. keine 100%ige Absorption im Sensor) etc.; d.h. die Abstandsinformationen eines nahen und eines fernen Objekts überlagert sich und kann sogar dominant werden, z.B. nahes weißes Objekt (oder sogar Retroreflektor) verursacht Streulicht auf Bildbereichen, welche in der Szene weit weg und/oder nur schwach reflektierend sind. Hier kann das Streusignal sogar größer sein, als das eigentliche Messsignal.
    • - Übersprechen/Überlagerung von verschiedenen Beleuchtungsanteilen schon in der Szene, d.h. ein Bildpunkt wird in der Szene sowohl direkt von der Beleuchtung der ToF Kamera beleuchtet, als auch indirekt via eines Reflexes (z.B. direkt auf Wand vs. Erst auf Fensterscheibe und dann auf Wand)
    • - Übersprechen/Überlagerung von Beleuchtungsanteilen aus der Messszene (rücklaufendes Licht) und direktem Licht aus dem Sender (hinlaufendes Licht), z.B. wenn Senderstrahlung in Empfangsweg hineingekoppelt wird, etwa bei gemeinsam genutztem Fenster für Sende und Empfangsweg. Hier kann Senderlicht in das Fenster eingekoppelt werden (Schmutz, Kratzer etc.) und aus demselben Grund vor dem Objektiv wieder ausgekoppelt werden
    • - Begrenzte Messreichweite aufgrund von:
      • o limitierter Versorgungs- oder Kühlleistung der Beleuchtung
      • o Problemen mit Augen- oder Hautsicherheit, siehe Normen/Gesetze:
        • IEC60825-1:2007, IEC60825-1:2014, OStrV-Gesetz, RICHTLINIE 2006/25/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 5. April 2006, IEC62471
  • Erfindungsgemäß ist eine Beleuchtung mit Punktlichtmuster anstelle homogenem Lichtprofil (Licht jeweils zeitlich moduliert, so dass ToF Messung möglich ist) vorgesehen.
  • Grundsätzliche ist ist eine unscharfe Optik als Empfängeroptik in Verbindung mit Punktmusterlichtquelle vorzusehen.
  • ToF Verfahren profitieren von lichtstarken Objektiven. Solche Objektive haben typischerweise kleine F-Zahlen und sind hinsichtlich Bildfehlern nur schwer zu korrigieren, oftmals mittels vieler Linsen. Solche Objektive erfordern dann aber grossen Bauraum und sind kostenintensiv. Objektive mit kleinen F-Zahlen und hohe Schärfe sind zudem schwer zu entwickeln und ihre Schärfentiefe ist prinzipbedingt gering.
  • Ein Lichtpunktmuster basierte ToF-Beleuchtung mit hinreichenden Lichtpunktabständen erlaubt die Verwendung sehr einfacher lichtstarker Objektive, da diese nicht mehr so scharf sein müssen, da die „Schärfe“ von den einzelnen ausgesendeten Lichtpunkten gegeben ist. Im Extremfall können sogar einfache geprägte Kunststoff-Fresnellinsen verwendet werden (diese neigen aufgrund der vielen Kanten („Rillen“) zu starken Streueffekten, sowie zu Beugungseffekten - Beugung an Ringblenden bei zylindersymmetrischen Fresnellinsen bzw. Beugung an geraden Kanten bei zylindrischen Fresnellinsen). Weitere Bildfehler sind in der Optik als Abbildungsfehler bekannt (z.B. Bildfeldwölbung, Koma, Astigmatismus etc.)
  • Die Lichtpunkte benötigen lediglich einen Abstand zueinander haben, welcher groß genug ist, so dass das Übersprechen der Lichtpunkte untereinander (z.B. benachbarter Lichtpunkte) auf dem Sensor unterhalb eines gewünschten Niveaus ist. Auch nicht zylindersymmetrische Anordnungen sind denkbar, bei denen in einer Richtung mit höherer Auflösung und hoher Lichtstärke (aber dennoch getrennten Lichtpunkten), in der anderen Richtung mit niedrigerer Auflösung und dafür nochmals verbesserter Lichtempfindlichkeit gemessen wird, z.B. mittels Zylinder-Fresnellinsen.
  • Folgende Ausgestaltungen sind beispielhaft denkbar
    1. a) Messsystem mit Kombination aus Punktlichtmuster zusammen mit lichtstarken Objektiven, um die Unschärfe - bedingt durch die nur schwer zu korrigierenden Bildfehler und die geringe Schärfentiefe solcher Objektive - zu überwinden.
    2. b) Wie a., mit Einzellichtpunkt oder Array von Lichtpunkten als Beleuchtung
    3. c) Wie a. mit einer oder mehreren Lichtpunktlinien („gepunktete Linien“) und Verwendung von Optiken (z.B. Zylinder- bzw. Toruslinsen), so dass entlang der Lichtpunktlinien mit einer anderen Lichtstärke und /oder Auflösung gearbeitet wird, als senkrecht zu den Lichtpunktlinien
    4. d) Messsystem aus a). mit einem Punktlichtmuster, wobei die einzelnen Lichtpunkte so weit voneinander entfernt sind, dass sie sich nach Abbildung auf den Sensor nicht mehr überlagern und getrennt detektiert werden können.
    5. e) Messsystem mit Kombination aus Punktlichtmuster und in der Schärfe verstellbarem Objektiv, um gezielt mittels einstellbarer Unschärfe des Objektivs Sättigung zu vermeiden und die vom Objektiv erfasste Lichtleistung auf mehrere Pixel zu verteilen.
  • 8 Scharfe Abbildungen erfordern komplexe Empfangssysteme und haben limitierte Lichtstärken.
  • 9 Lichtpunktmuster mit hinreichend großen Lichtpunktabständen erlauben einfache, lichtstarke Objektive, sofern die abgebildeten Lichtpunkte weit genug auseinander liegen, so dass das Signalübersprechen hinreichend gering ist.
  • 10 Beispiel für eine Lichtpunktequelle mit in 2 Richtungen verschiedenem Lichtpunktabstand. Entsprechend können die F-Zahlen der Empfangsoptik für diese beiden Richtungen unterschiedlich gewählt werden.
  • Bezugszeichenliste
  • 1
    Lichtlaufzeitkamerasystem
    10
    Beleuchtungsmodul
    12
    Beleuchtung
    20
    Empfänger, Lichtlaufzeitkamera
    22
    Lichtlaufzeitsensor
    27
    Auswerteeinheit
    30
    Modulator
    35
    Phasenschieber, Beleuchtungsphasenschieber
    38
    Modulationssteuergerät
    40
    Objekt
    400
    Auswerteeinheit
    φ, Δφ(tL)
    laufzeitbedingte Phasenverschiebung
    φvar
    Phasenlage
    φ0
    Basisphase
    M0
    Modulationssignal
    p1
    erste Phase
    p2
    zweite Phase
    Sp1
    Sendesignal mit erster Phase
    Sp2
    Empfangssignal mit zweiter Phase
    Ga, Gb
    Integrationsknoten
    Ua, Üb
    Spannungen an den Integrationsknoten
    ΔU
    Spannungsdifferenz
    Δq
    Ladungsdifferenz
    d
    Objektdistanz
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 19704496 A1 [0003, 0004, 0010]
    • DE 19704496 C2 [0018]
    • DE 102004016626 A1 [0021]
    • DE 102005056774 A1 [0021]

Claims (5)

  1. Entfernungsmesssystem, bei dem ein Punktlichtmuster mit einem vorzugsweise lichtstarken Objektiven derart kombiniert wird, dass eine durch Bildfehler bedingte Unschärfe und eine geringe Schärfentiefe überwunden wird.
  2. Entfernungsmesssystem nach Anspruch 1 mit einem Einzellichtpunkt oder Array von Lichtpunkten als Beleuchtung.
  3. Entfernungsmesssystem nach einem der vorhergehenden Ansprüche mit einer oder mehreren Lichtpunktlinien („gepunktete Linien“) und Verwendung von Optiken (z.B. Zylinder- bzw. Toruslinsen), so dass entlang der Lichtpunktlinien mit einer anderen Lichtstärke und /oder Auflösung gearbeitet wird, als senkrecht zu den Lichtpunktlinien
  4. Entfernungsmesssystem nach einem der vorhergehenden Ansprüche mit einem Punktlichtmuster, wobei die einzelnen Lichtpunkte so weit voneinander entfernt sind, dass sie sich nach Abbildung auf den Sensor nicht mehr überlagern und getrennt detektiert werden können.
  5. Entfernungsmesssystem nach einem der vorhergehenden Ansprüche mit einerKombination aus Punktlichtmuster und in der Schärfe verstellbarem Objektiv, um gezielt mittels einstellbarer Unschärfe des Objektivs Sättigung zu vermeiden und die vom Objektiv erfasste Lichtleistung auf mehrere Pixel zu verteilen.
DE102019124144.8A 2019-09-09 2019-09-09 Entfernungsmesssystem Pending DE102019124144A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102019124144.8A DE102019124144A1 (de) 2019-09-09 2019-09-09 Entfernungsmesssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019124144.8A DE102019124144A1 (de) 2019-09-09 2019-09-09 Entfernungsmesssystem

Publications (1)

Publication Number Publication Date
DE102019124144A1 true DE102019124144A1 (de) 2021-03-11

Family

ID=74644930

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019124144.8A Pending DE102019124144A1 (de) 2019-09-09 2019-09-09 Entfernungsmesssystem

Country Status (1)

Country Link
DE (1) DE102019124144A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018222120A1 (en) * 2017-05-30 2018-12-06 Photon Sports Technologies Ab Method and camera arrangement for measuring a movement of a person
WO2019125349A1 (en) * 2017-12-18 2019-06-27 Montrose Laboratories Llc Time-of-flight sensing using an addressable array of emitters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018222120A1 (en) * 2017-05-30 2018-12-06 Photon Sports Technologies Ab Method and camera arrangement for measuring a movement of a person
WO2019125349A1 (en) * 2017-12-18 2019-06-27 Montrose Laboratories Llc Time-of-flight sensing using an addressable array of emitters

Similar Documents

Publication Publication Date Title
DE102010036964B4 (de) Verzögerungskompensation bei einer modulierten optischen Laufzeit-Phasenabschätzung
WO2018185083A2 (de) Lichtlaufzeitkamera
DE102013207649A1 (de) Lichtlaufzeitkamerasystem
DE102016201599A1 (de) Lichtlaufzeitkamerasystem
DE102013207651A1 (de) Lichtlaufzeitkamerasystem
DE102013207653B4 (de) Lichtlaufzeitkamerasystem
DE102016213217A1 (de) Lichtlaufzeitkamerasystem
DE102014207163A1 (de) Lichtlaufzeitkamerasystem
DE102013207654B4 (de) Lichtlaufzeitkamerasystem
DE102020123537B4 (de) Lichtlaufzeitkamerasystem
DE102013203088B4 (de) Lichtlaufzeitkamerasystem
DE102015225192A1 (de) Lichtlaufzeitmesssystem mit Überreichweitenerkennung
DE102014205585B4 (de) Verfahren zum Betreiben einer Lichtlaufzeitkamera und Lichtlaufzeitkamerasystem
DE102013207648B4 (de) Lichtlaufzeitkamerasystem
DE102017203090A1 (de) Lichtlaufzeitkamerasystem
DE102019124144A1 (de) Entfernungsmesssystem
DE102016219170A1 (de) Lichtlaufzeitkamerasystem
DE102016222334B4 (de) Verfahren zur Ermittlung von Systemparametern eines Lichtlaufzeitkamerasystems
DE102020123541A1 (de) Entfernungsmesssystem
DE102019124142A1 (de) Lichtlaufzeitkamerasystem
DE102019124141A1 (de) Lichtlaufzeitkamerasystem
DE102017200879B4 (de) Lichtlaufzeitkamera und Verfahren zum Betreiben einer solchen
DE102019124138A1 (de) Lichtlaufzeit-Entfernungsmesssystem
DE102016214167B4 (de) Lichtlaufzeitkamerasystem
DE102013208248A1 (de) Verfahren zur Charakterisierung eines optischen Systems mit Hilfe eines 3D-Sensors

Legal Events

Date Code Title Description
R163 Identified publications notified