DE102018205183A1 - Oxidation protection for MAX phases - Google Patents
Oxidation protection for MAX phases Download PDFInfo
- Publication number
- DE102018205183A1 DE102018205183A1 DE102018205183.6A DE102018205183A DE102018205183A1 DE 102018205183 A1 DE102018205183 A1 DE 102018205183A1 DE 102018205183 A DE102018205183 A DE 102018205183A DE 102018205183 A1 DE102018205183 A1 DE 102018205183A1
- Authority
- DE
- Germany
- Prior art keywords
- component
- max phase
- max
- max phases
- oxidation protection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/38—Chromising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/44—Siliconising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/48—Aluminising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/12—Light metals
- F05D2300/121—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/132—Chromium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/22—Non-oxide ceramics
- F05D2300/226—Carbides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
- F05D2300/6033—Ceramic matrix composites [CMC]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Durch eine entsprechende Beschichtung insbesondere auf der Basis von Aluminium eines Produkts aus einer MAX-Phase wird ein besserer Oxidationsschutz für den Einsatz bei hohen Temperaturen gewährleistet.A corresponding coating, in particular based on aluminum of a product from a MAX phase, ensures better oxidation protection for use at high temperatures.
Description
Die Erfindung betrifft einen Oxidationsschutz für MAX-Phasen.The invention relates to an oxidation protection for MAX phases.
Im Wettlauf um stetig steigende Turbineneintrittstemperaturen (TIT) sind die Möglichkeiten konventioneller Schaufelkonzepte (Nickelbasislegierung + Anbindungsschicht + keramische Schutzschicht (TBC)) mittlerweile weitgehend ausgeschöpft. Um einen weiteren Anstieg der TIT und damit der Gesamtanlageneffizienz realisieren zu können, müssen neuartige Schaufelkonzepte und Hochtemperaturwerkstoffe untersucht werden. Auch eine Kühlung setzt enge Grenzen: abgesehen von der Schaufelspitze, muss der Grundwerkstoff aktuell auf Temperaturen gekühlt werden, damit die Nickelbasislegierung über eine ausreichende Festigkeit und Oxidationsbeständigkeit verfügt. Zulässige Temperaturen >1273K würden dagegen eine deutliche Reduktion des Kühlluftmassenstroms erlauben und damit den Wirkungsgrad der Turbine steigern.In the race for constantly rising turbine inlet temperatures (TIT), the possibilities of conventional blade concepts (nickel-base alloy + bonding layer + ceramic protective layer (TBC)) have meanwhile largely been exhausted. In order to be able to realize a further increase of the TIT and thus of the overall system efficiency, novel bucket concepts and high-temperature materials have to be investigated. Cooling also has its limits: apart from the tip of the blade, the base material must be cooled down to temperatures so that the nickel-based alloy has sufficient strength and oxidation resistance. Permitted temperatures> 1273K, on the other hand, would allow a significant reduction of the cooling air mass flow and thus increase the efficiency of the turbine.
Die durch konventionelle Konzepte limitierte TIT wird derzeit in Kauf genommen in Verbindung mit effizienten Kühlkonzepten. Eine CMC Entwicklung soll die benötigte Kühlluft reduzieren, ist jedoch begrenzt auf 1473K bei der OX-OX Variante (Oxid-Matrix + Oxid-Fasern), bei einer geringen Matrixfestigkeit und Wärmeleitfähigkeit.The TIT, which is limited by conventional concepts, is currently accepted in conjunction with efficient cooling concepts. A CMC development is intended to reduce the required cooling air, but is limited to 1473K in the OX-OX variant (oxide matrix + oxide fibers), with a low matrix strength and thermal conductivity.
Aus diesem Grund werden MAX-Phasen als neuartige Werkstoffe für Turbinenkomponenten eingeführt. Während einige MAX-Phasen gute Oxidationseigenschaften besitzen, sind beispielsweise MAX-Phasen aus dem Nb-Al-C-System sehr anfällig für Oxidation. So ist Nb2AlC nur bis 1196K für den dauerhaften Einsatz an Luft geeignet, für Nb4AlC3 liegen die Einsatztemperaturen an Luft sogar noch darunter. Gleichzeitig verfügen die genannten MAX-Phasen aber über hervorragende mechanische Hochtemperatureigenschaften: die Biegefestigkeit von Nb4AlC3 fällt auch bei 1673K nicht ab und das E-Modul verringert sich nur um 16% gegenüber des Raumtemperatur-Werts (bei 1853K um 21%). Der Einsatz von MAX-Phasen als Hochtemperaturwerkstoff in der Turbine ist demnach vielversprechend, erfordert jedoch insbesondere im Nb-Al-C System einen effektiven Oxidationsschutz.For this reason, MAX phases are introduced as novel materials for turbine components. While some MAX phases have good oxidation properties, for example, MAX phases from the Nb-Al-C system are very susceptible to oxidation. For example, Nb 2 AlC is only suitable for permanent use in air up to 1196K; for Nb 4 AlC 3 , the operating temperatures in air are even lower. At the same time, however, the mentioned MAX phases have outstanding high-temperature mechanical properties: the bending strength of Nb 4 AlC 3 does not decrease even at 1673K and the modulus of elasticity is only 16% lower than the room temperature value (21.5% for 1853K). The use of MAX phases as a high-temperature material in the turbine is therefore promising, but in particular in the Nb-Al-C system requires effective oxidation protection.
Aktuell konzentrieren sich Untersuchungen vor allem auf MAX-Phasen, wie Ti2AlC oder Cr2AlC, die Al2O3-Deckschichten bilden und damit von Natur aus gute Oxidationseigenschaften aufweisen. Eine technische Lösung für die Verbesserung der Oxidationsbeständigkeit von Turbinenkomponenten aus MAX-Phasen gehört bislang nicht zum Stand der Technik.Investigations are currently focusing mainly on MAX phases, such as Ti 2 AlC or Cr 2 AlC, which form Al 2 O 3 cover layers and thus naturally have good oxidation properties. A technical solution for improving the oxidation resistance of turbine components from MAX phases is not yet part of the prior art.
Es ist daher Aufgabe der Erfindung, oben genanntes Problem zu lösen.It is therefore an object of the invention to solve the above-mentioned problem.
Die Aufgabe wird gelöst durch eine Komponente aus einer MAX-Phase gemäß Anspruch 1 und ein Verfahren gemäß Anspruch 2.The object is achieved by a component of a MAX phase according to claim 1 and a method according to claim 2.
Die Idee sieht vor, die Oxidationsbeständigkeit von MAX-Phasen-haltigen Komponenten wie Turbinenschaufeln oder Brennerbauteilen durch eine Diffusionsbeschichtung, insbesondere mittels einer Pulver-Packbeschichtung zu verbessern. Bei der Pulver-Packbeschichtung handelt sich um ein Diffusionsbeschichtungsverfahren der Innen- und Außenbeschichtung zum Schutz vor Heißgaskorrosion und Hochtemperaturoxidation. Dabei befinden sich die zu beschichtenden Bauteile zusammen mit einer Pulvermixtur in einer Retorte. Die zur Bauteilbeschichtung notwendigen Reaktionsgase bilden sich unter Temperatureinfluss in der Pulvermixtur und lassen auf der Bauteiloberfläche die Diffusionsschicht entstehen. Untersuchungen haben gezeigt, dass sich die Oxidationsbeständigkeit einer Probe aus Nb4AlC3 insbesondere durch eine Pulver-Packbeschichtung mit Silizium, deutlich verbessern ließ.The idea is to improve the oxidation resistance of MAX phase-containing components such as turbine blades or burner components by means of a diffusion coating, in particular by means of a powder packing coating. Powder Pack Coating is a diffusion coating process of inner and outer coating for protection against hot gas corrosion and high temperature oxidation. The components to be coated are together with a powder mixture in a retort. The reaction gases necessary for component coating form under the influence of temperature in the powder mixture and allow the diffusion layer to form on the component surface. Investigations have shown that the oxidation resistance of a sample of Nb 4 AlC 3, in particular by a powder packing with silicon, could be significantly improved.
Der Prozess läuft vorzugsweise so:
- Prozesstemperatur bei 1473K für 6 h bei einer Heizrate von 8K/min. Die Pulvermischung der „Packung“ besteht aus 16 Gew.-% Si (99%, 400 mesh), 4 Gew.-% NaF, und 80 Gew.-% Al2O3, wobei Silizium (Si) Pulver als Silizium Quelle dient und NaF als Aktivierungsmaterial sowie Al2O3 als Füllmaterial.
- Process temperature at 1473K for 6 hours at a heating rate of 8K / min. The powder mixture of the "packing" consists of 16 wt% Si (99%, 400 mesh), 4 wt% NaF, and 80 wt% Al 2 O 3 , with silicon (Si) powder serving as the silicon source and NaF as the activation material and Al 2 O 3 as filler.
Während die monolithischen Nb4AlC3-Proben sehr schlechte Oxidationseigenschaften auch bei niedrigeren Temperaturen <873K aufwiesen, zeigten die siliziumbeschichteten Proben eine deutlich verbesserte Oxidationsbeständigkeit bis 1473K aufgrund der Bildung einer schützenden Al2O3-Deckschicht bei hohen Temperaturen.While the monolithic Nb 4 AlC 3 samples had very poor oxidation properties even at lower temperatures <873 K, the silicon-coated samples showed a significantly improved oxidation resistance up to 1473 K due to the formation of a protective Al 2 O 3 cover layer at high temperatures.
Angesichts dieser Forschungsergebnisse soll die Silizium-Pulver-Packbeschichtung für MAX-Phasen-Turbinenkomponenten, insbesondere des Nb-Al-C-Systems, angewendet werden, um diese Komponenten mit einem ausreichenden Oxidationsschutz zu versehen und sie dadurch im Heißgaspfad der Turbine einsetzen zu können. Da die zahlreichen MAX-Phasen über unterschiedliche Oxidationseigenschaften verfügen, muss daneben auch die Pulver-Packbeschichtung mit Aluminium oder Chrom betrachtet werden. So kann die unterschiedliche chemische Zusammensetzung der einzelnen MAX-Phasen berücksichtigt werden und sich mittels einer angepassten Pulver-Packbeschichtung mit Silizium (Si), Aluminium (Al) und/oder Chrom (Cr) oder gemischten Pulvern individuell optimierte Heißgaskorrosions- und Hochtemperaturoxidationseigenschaften erreichen lassen.In the light of this research, the silicon powder packaging coating for MAX-phase turbine components, particularly the Nb-Al-C system, is to be used to provide these components with sufficient oxidation protection and thereby use them in the hot gas path of the turbine. Since the numerous MAX phases have different oxidation properties, the powder packing with aluminum or chromium must also be considered. Thus, the different chemical composition of the individual MAX phases can be taken into account and individually optimized hot gas corrosion and high-temperature oxidation properties can be achieved by means of a matched powder packing with silicon (Si), aluminum (Al) and / or chromium (Cr) or mixed powders.
Es wird ein Materialsystem vorgeschlagen für Heißgaskomponenten mit Nb-Al-C als Grundwerkstoff. Als Oxidationsschutz-Beschichtung eignet sich insbesondere eine Alitierung. Das Aluminium (Al) bildet zusammen mit dem Nb-Al-C Grundmaterial eine schützende Al2O3 Deckschicht auf/in der Oberfläche der MAX-Phase bzw. Komponente. Zusammen mit einer TBC kann das Materialsystem höheren Temperaturen standhalten bei einem effektiven Oxidationsschutz. Aufgrund der guten Übereinstimmung der thermischen Ausdehnungskoeffizienten für die einzelnen Schichten ergeben sich höhere Lebensdauern für das Materialsystem.A material system is proposed for hot gas components with Nb-Al-C as base material. Alloying is particularly suitable as oxidation protection coating. The aluminum (Al) together with the Nb-Al-C base material forms a protective Al 2 O 3 covering layer on / in the surface of the MAX phase or component. Together with a TBC, the material system can withstand higher temperatures with effective oxidation protection. Due to the good agreement of the coefficients of thermal expansion for the individual layers, higher lifetimes for the material system result.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018205183.6A DE102018205183A1 (en) | 2018-04-06 | 2018-04-06 | Oxidation protection for MAX phases |
PCT/EP2019/055827 WO2019192800A1 (en) | 2018-04-06 | 2019-03-08 | Oxidation protection for max phases |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018205183.6A DE102018205183A1 (en) | 2018-04-06 | 2018-04-06 | Oxidation protection for MAX phases |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102018205183A1 true DE102018205183A1 (en) | 2019-10-10 |
Family
ID=65955161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102018205183.6A Withdrawn DE102018205183A1 (en) | 2018-04-06 | 2018-04-06 | Oxidation protection for MAX phases |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018205183A1 (en) |
WO (1) | WO2019192800A1 (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540878A (en) * | 1967-12-14 | 1970-11-17 | Gen Electric | Metallic surface treatment material |
US5683226A (en) * | 1996-05-17 | 1997-11-04 | Clark; Eugene V. | Steam turbine components with differentially coated surfaces |
US6497922B2 (en) * | 1997-08-11 | 2002-12-24 | Drexel University | Method of applying corrosion, oxidation and/or wear-resistant coatings |
WO2003046247A1 (en) * | 2001-11-30 | 2003-06-05 | Abb Ab | METHOD OF SYNTHESIZING A COMPOUND OF THE FORMULA Mn+1AXn, FILM OF THE COMPOUND AND ITS USE |
US7553564B2 (en) * | 2004-05-26 | 2009-06-30 | Honeywell International Inc. | Ternary carbide and nitride materials having tribological applications and methods of making same |
US7572313B2 (en) * | 2004-05-26 | 2009-08-11 | Drexel University | Ternary carbide and nitride composites having tribological applications and methods of making same |
US20100055492A1 (en) * | 2008-06-03 | 2010-03-04 | Drexel University | Max-based metal matrix composites |
EP2405029A1 (en) * | 2010-07-02 | 2012-01-11 | Brandenburgische Technische Universität Cottbus | Method for producing an adhesive scratch-proof protective coating on a metallic workpiece |
US8192850B2 (en) * | 2008-08-20 | 2012-06-05 | Siemens Energy, Inc. | Combustion turbine component having bond coating and associated methods |
EP2740819A1 (en) * | 2012-12-04 | 2014-06-11 | Siemens Aktiengesellschaft | Alloy of aluminium rich MAX phases, powders and layer system |
WO2015080839A1 (en) * | 2013-11-26 | 2015-06-04 | United Technologies Corporation | Gas turbine engine component coating with self-healing barrier layer |
EP2905271A1 (en) * | 2014-02-11 | 2015-08-12 | Alstom Technology Ltd | Ceramic matrix composite for high temperature application containing ceramic fibers coated with a MAX phase |
DE102017204279A1 (en) * | 2017-03-15 | 2018-09-20 | Siemens Aktiengesellschaft | CMC with MAX phases and ceramic layer |
DE102017205787A1 (en) * | 2017-04-05 | 2018-10-11 | Siemens Aktiengesellschaft | MAX phases as coating, component and use |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1077735A (en) * | 1964-08-14 | 1967-08-02 | Power Jets Res & Dev Ltd | Coatings for metallic materials |
CN102933519B (en) * | 2010-04-30 | 2014-09-10 | 独立行政法人物质·材料研究机构 | Max-phase oriented ceramic and production method therefor |
CA2939288A1 (en) * | 2015-08-28 | 2017-02-28 | Rolls-Royce High Temperature Composites, Inc. | Ceramic matrix composite including silicon carbide fibers in a ceramic matrix comprising a max phase compound |
DE102016215556A1 (en) * | 2016-08-19 | 2018-02-22 | MTU Aero Engines AG | HOT GAS CORROSION AND OXIDATION PROTECTION LAYER FOR TIAL ALLOYS |
-
2018
- 2018-04-06 DE DE102018205183.6A patent/DE102018205183A1/en not_active Withdrawn
-
2019
- 2019-03-08 WO PCT/EP2019/055827 patent/WO2019192800A1/en active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540878A (en) * | 1967-12-14 | 1970-11-17 | Gen Electric | Metallic surface treatment material |
US5683226A (en) * | 1996-05-17 | 1997-11-04 | Clark; Eugene V. | Steam turbine components with differentially coated surfaces |
US6497922B2 (en) * | 1997-08-11 | 2002-12-24 | Drexel University | Method of applying corrosion, oxidation and/or wear-resistant coatings |
WO2003046247A1 (en) * | 2001-11-30 | 2003-06-05 | Abb Ab | METHOD OF SYNTHESIZING A COMPOUND OF THE FORMULA Mn+1AXn, FILM OF THE COMPOUND AND ITS USE |
US7553564B2 (en) * | 2004-05-26 | 2009-06-30 | Honeywell International Inc. | Ternary carbide and nitride materials having tribological applications and methods of making same |
US7572313B2 (en) * | 2004-05-26 | 2009-08-11 | Drexel University | Ternary carbide and nitride composites having tribological applications and methods of making same |
US20100055492A1 (en) * | 2008-06-03 | 2010-03-04 | Drexel University | Max-based metal matrix composites |
US8192850B2 (en) * | 2008-08-20 | 2012-06-05 | Siemens Energy, Inc. | Combustion turbine component having bond coating and associated methods |
EP2405029A1 (en) * | 2010-07-02 | 2012-01-11 | Brandenburgische Technische Universität Cottbus | Method for producing an adhesive scratch-proof protective coating on a metallic workpiece |
EP2740819A1 (en) * | 2012-12-04 | 2014-06-11 | Siemens Aktiengesellschaft | Alloy of aluminium rich MAX phases, powders and layer system |
WO2015080839A1 (en) * | 2013-11-26 | 2015-06-04 | United Technologies Corporation | Gas turbine engine component coating with self-healing barrier layer |
US20160289844A1 (en) * | 2013-11-26 | 2016-10-06 | United Technologies Corporation | Gas turbine engine component coating with self-healing barrier layer |
EP2905271A1 (en) * | 2014-02-11 | 2015-08-12 | Alstom Technology Ltd | Ceramic matrix composite for high temperature application containing ceramic fibers coated with a MAX phase |
DE102017204279A1 (en) * | 2017-03-15 | 2018-09-20 | Siemens Aktiengesellschaft | CMC with MAX phases and ceramic layer |
DE102017205787A1 (en) * | 2017-04-05 | 2018-10-11 | Siemens Aktiengesellschaft | MAX phases as coating, component and use |
Also Published As
Publication number | Publication date |
---|---|
WO2019192800A1 (en) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60004930T2 (en) | Ceramic and super alloy items | |
DE60305329T2 (en) | HIGHLY OXIDATION-RESISTANT COMPONENT | |
DE68911363T2 (en) | Ceramic-coated heat-resistant alloy component. | |
DE69615517T2 (en) | Body with high temperature protective layer and method for coating | |
DE69719701T2 (en) | Thermal barrier systems and materials | |
DE60038355T2 (en) | Process for producing ceramic coatings | |
DE3103129A1 (en) | THERMALLY LOADABLE MACHINE PART AND METHOD FOR THE PRODUCTION THEREOF | |
EP2251457B1 (en) | NiCoCrAl- or CoCrAl-coating with Re | |
DE3785424T2 (en) | Wear body and powder as well as manufacturing processes. | |
EP1969156A1 (en) | Method for coating a blade and blade of a gas turbine | |
HU184640B (en) | Alloy of nickel base containing additives belonging into the platinum group | |
DE3030961A1 (en) | COMPONENTS OF SUPER ALLOYS WITH AN OXIDATION AND / OR SULFIDATION RESISTANT COATING AND COMPOSITION OF SUCH A COATING. | |
EP2796588B1 (en) | Method for producing a high temperature protective coating | |
RU2249057C1 (en) | Molybdenum-based alloy (variants) | |
DE60111565T2 (en) | Method of making a metal matrix composite and metal matrix composite | |
DE102016202872A1 (en) | A member of a molybdenum alloy and method for forming an oxidation protective layer therefor | |
EP1902160A1 (en) | Ceramic heat insulating layer | |
DE2816520C2 (en) | Use of a hard metal | |
EP0241807B1 (en) | High-temperature-resistant coating | |
EP3458431B1 (en) | Process for producing a ceramic heat shields having a reaction coating | |
DE112017002453T5 (en) | Coating structure, turbine part with the same and method for producing the coating structure | |
CH616960A5 (en) | Components resistant to high-temperature corrosion. | |
EP1956105A1 (en) | Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component | |
DE102016224546A1 (en) | HOT GAS CORROSION AND OXIDATING PROTECTION LAYER FOR TIAL ALLOYS | |
EP1466037A1 (en) | High-temperature protective coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |