DE102017127876A1 - Planetengetriebe und Gleitlagerstift für ein Planetengetriebe - Google Patents

Planetengetriebe und Gleitlagerstift für ein Planetengetriebe Download PDF

Info

Publication number
DE102017127876A1
DE102017127876A1 DE102017127876.1A DE102017127876A DE102017127876A1 DE 102017127876 A1 DE102017127876 A1 DE 102017127876A1 DE 102017127876 A DE102017127876 A DE 102017127876A DE 102017127876 A1 DE102017127876 A1 DE 102017127876A1
Authority
DE
Germany
Prior art keywords
planetary
planetary gear
axial
bearing pin
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017127876.1A
Other languages
English (en)
Inventor
Christopher Campbell
Paul GORENZ
Frank Wagner
Michael NIQUE
Daren ASHMORE
Mark Spruce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Rolls Royce PLC
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG, Rolls Royce PLC filed Critical Rolls Royce Deutschland Ltd and Co KG
Priority to DE102017127876.1A priority Critical patent/DE102017127876A1/de
Priority to EP18206982.3A priority patent/EP3489548B1/de
Priority to EP18206995.5A priority patent/EP3489549B1/de
Priority to EP18207036.7A priority patent/EP3489550B1/de
Priority to US16/198,327 priority patent/US10767755B2/en
Priority to US16/198,172 priority patent/US11085523B2/en
Priority to US16/198,253 priority patent/US10816087B2/en
Publication of DE102017127876A1 publication Critical patent/DE102017127876A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/045Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for radial load mainly, e.g. radial spherical plain bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2836Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0479Gears or bearings on planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

Die Erfindung betrifft ein Planetengetriebe (100), das aufweist: ein Sonnenrad (3), das um eine Drehachse (11) des Planetengetriebes (100) rotiert und von einer Sonnenwelle (30) angetrieben wird, wobei die Drehachse (11) eine axiale Richtung des Planetengetriebes (100) definiert; eine Mehrzahl von Planetenrädern (4), die von dem Sonnenrad (3) angetrieben werden; ein Hohlrad (5), mit dem die Mehrzahl von Planetenrädern (4) in Eingriff steht; und eine Mehrzahl von Planeten-Gleitlagerstiften (6), die jeweils eine außenseitige Anlagefläche (60) aufweisen, die ein axial vorderes Ende (65) und ein axial hinteres Ende (66) aufweist, wobei jeweils ein Planeten-Gleitlagerstift (6) in einem Planetenrad (4) angeordnet ist und der Planeten-Gleitlagerstift (6) und das Planetenrad (4) ein geschmiertes Gleitlager bilden. Es ist vorgesehen, dass die Planeten-Gleitlagerstifte (6) an ihrer Anlagefläche (60) jeweils eine Balligkeit in dem Sinne ausbilden, dass ihr Außendurchmesser (e) von einem maximalen Außendurchmesser (D) zu mindestens einem axialen Ende (65, 66) der Anlagefläche (60) hin abnimmt und an dem axialen Ende (65, 66) ein Minimum aufweist.

Description

  • Die Erfindung betrifft ein Planetengetriebe gemäß dem Oberbegriff des Patentanspruchs 1 und einen Gleitlagerstift für ein solches Planetengetriebe.
  • Planetengetriebe sind allgemein bekannt. Sie werden unter anderem in Getriebefan-Triebwerken eingesetzt, um eine Untersetzung zwischen einer mit einer Turbine gekoppelten Turbinenwelle und einer mit einem Fan gekoppelten Fanwelle bereitzustellen.
  • Die US 2015/0300255 A1 beschreibt ein Planetengetriebe eines Getriebefan-Triebwerks, bei dem in Planetenrädern, die von einem Sonnenrad angetrieben werden und in einem feststehenden Hohlrad umlaufen, jeweils zylindrische Planeten-Gleitlagerstifte angeordnet sind, die ein geschmiertes Gleitlager zum Planetenrad bilden. Die Planeten-Gleitlagerstifte sind mit einem Drehmomentträger verbunden, der mit einer Fanwelle gekoppelt ist.
  • In Getriebefan-Triebwerken sind Planetengetriebe sehr großen Zentrifugalkräften und Drehmomenten ausgesetzt, die den Planeten-Gleitlagerstift und das Planetenrad verformen und den Schmierfilm im Gleitlager zwischen diesen beiden Elementen beeinflussen können, wodurch die Funktionalität des Gleitlagers beeinträchtigt wird. Insbesondere verhält es sich so, dass der zylindrische und an seinen Enden in Trägerplatten fixierte Planeten-Gleitlagerstift durch die auftretenden Kräfte Biegungen ausgesetzt ist, durch die die Schmierfilmdicke in der Mitte des Planeten-Gleitlagerstifts zunimmt und an den Enden des Planeten-Gleitlagerstifts abnimmt, was an den Enden des Planeten-Gleitlagerstifts zu einem erhöhten Schmierfilmdruck und der Gefahr eines Metall-Metall-Kontaktes zwischen dem Planeten-Gleitlagerstift und dem Planetenrad führt. Eine starke Belastung und Abnutzung des Planeten-Gleitlagerstifts an seinen Enden sind die Folge.
  • Durch eine verbesserte Steifigkeit des Planeten-Gleitlagerstifts könnten dessen Belastungen und Abnutzungen reduziert werden. Die hierfür erforderliche Vergrößerung der Wanddicke des Planeten-Gleitlagerstifts führt jedoch zu einer Gewichtszunahme, die bei Luftfahrtanwendungen nachteilig ist.
  • Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, ein Planetengetriebe mit einem verschleißarmen Planeten-Gleitlagerstift sowie einen Gleitlagerstift für ein solches Planetengetriebe bereitzustellen.
  • Diese Aufgabe wird durch ein Planetengetriebe mit den Merkmalen des Patentanspruchs 1 und einen Gleitlagerstift mit den Merkmalen des Patentanspruchs 21 gelöst. Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Danach betrachtet die Erfindung ein Planetengetriebe, das ein Sonnenrad, eine Mehrzahl von Planetenrädern, ein Hohlrad und eine Mehrzahl von Planeten-Gleitlagerstiften umfasst. Das Sonnenrad rotiert um eine Drehachse des Planetengetriebes und wird von einer Sonnenwelle angetrieben. Die Drehachse des Planetengetriebes definiert eine axiale Richtung des Planetengetriebes. Die Planetenräder werden von dem Sonnenrad angetrieben und stehen mit dem Hohlrad in Eingriff. Die Planeten-Gleitlagerstifte weisen jeweils eine außenseitige Anlagefläche auf, die ein axial vorderes Ende und ein axial hinteres Ende aufweist. Ein Planeten-Gleitlagerstift ist jeweils in einer axialen Öffnung eines Planetenrads angeordnet. Der Planeten-Gleitlagerstift und das Planetenrad bilden ein geschmiertes Gleitlager, wobei die aneinander angrenzende Kontaktflächen des Gleitlagers durch einen Gleitlagerspalt voneinander getrennt sind.
  • Die vorliegende Erfindung sieht vor, dass die Planeten-Gleitlagerstifte an ihrer Anlagefläche eine Balligkeit in dem Sinne ausbilden, dass ihr Außendurchmesser von einem maximalen Außendurchmesser zu mindestens einem axialen Ende der Anlagefläche hin abnimmt und an dem axialen Ende ein Minimum aufweist. Die mit einer Balligkeit ausgebildete Anlagefläche des Planeten-Gleitlagerstifts bildet dabei eine Kontaktfläche des Gleitlagers, das der Planeten-Gleitlagerstift mit dem Planetenrad bildet.
  • Die erfindungsgemäße Lösung beruht auf der Idee, den Planeten-Gleitlagerstift nicht mehr zylindrisch auszubilden, sondern mit einer Balligkeit zu versehen, die dazu führt, dass der Außendurchmesser des Planeten-Gleitlagerstifts an mindestens einem axialen Ende der Anlagefläche minimal ist. Hierdurch wird an mindestens einem Ende der Anlagefläche ein vergrößerter Gleitlagerspalt und damit einhergehend eine vergrößerte Schmierfilmdicke bereitgestellt. Dies führt dazu, dass bei im Betrieb auftretenden Deformationen und Schwingungen an den Enden der Anlagefläche, die auf Zentrifugalkräfte und eingeleitete Drehmomente zurückzuführen sind, die Schmierfilmdicke an mindestens einem axialen Ende der Anlagefläche ausreichend groß bleibt, um einen überhöhten Schmierfilmdruck und die Gefahr eines Metall-Metall-Kontaktes zwischen dem Planeten-Gleitlagerstift und dem Planetenrad zu vermeiden.
  • Durch die Erfindung wird das Gleitlager insofern optimiert, als auch an den axialen Enden des Gleitlagers im Betrieb parallel ausgerichtete Kontaktflächen bereitgestellt werden. Die Schmierfilmdicke weist geringere Dickenänderungen über die axiale Länge auf. Die genannten Vorteile werden dabei ohne eine Erhöhung der Wanddicke des Planeten-Gleitlagerstifts erreicht. Vielmehr kann sogar eine gewisse Gewichtsersparnis erreicht werden, da die Balligkeit der Anlagefläche durch eine Materialentfernung zu den axialen Enden der Anlagefläche hin erreicht werden kann.
  • Eine Ausgestaltung der Erfindung sieht vor, dass die Planeten-Gleitlagerstifte an ihrer Anlagefläche eine Balligkeit dahingehend ausbilden, dass ihr Außendurchmesser zu beiden axialen Enden der Anlagefläche hin abnimmt und an beiden axialen Enden ein Minimum aufweist. Insbesondere kann vorgesehen sein, dass der Planeten-Gleitlagerstift minimale Außendurchmesser an den beiden axialen Enden der Anlagefläche und den maximalen Außendurchmesser zwischen den axialen Enden aufweist, wobei die minimalen Außendurchmesser an den beiden Enden identisch oder unterschiedlich sein können. Dabei definiert die Differenz zwischen dem maximalen Außendurchmesser und dem minimalen Außendurchmesser an dem einen Ende der Anlagefläche die Balligkeit zwischen dem maximalen Außendurchmesser und dem einen Ende. Des Weiteren definiert die Differenz zwischen dem maximalen Außendurchmesser und dem minimalen Außendurchmesser an dem anderen Ende der Anlagefläche die Balligkeit zwischen dem maximalen Außendurchmesser und dem anderen Ende.
  • Der Außendurchmesser ist gemäß dieser Ausführungsvariante somit an beiden axialen Enden minimal, d. h. er nimmt zu beiden axialen Enden ab. Damit ist gerade nicht vorgesehen, dass der Außendurchmesser angrenzend an die axialen Enden konstant verläuft, für welchen Fall die axialen Enden zylindrisch ausgebildet wären. Gemäß einer alternativen Ausgestaltung weist der Außendurchmesser an dem einen axialen Ende der Anlagefläche einen maximalen Außendurchmesser auf, wobei sich der Außendurchmesser zu dem anderen axialen Ende hin kontinuierlich bis zu einem Minimum verringert.
  • Dementsprechend kann vorgesehen sein, dass die Differenz zwischen dem maximalen Außendurchmesser und dem Außendurchmesser an einer betrachteten axialen Position des Planeten-Gleitlagerstifts zu beiden axialen Enden oder zu einem axialen Ende des Planeten-Gleitlagerstifts kontinuierlich zunimmt. Dies bedeutet für den Gleitlagerspalt, dass dieser - bei einer Betrachtung des Zusammenbauzustands ohne Last und im nichtrotierenden Zustand - ebenfalls zu den axialen Enden des Planeten-Gleitlagerstifts zunimmt. Dabei wird angenommen, dass die Kontaktfläche des Planetenrads, die die andere Fläche des Gleitlagers bildet, zylindrisch ausgebildet ist. Im Betrieb bzw. unter Last schmiegt sich das Planetenrad dagegen an den Planeten-Gleitlagerstift, so dass ein gleichmäßiger Spalt über die axiale Länge entsteht.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Anlagefläche des Planeten-Gleitlagerstifts im Längsschnitt eine erste konvexe Kurve ausbildet, die sich zwischen dem Maximum des Außendurchmessers und dem vorderen axialen Ende der Anlagefläche erstreckt, und eine zweite konvexe Kurve ausbildet, die sich zwischen dem Maximum des Außendurchmessers und dem hinteren axialen Ende der Anlagefläche erstreckt. Dabei kann die konvexe Kurve grundsätzlich in beliebiger Weise geformt sein. Ausführungsbeispiele sehen vor, dass die erste Kurve und/oder die zweite Kurve als Kreisbogen ausgebildet ist, dass die erste Kurve und/oder die zweite Kurve parabelförmig ausgebildet ist, oder dass die erste Kurve und/oder die zweite Kurve geradlinig ausgebildete Kurvenstücke aufweist. Im letzten Fall läuft beispielsweise die Anlagefläche des Planeten-Gleitlagerstifts zu seinen axialen Enden konisch zusammen. Auch kann vorgesehen sein, dass die erste Kurve und/oder die zweite Kurve aus mehreren unterschiedlich gekrümmten Kurvenstücken zusammengesetzt ist. Dabei kann weiter vorgesehen sein, dass eines oder mehrere dieser Kurvenstücke geradlinig/linear ausgebildet sind.
  • Das Maximum des Außendurchmessers des Planeten-Gleitlagerstifts wird in einer Ausgestaltung der Erfindung durch eine Umfangslinie gebildet (die sich in Umfangsrichtung des Planeten-Gleitlagerstifts erstreckt). Im Längsschnitt des Planeten-Gleitlagerstifts bildet das Maximum somit einen Punkt. Dies bedeutet, dass die genannte erste Kurve und die genannte zweite Kurve stetig ineinander übergehen, somit die Anlagefläche durch eine einzige gekrümmte Kurve gebildet sein kann (die ins Ausführungsvarianten aus unterschiedlich gekrümmten Kurvenstücken zusammengesetzt sein kann). Dementsprechend kann in Ausgestaltungen der Erfindung vorgesehen sein, dass die Anlagefläche des Planeten-Gleitlagerstifts vollständig kreisförmig oder parabelförmig mit einem Maximum des Außendurchmessers in der axialen Mitte des Planeten-Gleitlagerstifts oder alternativ außerhalb der axialen Mitte des Planeten-Gleitlagerstifts ausgebildet ist.
  • Eine alternative Ausgestaltung der Erfindung sieht vor, dass das Maximum des Außendurchmessers des Planeten-Gleitlagerstifts durch einen zylindrischen Bereich konstanten Außendurchmessers gebildet ist, der sich über eine definierte axiale Länge erstreckt. Diese axiale Länge ist gemäß einer Ausführungsvariante derart bemessen, dass das Verhältnis der axialen Länge des zylindrischen Bereichs zur axialen Gesamtlänge der Anlagefläche zwischen 0 und 0,75 liegt.
  • Ein solcher zylindrischer Plateaubereich kann dabei mittig oder außermittig ausgebildet sein. An ihn können sich beispielsweise im Längsschnitt kreisförmige, parabelförmige oder gradlinige Flächen anschließen.
  • Eine Ausgestaltung der Erfindung sieht vor, dass das Verhältnis der halben Differenz zwischen dem maximalen Außendurchmesser und dem minimalen Außendurchmesser des Planeten-Gleitlagerstifts zum maximalen Außendurchmesser zwischen 0,00005 und 0,005 liegt. Genannte halben Differenz gibt dabei gerade die Balligkeit des Planeten-Gleitlagerstifts an. Sofern der Planeten-Gleitlagerstift unterschiedliche minimale Außendurchmesser an den beiden axialen Enden der Anlagefläche aufweist, gilt das genannte Verhältnis jeweils im Hinblick auf den maximalen Außendurchmesser und den minimalen Außendurchmesser an dem jeweils betrachteten axialen Ende.
  • Weitere Varianten der Erfindung sehen vor, dass der Planeten-Gleitlagerstift in seiner axialen Mitte (d.h. mittig zwischen dem axial vorderen Ende und dem axial hinteren Ende der Anlagefläche) ein Maximum seines Außendurchmessers aufweist. Der Planeten-Gleitlagerstift ist spiegelsymmetrisch hinsichtlich seiner axialen Mitte ausgebildet. Dies ist jedoch nicht notwendigerweise der Fall. Alternative Varianten der Erfindung sehen vor, dass der Planeten-Gleitlagerstift außerhalb seiner axialen Mitte ein Maximum seines Außendurchmessers aufweist und dementsprechend asymmetrisch hinsichtlich seiner axialen Mitte ausgebildet ist.
  • Gemäß einer Ausgestaltung der Erfindung ist der Planeten-Gleitlagerstift als Rotationskörper ausgebildet, d. h. er ist rotationssymmetrisch bezüglich der Längsachse des Gleitlagerstifts ausgebildet. Dies ist jedoch nicht notwendigerweise der Fall. Gemäß alternativen Ausgestaltungen weist der Planeten-Gleitlagerstift eine ballig ausgebildete Anlagefläche lediglich über einen Umfangswinkel kleiner 360°, insbesondere im Bereich von ±60° um den nominell belasteten Bereich auf. Das erfindungsgemäße ballige Profil des Planeten-Gleitlagerstifts erstreckt sich somit nicht über den gesamten Umfang des Planeten-Gleitlagerstifts, sondern in Umfangsrichtung nur über einen definierten Winkelbereich. Der beschriebene positive Einfluss auf das Gleitlager ist auch bei einer solchen Ausgestaltung gegeben. Zusätzlich wird der Ölverbrauch für die Schmierung reduziert, da eine vergrößerte Schmierfilmdicke an den axialen Enden nicht über den gesamten Umfang bereitgestellt wird.
  • Sofern der Planeten-Gleitlagerstift rotationssymmetrisch ausgebildet ist, ist der Außendurchmesser an einer betrachteten axialen Position für alle Punkte einer Umfangslinie der gleiche. Sofern der Planeten-Gleitlagerstift nicht rotationssymmetrisch ausgebildet ist, wird als Außendurchmesser einer betrachteten axialen Position im Sinne der vorliegenden Erfindung der größte Außendurchmesser betrachtet.
  • Der Planeten-Gleitlagerstift weist gemäß einer Ausgestaltung der Erfindung ein axial vorderes Ende und ein axial hinteres Ende auf, die axial beabstandet zu dem axial vorderen Ende und dem axial hinteren Ende der Anlagefläche sind, wobei der Planeten-Gleitlagerstift an seinem vorderen axialen Ende mit einer vorderen Trägerplatte und an seinem hinteren axialen Ende mit einer hinteren Trägerplatte verbunden ist. Der Planeten-Gleitlagerstift erstreckt sich somit an beiden Enden jenseits der Anlagefläche und ist dort jeweils mit einer Trägerplatte verbunden. Es ist also zu unterscheiden zwischen den axialen Enden der Anlagefläche und den axialen Enden des Planeten-Gleitlagerstifts.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Planeten-Gleitlagerstifte innenseitig eine axiale Öffnung aufweisen und dazu ausgebildet sind, einen Trägerstift eines Drehmomentträgers darin aufzunehmen.
  • Gemäß einer Ausgestaltung der Erfindung sind die Planeten-Gleitlagerstifte mit einem Drehmomentträger gekoppelt, wobei der Drehmomentträger bei drehendem Sonnenrad und fest angeordnetem Hohlrad mit untersetzter Drehzahl um die Drehachse des Planetengetriebes rotiert. Der Drehmomentträger ist dabei beispielsweise mit einer Fanwelle gekoppelt. Die Planetenräder rotieren sowohl um ihre eigene Achse als auch um die Drehachse des Planetengetriebes, dies jeweils mit unterschiedlichen Drehzahlen.
  • Eine Ausgestaltung der Erfindung sieht dabei vor, dass die Planeten-Gleitlagerstifte innen hohl und dazu ausgebildet sind, einen Trägerstift eines Drehmomentträgers aufzunehmen, wobei über den Trägerstift eine Drehmomentübertragung erfolgt.
  • Alternativ kann vorgesehen sein, dass die Planeten-Gleitlagerstifte fest mit einer vorderen Trägerplatte und mit einer hinteren Trägerplatte verbunden sind, wobei die vordere Trägerplatte zur Drehmomentübertragung mit dem Drehmomentträger gekoppelt ist. Die Planeten-Gleitlagerstifte können mit den Trägerplatten dabei beispielsweise verschweißt oder verschraubt sein.
  • Der Planeten-Gleitlagerstift der vorliegenden Erfindung weist eine ballig ausgebildete außenseitige Anlagefläche auf. Der in der Regel hohl, d. h. mit einer axialen Öffnung bzw. Bohrung versehene Planeten-Gleitlagerstift kann dabei an seiner Innenfläche grundsätzlich beliebig ausgebildet sein. Beispielsweise kann der Planeten-Gleitlagerstift innenseitig hohlzylindrisch ausgebildet sein, also eine axiale Öffnung konstanten Durchmessers aufweisen. In anderen Ausführungsvarianten kann vorgesehen sein, dass der Innendurchmesser des Planeten-Gleitlagerstifts entlang seiner axialen Erstreckung variiert.
  • Die Erfindung betrifft in einem weiteren Erfindungsaspekt einen Gleitlagerstift für ein Planetengetriebe, der eine außenseitige Anlagefläche für ein Gleitlager mit einem axial vorderen Ende und einem axial hinteren Ende aufweist, wobei der Planeten-Gleitlagerstift an seiner Anlagefläche eine Balligkeit in dem Sinne ausbildet, dass sein Außendurchmesser von einem maximalen Außendurchmesser zu mindestens einem axialen Ende der Anlagefläche hin abnimmt und an dem axialen Ende ein Minimum aufweist. Die in Bezug auf das Planetengetriebe erläuterten vorteilhaften Ausgestaltungen gemäß den Patentansprüchen 2 bis 20 gelten auch für den Gleitlagerstift. Grundsätzlich kann der Gleitlagerstift in beliebigen Getrieben mit Gleitlager Einsatz finden.
  • In einem weiteren Erfindungsaspekt betrifft die Erfindung ein Getriebefan-Triebwerk, das eine Fanstufe, eine Fanwelle, über die die Fanstufe angetrieben wird, und eine Turbinenwelle umfasst. Bei der Turbinenwelle handelt es sich beispielsweise um eine Welle, die mit einer Niederdruckturbine oder einer Mitteldruckturbine des Triebwerks gekoppelt ist. Es ist vorgesehen, dass die Turbinenwelle und die Fanwelle über ein Planetengetriebe gemäß Anspruch 1 gekoppelt sind, wobei die Turbinenwelle die Sonnenwelle bildet, die Planeten-Gleitlagerstifte mit einem Drehmomentträger gekoppelt sind und der Drehmomentträger mit der Fanwelle gekoppelt ist.
  • Es wird darauf hingewiesen, dass die vorliegende Erfindung bezogen auf ein zylindrisches Koordinatensystem beschrieben ist, das die Koordinaten x, r und φ aufweist. Dabei gibt x die axiale Richtung, r die radiale Richtung und φ den Winkel in Umfangsrichtung an. Die axiale Richtung ist dabei durch die Drehachse des Planetengetriebes definiert, die identisch mit einer Maschinenachse eines Getriebefan-Triebwerks ist, in dem das Planetengetriebe angeordnet ist. Von der x-Achse ausgehend zeigt die radiale Richtung radial nach außen. Begriffe wie „vor“, „hinter“, „vordere“ und „hintere“ beziehen sich auf die axiale Richtung bzw. die Strömungsrichtung im Triebwerk, in dem das Planetengetriebe angeordnet ist. Begriffe wie „äußere“ oder „innere“ beziehen sich auf die radiale Richtung.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
    • 1 eine vereinfachte schematische Schnittdarstellung eines Getriebefan-Triebwerks;
    • 2 eine Schnittdarstellung von Elementen eines Planetengetriebes, das zum Einsatz in einem Getriebefantriebwerk geeignet ist, wobei eine Sonnenwelle, ein Sonnenrad, ein Planetenrad, ein Planeten-Gleitlagerstift und ein Trägerstift eines Drehmomentträgers dargestellt sind, und wobei der Planeten-Gleitlagerstift an seiner Anlagefläche eine Balligkeit ausbildet;
    • 3 eine vergrößerte Darstellung des Planetenrads und des Planeten-Gleitlagerstifts der 2;
    • 4 eine Darstellung von Elementen eines alternativen Planetengetriebes, bei dem anders als bei dem Planetengetriebe der 2 und 3 kein Trägerstift vorgesehen ist und stattdessen eine Drehmomentübertragung auf einen Drehmomentträger über eine fest mit den Planeten-Gleitlagerstiften verbundene Trägerplatte erfolgt;
    • 5 Elemente des Planetengetriebes der 4 in einer teilweise geschnittenen Ansicht;
    • 6 eine Schnitterstellung eines Planeten-Gleitlagerstifts gemäß den 2 und 3;
    • 7 eine Schnitterstellung eines weiteren Ausführungsbeispiels eines mit einer Balligkeit versehenen Planeten-Gleitlagerstifts, wobei der Planeten-Gleitlagerstift eine kreisbogenförmige Anlagefläche bildet;
    • 8 eine Schnitterstellung eines weiteren Ausführungsbeispiels eines mit einer Balligkeit versehenen Planeten-Gleitlagerstifts, wobei der Planeten-Gleitlagerstift eine asymmetrisch ausgebildete Anlagefläche bildet;
    • 9 eine Schnitterstellung eines weiteren Ausführungsbeispiels eines mit einer Balligkeit versehenen Planeten-Gleitlagerstifts, wobei der Planeten-Gleitlagerstift symmetrisch ausgebildet ist und die Anlagefläche unterschiedlich geformte Bereiche aufweist;
    • 10 eine Schnitterstellung eines weiteren Ausführungsbeispiels eines mit einer Balligkeit versehenen Planeten-Gleitlagerstifts, wobei der Planeten-Gleitlagerstift asymmetrisch ausgebildet ist und die Anlagefläche unterschiedlich geformte Bereiche aufweist;
    • 11 eine teilweise geschnittene Darstellung eines Planeten-Gleitlagerstifts, der in einem Planetengetriebe gemäß den 4 und 5 angeordnet ist;
    • 12 den Planeten-Gleitlagerstift der 11 in vergrößerter geschnittener Darstellung;
    • 13 die Schmierfilmdicke eines Gleitlagers in Abhängigkeit von der axialen Position des Gleitlagers für einen Planeten-Gleitlagerstift mit ballig ausgebildeter Anlagefläche; und
    • 14 die Schmierfilmdicke eines Gleitlagers in Abhängigkeit von der axialen Position des Gleitlagers für einen zylindrisch geformten Planeten-Gleitlagerstift.
  • Die 1 zeigt ein Getriebefan-Triebwerk 10 mit einer Drehachse 11, das für eine Verwendung in Flugzeugen vorgesehen ist. In der Richtung der axialen Durchströmung weist das Getriebefan-Triebwerk 10 hintereinander einen Lufteinlauf 12, eine Fanstufe 13 (grundsätzlich sind auch mehr als eine Fanstufe 13 möglich), ein Getriebe 100, einen Mitteldruckverdichter 15, einen Hochdruckverdichter 16, eine Verbrennungsvorrichtung 17, eine Hochdruckturbine 18, eine Mitteldruckturbine 19 und eine Düse 20 auf. Ein Fangehäuse 21 umgibt die Fanstufe 13 und definiert den Lufteinlauf 12.
  • Das Getriebefan-Triebwerk 10 arbeitet grundsätzlich in konventioneller Weise, wobei in den Lufteinlauf 12 eintretende Luft von der Fanstufe 13 beschleunigt wird. Dabei werden zwei Luftstrome erzeugt: Ein erster Strom tritt in den Mitteldruckverdichter 15 ein, ein zweiter Luftstrom fließt durch einen Nebenstromkanal 22, wobei der zweite Luftstrom den größten Anteil am Schub des Getriebefan-Triebwerks 10 liefert. Der Mitteldruckverdichter 15 verdichtet den eintretenden Luftstrom, bevor er in den Hochdruckverdichter 16 gelangt, in dem eine weitere Verdichtung erfolgt. Die verdichtete Luft, die aus dem Hochdruckverdichter 16 austritt, wird in die Verbrennungsvorrichtung 17 geführt, wo sie mit Brennstoff vermischt wird und die Mischung dann zur Verbrennung gebracht wird. Die heißen Verbrennungsgase werden in der Hochdruckturbine 18 und in der Mitteldruckturbine 19 entspannt, bevor sie durch die Düse 20 austreten und somit zusätzlichen Schub liefern.
  • Hinter dem Fanstufe 13 bildet das Getriebefan-Triebwerk 10 somit einen Nebenstromkanal 22 und einen Primärstromkanal aus. Der Primärstromkanal führt durch das Kerntriebwerk (Gasturbine), das den Mitteldruckverdichter 15, den Hochdruckverdichter 16, die Verbrennungsvorrichtung 17, die Hochdruckturbine 18 und die Mitteldruckturbine 19 umfasst. Der Nebenstromkanal 22 leitet im Betrieb des Getriebefan-Triebwerks 10 von der Fanstufe 13 angesaugte Luft am Kerntriebwerk vorbei.
  • Die Hochdruckturbine 18 und die Mitteldruckturbine 19 treiben über Wellenvorrichtungen jeweils den Hochdruckverdichter 16 und den Mitteldruckverdichter 15 an. Eine Mitteldruckwelle treibt die Fanstufe 13 über das Getriebe 100 an. Das Getriebe 100 ist dabei als Untersetzungsgetriebe ausgebildet, das die Drehzahl der Fanstufe 13 im Vergleich zum Mitteldruckverdichter 15 und zur Mitteldruckturbine 19 reduziert. Das Getriebe 100 ist in der dargestellten Ausführungsform ein Planetengetriebe mit einem statischen Hohlrad 5 und umlaufenden Planetenrädern 4, die im Hohlrad 5 umlaufen. Der Antrieb des Getriebes 100 erfolgt über ein Sonnenrad 3, das mit der Mitteldruckwelle gekoppelt ist. Der Abtrieb erfolgt in der dargestellten Ausführungsform über einen Drehmomentträger 70, der mit den Planetenrädern 4 gekoppelt ist.
  • Grundsätzlich sind auch andere Ausführungsformen des Getriebes 100 möglich, wobei z.B. das Hohlrad 5 beweglich ausgebildet sein kann, so dass der Abtrieb über das Hohlrad 5 erfolgt.
  • Die Ausgestaltung des Getriebefan-Triebwerks 10 gemäß der 1 ist lediglich beispielhaft zu verstehen. Insbesondere die Anordnung der Wellen kann auch anders gewählt werden, wobei grundsätzlich Zwei- oder Dreiwellenanordnungen möglich sind. Beispielsweise kann alternativ eine Dreiwellenanordnung vorgesehen sein, die eine Niederdruckwelle, die die Niederdruckturbine mit dem Fan verbindet, eine Mitteldruckwelle, die die Mitteldruckturbine mit dem Mitteldruckverdichter verbindet, und eine Hochdruckwelle, die die Hochdruckturbine mit dem Hochdruckverdichter verbindet, umfasst. Dabei ist die Fanstufe 13 über ein Getriebe mit der Niederdruckwelle verbunden ist. Weiter können, wenn das Turbofantriebwerk keinen Mitteldruckverdichter und keine Mitteldruckturbine aufweist, nur eine Niederdruckwelle und eine Hochdruckwelle vorhanden sein, wobei wiederum die Fanstufe 13 über ein Getriebe mit der Niederdruckwelle verbunden ist.
  • Die beschriebenen Komponenten besitzen mit der Drehachse 11 eine gemeinsame Rotations- bzw. Maschinenachse. Die Drehachse 11 definiert eine axiale Richtung des Triebwerks 10. Eine radiale Richtung des Triebwerks 10 verläuft senkrecht zur axialen Richtung.
  • Im Kontext der vorliegenden Erfindung ist die Ausbildung des Planetengetriebes 100 von Bedeutung.
  • Die 2 zeigt ein Ausführungsbeispiel eines Planetengetriebes 100 in einer Schnittdarstellung. Das Planetengetriebe 100 umfasst ein Sonnenrad 3, das von einer Sonnenwelle 30 angetrieben wird. Bei der Sonnenwelle 30 handelt sich beispielsweise um die Mitteldruckwelle der 1. Das Sonnenrad 3 und die Sonnenwelle 30 drehen sich dabei um eine Drehachse 11, die eine axiale Richtung des Planetengetriebes 100 definiert.
  • Das Planetengetriebe 100 umfasst des Weiteren eine Mehrzahl von Planetenrädern 4, von denen in der Schnittdarstellung der 2 eines dargestellt ist. Das Sonnenrad 3 treibt die Mehrzahl der Planetenräder 4 an, wobei eine Verzahnung 35 des Sonnenrad 3 mit einer Verzahnung 45 des Planetenrads 4 in Eingriff steht. Bei der Verzahnung 35, 45 handelt es sich beispielsweise um eine Doppelschrägverzahnung.
  • Die folgende Beschreibung eines Planetenrads 4 gilt für sämtliche Planetenräder, die von dem Sonnenrad 3 angetrieben werden. Das Planetenrad 4 ist hohlzylindrisch ausgebildet und bildet eine äußere Mantelfläche und eine innere Mantelfläche 44. Das Planetenrad 4 rotiert - angetrieben durch das Sonnenrad 3 - um eine Drehachse 110, die parallel zur Drehachse 11 verläuft. Die äußere Mantelfläche des Planetenrads 4 bildet eine Verzahnung 45 aus, die mit der Verzahnung 55 eines Hohlrads 5 in Eingriff steht. Die Verzahnungen 45, 55 können ebenfalls als Doppelschrägverzahnung ausgebildet sein. Das Hohlrad 5 ist feststehend, d. h. nichtrotierend angeordnet. Die Planetenräder 4 rotieren aufgrund ihrer Kopplung mit dem Sonnenrad 3 und wandern dabei entlang des Umfangs des Hohlrads 5. Die Rotation der Planetenräder 4 entlang des Umfangs des Hohlrads 5 und dabei um die Drehachse 110 ist langsamer als die Rotation der Sonnenwelle 3, wodurch eine Untersetzung bereitgestellt wird.
  • Das Planetenrad 4 weißt angrenzend an seine innere Mantelfläche 44 eine zentrierte axiale Öffnung auf. In die Öffnung eingebracht ist ein Planeten-Gleitlagerstift 6, wobei der Planeten-Gleitlagerstift 6 und das Planetenrad 4 an ihren einander zugewandten Flächen ein geschmiertes Gleitlager bilden. Zur Schmierung des Gleitlagers können sich radial erstreckende Schmierfilmöffnungen 61 im Planeten-Gleitlagerstift 6 ausgebildet sein, durch die von innen eingesprühtes oder in anderer Weise zugeführtes Schmieröl in einen Gleitlagerspalt 9 zwischen dem Planeten-Gleitlagerstift 6 und dem Planetenrad 4 zugeführt werden kann. Dabei wird darauf hingewiesen, dass im Planeten-Gleitlagerstift 6 auch davon abweichende oder zusätzliche Mittel zum Zuführen von Schmieröl zum Gleitlager ausgebildet sein können.
  • Im Betrieb weisen das Planetenrad 4 und der Planeten-Gleitlagerstift 6 nicht exakt die gleiche Achse auf, da das in hydrodynamischer Bauweise ausgeführte Gleitlager eine Exzentrizität im Bereich von Zehntelmillimetern mit sich bringt.
  • Der Planeten-Gleitlagerstift 6 weist eine außenseitige Anlagefläche 60 auf, die ballig ausgebildet ist. Dementsprechend nimmt der Außendurchmesser des Planeten-Gleitlagerstifts zu den axialen Enden der Anlagefläche 60 hin ab und weist dort ein Minimum auf.
  • Der Planeten-Gleitlagerstift 6 weist angrenzend an seine Innenfläche 69 ebenfalls eine axiale Öffnung bzw. Bohrung auf und ist dazu vorgesehen, in dieser einen Trägerstift 7 eines Drehmomentträgers aufzunehmen. Der Trägerstift 7 ist dabei in einem verjüngten Bereich 71 des Trägerstifts 7 in einem Gelenklager 73 innerhalb der Bohrung des Planeten-Gleitlagerstifts 6 gelagert. Das Gelenklager 73 erlaubt eine gewisse Schiefstellung des Trägerstiftes 7 gegenüber der Drehachse 110. Ein Trägerstift 7 ist in jedem der Planeten-Gleitlagerstifte 6 des Planetengetriebes 100 angeordnet. Die Trägerstifte 7 sind an ihren aus der Öffnung des Planeten-Gleitlagerstifts 6 herausragenden Enden fest miteinander verbunden und bilden dabei einen Drehmomentträger entsprechend dem Drehmomentträger 70 der 1. Der Drehmomentträger bildet ein Abtriebselement des Planetengetriebes und ist mit der Fanwelle bzw. allgemein mit einer Abtriebswelle gekoppelt.
  • Die genaue Form des Trägerstiftes 7 und dessen dargestellte Lagerung an der Innenfläche des Planeten-Gleitlagerstifts 6 sind dabei nur beispielhaft zu verstehen. Auch wird darauf hingewiesen, dass eine Kopplung des Planeten-Gleitlagerstifts 6 mit einem Drehmomentträger auch in anderer Weise erfolgen kann, wie anhand der 4 und 5 beispielhaft aufgezeigt wird.
  • Die 2 zeigt des Weiteren eine vordere Trägerplatte 81 und eine hintere Trägerplatte 82. Der Planeten-Gleitlagerstift 6 ist mit der vorderen Trägerplatte 81 und mit der hinteren Trägerplatte 82 befestigt, beispielsweise mit diesen verschraubt oder verschweißt. Dazu ist vorgesehen, dass der Planeten-Gleitlagerstift 6 ein axial vorderes Ende 67 und ein axial hinteres Ende 68 aufweist, die jeweils axial gegenüber den Enden der Anlagefläche 60 hervorstehen, wobei der Planeten-Gleitlagerstift 6 an den Enden 67, 68 mit den Trägerplatten 81, 82 befestigt ist.
  • Der Aufbau des Planetenrads 4 und des Planeten-Gleitlagerstifts 6 wird nachfolgend weitergehend in Bezug auf die 3 erläutert, die einen Ausschnitt aus der 2 darstellt.
  • Gemäß der 3 ist zu erkennen, dass das Planetenrad 4 an seinen beiden Stirnseiten 41, 42 jeweils eine Aussparung 401 ausbildet, die sich von der Stirnseite 41, 42 im Wesentlichen in axialer Richtung (bzw. ausgehend von der Stirnseite 41 entgegen der axialen Richtung) in das Innere des Planetenrads 4 erstreckt. Hierdurch werden die Masse des Planetenrads 4 und die Steifigkeit des Planetenrads 4 zu seinen Stirnseiten 41, 42 hin reduziert.
  • Das Gleitlager zwischen dem Planeten-Gleitlagerstift 6 und dem Planetenrad 4 wird durch die zylindrische innere Mantelfläche 44 des Planetenrads 4 und die mit einer Balligkeit versehene Anlagefläche 60 des Planeten-Gleitlagerstifts 6 gebildet. Der im Bereich des Gleitlagers ausgebildete Gleitlagerspalt 9 nimmt dabei aufgrund der Krümmung der Anlagefläche 60 zum axial vorderen Ende und zum axial hinteren Ende des Gleitlagers in seiner radialen Dicke zu. Bei hohen Drehmomenten und Zentrifugalkräften können sich die aneinander angrenzenden Flächen 44, 60 des Gleitlagers jedoch an dessen Enden im Wesentlichen parallel ausrichten. Hierzu tragen auch die in dem Planetenrad 4 ausgebildeten Aussparungen 401 bei, die diesem an seinen Enden eine erhöhte Flexibilität geben.
  • Die Anlagefläche 60 weist ein axial vorderes Ende 65 und ein axial hinteres Ende 66 auf.
  • Die 4 und 5 zeigen Elemente eines weiteren Planetengetriebes. Das Planetengetriebe der 4 und 5 ist grundsätzlich wie das Planetengetriebe der 2 und 3 aufgebaut. Es unterscheidet sich lediglich in der Art, in der das Drehmoment abgenommen und auf einen Drehmomentträger (entsprechend dem Drehmomentträger 70 der 1) übertragen wird. Die 4 zeigt nur solche Elemente des Planetengetriebes, die diese unterschiedliche Art der Drehmomentübertragung betreffen. Die übrigen, nicht dargestellten Elemente entsprechen der Ausgestaltung der 2 und 3. Insbesondere umfasst das Getriebe wie in Bezug auf die 2 und 3 erläutert ein Sonnenrad, eine Sonnenwelle, eine Mehrzahl von Planetenrädern, die von dem Sonnenrad angetrieben werden, und ein Hohlrad.
  • In den 4 und 5 ist zu erkennen, dass die Planeten-Gleitlagerstifte 6 fest mit einer vorderen Trägerplatte 810 und einer hinteren Trägerplatte 820 verbunden sind. Sie sind mit den Trägerplatten 810, 820 beispielsweise fest verschraubt oder verschweißt. Der Planeten-Gleitlagerstift 6 weist ebenso wie im Ausführungsbeispiel der 2 und 3 jeweils eine ballige außenseitige Anlagefläche 60 auf. An seiner Innenfläche 69 bildet der Planeten-Gleitlagerstift 6 eine Bohrung 690 aus, deren Innendurchmesser zur axialen Mitte des Planeten-Gleitlagerstifts hin abnimmt. Im dargestellten Ausführungsbeispiel ist die Bohrung 690 doppelt konisch ausgebildet. Hierauf wird in Bezug auf die 17 und 18 näher eingegangen werden.
  • Anders als beim Ausführungsbeispiel der 2 und 3 nimmt die axiale Bohrung 690 des Planeten-Gleitlagerstifts 6 keinen Trägerstift eines Drehmomentträgers auf, sondern ist leer. Ein Trägerstift ist nicht vorhanden. Die Übertragung eines Drehmoments auf einen Drehmomentträger 70 erfolgt über Verbindungsstege 76, die den Drehmomentträger 70 fest mit der vorderen Trägerplatte 810 verbinden. Der Drehmomentträger 70 ist im dargestellten Ausführungsbeispiel als Ring ausgebildet. Dies ist jedoch nur beispielhaft zu verstehen. Der Drehmomentträger 70 ist in nicht dargestellter Weise mit der Fanwelle gekoppelt.
  • Beim Ausführungsbeispiel der 4 und 5 sind der Drehmomentträger 70, die vordere Trägerplatte 810 und die hintere Trägerplatte 820 einteilig ausgebildet, während sie beim Ausführungsbeispiel der 2 und 3 dreiteilig ausgebildet sind. Durch die Zusammenführung des Drehmomentträgers und der Trägerplatten zu einem Teil kann der Trägerstift 7 der 2 und 3 wegfallen. Die Abnahme des Drehmoments erfolgt nicht mehr mittig in der Bohrung des Planeten-Gleitlagerstifts 6, sondern von der vorderen Trägerplatte 810. Dementsprechend wird beim Ausführungsbeispiel der 4 und 5 auch kein Gelenklager (entsprechend dem Gelenklager 73 der 2 und 3) benötigt.
  • Zum einteiligen Aufbau von vorderer Trägerplatte 810, hinterer Trägerplatte 820 und Drehmomentträger 70 wird weiter angemerkt, dass die vordere Trägerplatte 810 und die hintere Trägerplatte 820 durch am Umfang ausgebildete Wandflächen 830 miteinander verbunden sind, zwischen denen sich jeweils im wesentlichen rechteckförmige Aussparungen 840 befinden, die der Aufnahme jeweils eines Planetenrads dienen.
  • Weiter weist die durch die beiden Trägerplatten 810, 820 und den Drehmomentträger 70 gebildete strukturelle Einheit axiale Bohrungen 77 auf, die der Ankopplung weiterer Teile (nicht dargestellt) für eine Drehmomentübertragung dienen können.
  • Die dargestellte Anzahl von fünf Planeten-Gleitlagerstiften 6, fünf Verbindungsstegen 76 und fünf axialen Bohrungen 77 ist nur beispielhaft zu verstehen.
  • Die 6 erläutert beispielhaft die Ausgestaltung und die relevanten Parameter eines Planeten-Gleitlagerstifts, der entsprechend einem Planeten-Gleitlagerstift 6 gemäß den 2 bis 5 ausgebildet ist. In der Schnittdarstellung der 6 ist dabei eine Längsachse 130 des Planeten-Gleitlagerstifts 6 erkennbar. Diese ist im Wesentlichen identisch mit der Drehachse 110 des Planetenrads 110, vgl. 2, wobei jedoch die hydrodynamische Bauweise des Gleitlagers eine kleine Exzentrizität z.B. im Bereich von Zehntelmillimetern mit sich bringt. Der Planeten-Gleitlagerstift 6 bildet angrenzend an eine innere Mantelfläche bzw. Innenfläche 69 des Planeten-Gleitlagerstifts 6 eine axiale Öffnung 690 aus, die dazu dient, einen Trägerstift eines Drehmomentträgers aufzunehmen, beispielsweise den Trägerstift 7 der 2.
  • Der Planeten-Gleitlagerstift 6 bildet eine außenseitige Anlagefläche 60 aus, die ein axial vorderes Ende 65 und ein axial hinteres Ende 66 aufweist. Der axiale Abstand zwischen diesen beiden Enden wird mit L bezeichnet. Zwischen diesen beiden Enden 65, 66 bildet die Anlagefläche 60 eine Balligkeit in dem Sinne aus, dass ihr Außendurchmesser zu den axialen Enden 65, 66 hin abnimmt und an den axialen Enden 65, 66 ein Minimum erreicht.
  • Der Planeten-Gleitlagerstift 6 weist dabei einen minimalen Außendurchmesser d1 an seinem axialen Ende 65, einen minimalen Außendurchmesser d2 an seinem axialen Ende 66 und einen maximalen Außendurchmesser D zwischen seinen axialen Enden 65, 66 auf. Dabei definiert die halbe Differenz h1 zwischen dem maximalen Außendurchmesser D und dem minimalen Außendurchmesser d1 die Balligkeit der Anlagefläche zwischen der axialen Position des maximalen Außendurchmessers und dem einen Ende 65. Weiter definiert die halbe Differenz h2 zwischen dem maximalen Außendurchmesser D und dem minimalen Außendurchmesser d2 die Balligkeit der Anlagefläche zwischen der axialen Position des maximalen Außendurchmessers und dem anderen Ende 66.
  • Es kann vorgesehen sein, dass d1 gleich d2 oder alternativ dass d1 ungleich d2 ist. Dementsprechend ist h1 gleich h2 oder es ist h1 ungleich h2.
  • Die Differenz zwischen dem maximalen Außendurchmesser D und dem Außendurchmesser e an einer betrachteten axialen Position des Planeten-Gleitlagerstifts nimmt zu den axialen Enden 65, 66 des Planeten-Gleitlagerstifts 6 stetig zu.
  • Der maximale Außendurchmesser D ist im Ausführungsbeispiel der 6 an der axialen Mitte 95 des Planeten-Gleitlagerstifts 6 und in einem zylindrischen Bereich 62 der axialen Länge f um diese axiale Mitte 95 herum realisiert. Das Maximum des Außendurchmessers D ist somit in einem zylindrischen Bereich 62 konstanten Außendurchmessers realisiert, der sich symmetrisch zur axialen Mitte 95 über eine definierte axiale Länge f erstreckt. Dies ist allerdings nicht notwendigerweise der Fall. Alternativ wird das Maximum des Außendurchmessers D lediglich entlang einer Umfangslinie bzw. im in der 6 dargestellten Längsschnitt an einem Scheitelpunkt erreicht.
  • Der axiale Abstand zwischen dem axial vorderen Ende 65 der Anlagefläche 60 zum Maximum des Außendurchmesser D oder, wenn das Maximum in einem zylindrischen Bereich ausgebildet ist, zur Mitte dieses zylindrischen Bereichs, wird in der 6 als P bezeichnet. In der 6 liegt P dabei aufgrund der symmetrischen Ausgestaltung der Anlagefläche 60 in der axialen Mitte 95 der Anlagefläche.
  • Die Anlagefläche 60 des Planeten-Gleitlagerstifts 6 bildet im Längsschnitt eine erste konvexe Kurve 63 aus, die sich zwischen dem zylindrischen Bereich 62 und dem vorderen axialen Ende 65 erstreckt, sowie eine zweite konvexe Kurve 64 aus, die sich zwischen dem zylindrischen Bereich 62 und dem hinteren axialen Ende 66 erstreckt. Die Form der Kurven 63, 64 kann grundsätzlich beliebig sein. Beispielsweise sind die Kurven kreisförmig, parabelförmig oder gradlinig ausgebildet.
  • Der Planeten-Gleitlagerstift 6 weist axiale Verlängerungen bzw. Enden 67, 68 auf, die jeweils eine vordere axialen Stirnseite 670 des Planeten-Gleitlagerstifts 6 und eine hintere axiale Stirnseite 680 des Planeten-Gleitlagerstifts bilden. Wie in Bezug auf die 2 bis 5 erläutert, ist der Planeten-Gleitlagerstift 6 an diesen Enden 67, 68 jeweils an einer Trägerplatte befestigt.
  • Der Planeten-Gleitlagerstift 6 realisiert in Ausgestaltungen der Erfindung bestimmte Verhältnisse der wie oben definierten Parameter h, P, L und D.
  • So gilt für das Verhältnis der Länge P zur axialen Gesamtlänge L: 0 ≤ P/L ≤ 1. Dies bedeutet, dass das Maximum des Außendurchmessers D grundsätzlich an beliebiger axialer Position des Planeten-Gleitlagerstifts 6 ausgebildet sein kann. Insbesondere sind auch asymmetrische Anordnungen möglich. Auch umfasst die Erfindung Ausführungsvarianten, bei denen das Maximum des Außendurchmessers D an dem einen axialen Ende 65 der Anlagefläche (P=0) oder an dem anderen axialen Ende 66 der Anlagefläche (P=L) ausgebildet ist. In anderen Ausführungsvarianten befindet sich das Maximum des Außendurchmessers D stets zwischen den beiden axialen Enden 65, 66 der Anlagefläche.
  • Es gilt für das Verhältnis der axialen Länge des zylindrischen Bereichs f zur axialen Gesamtlänge L: 0 ≤ f/L ≤ 0,75. Je größer dieses Verhältnis, desto größer die axiale Erstreckung des zylindrischen Bereichs. Wenn das Verhältnis f/L gleich Null ist, ist f gleich Null, d. h. ein zylindrischer Bereich konstanten Außendurchmessers ist dann nicht vorhanden.
  • Es gilt für das Verhältnis der halben Differenz h1, h2 zwischen dem maximalen Außendurchmesser D und dem minimalen Außendurchmesser d1, d2 zum maximalen Außendurchmesser D: 0,00005 ≤ h1/D ≤ 0,005 sowie 0,00005 ≤ h2/D ≤ 0,005. Diese Verhältnisse bestimmen die Balligkeit der Anlagefläche 60. Dabei kann h1 gleich h2 sein.
  • Der in der 6 dargestellte Planeten-Gleitlagerstift 6 ist rotationssymmetrisch ausgebildet.
  • Die 7-10 zeigen jeweils in einer Schnittdarstellung verschiedene Ausgestaltungen eines Planeten-Gleitlagerstifts 6 entsprechend dem Planeten-Gleitlagerstift der 6, wobei erkennbar ist, dass der Planeten-Gleitlagerstift 6 angrenzend an die Innenfläche 69 eine Öffnung 690 ausbildet, die entsprechend der Beschreibung der 2 und 3 beispielsweise der Aufnahme eines Planeten-Gleitlagerstifts dient.
  • Die in Bezug auf die 6 erläuterten Parameter f, h, P und L sind dabei in den 7-10 unterschiedlich gewählt, wie im Folgenden ausgeführt wird.
  • Beim Ausführungsbeispiel der 7 ist die Anlagefläche 601 ohne einen zylindrischen Bereich ausgebildet, d. h. der Parameter f ist gleich Null. Dementsprechend ist der maximale Außendurchmesser D in der axialen Mitte 95 des Planeten-Gleitlagerstifts 6 realisiert. Die beiden konvexen Kurven 63, 64 der 6 bilden eine gemeinsame Kurve, die beispielsweise durch einen Kreisbogen gebildet ist.
  • Der Planeten-Gleitlagerstift der 7 ist dabei spiegelsymmetrisch bezüglich seiner axialen Mitte 95 ausgebildet.
  • Beim Ausführungsbeispiel der 8 ist das Maximum des Außendurchmessers D außerhalb der axialen Mitte 95 realisiert, so dass eine Asymmetrie in der Formgebung der Anlagefläche 602 realisiert ist. Ein zylindrischer Bereich ist wiederum nicht vorgesehen. In der betrachteten Schnittdarstellung bilden die beiden konvexen Kurven 63, 64 der 6 eine gemeinsame Kurve 602. Diese wird beispielsweise durch einen parabelförmigen Bogen gebildet.
  • Die 9 betrachtet ein Ausführungsbeispiel, bei dem die Anlagefläche 603 einen zylindrischen Bereich 62 ausbildet, in dem der Außendurchmesser D maximal ist. Dieser Bereich 62 ist mittig ausgebildet, so dass der Planeten-Gleitlagerstift 6 spiegelsymmetrisch bezüglich seiner axialen Mitte 95 ist.
  • Zu beiden Seiten angrenzend an den zylindrischen Bereich 62 bildet die Anlagefläche 603 Bereiche aus, die kreisförmig gebogen sind, wobei sich an diese Bereiche konisch geformte Bereiche anschließen, die sich bis zu den axialen Enden 65, 66 der Anlagefläche 603 erstrecken. In der Schnittdarstellung der 9 bildet die Anlagefläche dem kreisförmig gebogenen Bereich einen Kreisbogen 630 und dem konisch geformten Bereich einen gerade Linie 640 aus, wobei letzterer bis zu den axialen Enden 65, 66 der Anlagefläche 603 verläuft.
  • Die 10 zeigt ein Ausführungsbeispiel, bei dem das Maximum des Außendurchmessers D außerhalb der axialen Mitte 95 realisiert, so dass eine Asymmetrie in der Formgebung der Anlagefläche 604 realisiert ist. Die Anlagefläche 604 bildet dabei einen zylindrischen Bereich 62 aus, in dem der Außendurchmesser D maximal ist. Dieser Bereich 62 ist jedoch versetzt zu der axialen Mitte 95 des Planeten-Gleitlagerstifts 6 ausgebildet. Von dem zylindrischen Bereich 62 erstreckt ein parabelförmig gebogener Bereich bis zum axial vorderen Ende 65 der Anlagefläche 604, der in der 10 eine parabelförmig Linie 650 bildet. Zwischen dem zylindrischen Bereich 62 und dem axial hinteren Ende 66 der Anlagefläche 604 sind zwei unterschiedlich geformte Bereiche ausgebildet, zunächst ein kreisförmig gebogener Bereich und daran anschließend und sich bis zum axialen Ende 66 erstreckender, konisch verjüngender Bereich, die in der Schnittdarstellung der 10 einen Kreisbogen 660 und eine gerade Linie 670 bilden.
  • Die 11 zeigt ein weiteres Ausführungsbeispiel eines Planeten-Gleitlagerstifts 6, der ein Gleitlager mit einem Planetenrad 4 mit einer Außenverzahnung 45 ausbildet. Der Planeten-Gleitlagerstift 6 ist fest mit einer Struktur verbunden, die entsprechend dem Ausführungsbeispiel der 4 und 5 aus einer vorderen Trägerplatte 810, einer hinteren Trägerplatte 820 und einem Drehmomentträger 70 besteht. Dazu umfasst der Planeten-Gleitlagerstift 6 eine erste axiale Verlängerung 67, die in der vorderen Trägerplatte 810 befestigt ist und eine zweite axiale Verlängerung 68, die in der hinteren Trägerplatte 820 befestigt ist.
  • Der Drehmomentträger 70 ist über Verbindungsstege 76 fest mit der vorderen Trägerplatte 810 verbunden. Insofern wird auf die Beschreibung der 4 und 5 verwiesen.
  • Der Planeten-Gleitlagerstift 6 besitzt eine ballig ausgebildete Anlagefläche 60, wie in Bezug auf die 6 erläutert worden ist. Der Planeten-Gleitlagerstift 6 weist des Weiteren eine Innenfläche 69 zur axialen Bohrung 690 auf, die eine von einer zylindrischen Form abweichende Form aufweist. So ist die Bohrung 690 doppelt konisch ausgebildet, wobei der Innendurchmesser der Bohrung 690 in der axialen Mitte 95 des Planeten-Gleitlagerstifts 6 ein Minimum und zu den beiden axialen Enden hin ein Maximum aufweist. In anderen Ausführungsbeispielen ist die Bohrung 690 zylindrisch ausgebildet.
  • Die 12 zeigt den Planeten-Gleitlagerstift 6 der 11 in vergrößerte Darstellung, wobei entsprechend der Darstellung der 6 die dort angegebenen, für die Ausbildung des Planeten-Gleitlagerstifts 6 relevanten Parameter D, d, e, f, h, P und L ebenfalls dargestellt sind. Hinsichtlich der Definition dieser Parameter wird auf die Beschreibung der 6 verwiesen. Anders als in der 6 ist lediglich angenommen, dass der minimalen Außendurchmesser des Planeten-Gleitlagerstifts 6 an den beiden axialen Enden identisch ist, so dass dieser Parameter mit d angegeben ist (ohne die in der 6 vorgenommene Differenzierung zwischen d1 und d2 und dementsprechend ebenfalls ohne die Differenzierung zwischen h1 und h2).
  • Die Unterschiede des Planeten-Gleitlagerstifts 6 der 11 und 12 zum Planeten-Gleitlagerstift der 6 bestehen neben der unterschiedlichen Formgebung der Innenfläche 69 des Planeten-Gleitlagerstifts 6 in einer unterschiedlichen Ausgestaltung des vorderen axialen Endes 67 und des hinteren axialen Endes des 68 des Planeten-Gleitlagerstifts 6, die gemäß den 11 und 12 dazu vorgesehen und ausgebildet sind, in Trägerplatten 810, 820 befestigt zu sein, die einteilig zusammen mit dem Drehmomentträger 70 ausgebildet sind. Die beiden axialen Enden 67, 68 können dabei eine unterschiedliche Formgebung aufweisen, wie in den 11 und 12 dargestellt ist.
  • Die mit der Erfindung verbundenen Vorteile sind in den 13 und 14 illustriert, die jeweils die Schmierfilmdicke des Gleitlagers in Abhängigkeit von der axialen Position des Gleitlagers darstellen. Die 14 zeigt dabei die Verhältnisse an einem Planeten-Gleitlagerstift, der eine rein zylindrisch geformte, nicht mit einer Balligkeit versehene Außenfläche aufweist, bei 80 % Last. Es ist zu erkennen, dass die Schmierfilmdicke zu den axialen Enden hin stark abnimmt (vergleiche Pfeile A, B), was zu einem erhöhten Schmierfilmdruck und der Gefahr eines Metall-Metall-Kontaktes zwischen dem Planeten-Gleitlagerstift und dem Planetenrad führt.
  • Die 13 zeigt die Schmierfilmdicke des Gleitlagers in Abhängigkeit von der axialen Position des Gleitlagers für einen Planeten-Gleitlagerstift, der eine mit einer Balligkeit versehene Außenfläche aufweist, bei 100 % Last. Eine ausreichende Schmierfilmdicke ist auch an den axialen Enden gegeben.
  • Die vorliegende Erfindung beschränkt sich in ihrer Ausgestaltung nicht auf die vorstehend beschriebenen Ausführungsbeispiele. Insbesondere sind die beschriebenen konkreten Formgebungen des Planeten-Gleitlagerstifts nur beispielhaft zu verstehen.
  • Des Weiteren wird darauf hingewiesen, dass die Merkmale der einzelnen beschriebenen Ausführungsbeispiele der Erfindung in verschiedenen Kombinationen miteinander kombiniert werden können. Sofern Bereiche definiert sind, so umfassen diese sämtliche Werte innerhalb dieser Bereiche sowie sämtliche Teilbereiche, die in einen Bereich fallen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2015/0300255 A1 [0003]

Claims (22)

  1. Planetengetriebe (100), das aufweist: - ein Sonnenrad (3), das um eine Drehachse (11) des Planetengetriebes (100) rotiert und von einer Sonnenwelle (30) angetrieben wird, wobei die Drehachse (11) eine axiale Richtung des Planetengetriebes (100) definiert, - eine Mehrzahl von Planetenrädern (4), die von dem Sonnenrad (3) angetrieben werden, - ein Hohlrad (5), mit dem die Mehrzahl von Planetenrädern (4) in Eingriff steht, und - eine Mehrzahl von Planeten-Gleitlagerstiften (6), die jeweils eine außenseitige Anlagefläche (60) aufweisen, die ein axial vorderes Ende (65) und ein axial hinteres Ende (66) aufweist, wobei - jeweils ein Planeten-Gleitlagerstift (6) in einem Planetenrad (4) angeordnet ist und der Planeten-Gleitlagerstift (6) und das Planetenrad (4) ein geschmiertes Gleitlager bilden, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) an ihrer Anlagefläche (60) jeweils eine Balligkeit in dem Sinne ausbilden, dass ihr Außendurchmesser (e) von einem maximalen Außendurchmesser (D) zu mindestens einem axialen Ende (65, 66) der Anlagefläche (60) hin abnimmt und an dem axialen Ende (65, 66) ein Minimum aufweist.
  2. Planetengetriebe nach Anspruch 1, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) minimale Außendurchmesser (d1, d2) an den axialen Enden (65, 66) der Anlagefläche (60) und den maximalen Außendurchmesser (D) zwischen den axialen Enden (65, 66) aufweist, wobei die minimalen Außendurchmesser (d1, d2) an den beiden axialen Enden (65, 66) identisch sind.
  3. Planetengetriebe nach Anspruch 1, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) minimale Außendurchmesser (d1, d2) an beiden axialen Enden (65, 66) der Anlagefläche (60) und den maximalen Außendurchmesser (D) zwischen den axialen Enden (65, 66) aufweist, wobei die minimalen Außendurchmesser (d1, d2) an den beiden axialen Enden (65, 66) unterschiedlich sind.
  4. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Differenz zwischen dem maximalen Außendurchmesser (D) und dem Außendurchmesser (e) an einer axialen Position des Planeten-Gleitlagerstifts (6) zu mindestens einem axialen Ende des Planeten-Gleitlagerstifts (6) kontinuierlich zunimmt.
  5. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Anlagefläche (60) des Planeten-Gleitlagerstifts (6) im Längsschnitt eine erste konvexe Kurve (63) ausbildet, die sich zwischen dem Maximum und dem vorderen axialen Ende (65) erstreckt, und eine zweite konvexe Kurve (64) ausbildet, die sich zwischen dem Maximum und dem hinteren axialen Ende (66) erstreckt.
  6. Planetengetriebe nach Anspruch 5, dadurch gekennzeichnet, dass die erste Kurve (63) und/oder die zweite Kurve (64) kreisförmig ausgebildet ist und/oder die erste Kurve (63) und/oder die zweite Kurve parabelförmig (64) ausgebildet ist.
  7. Planetengetriebe nach Anspruch 5, dadurch gekennzeichnet, dass die erste Kurve (63) und/oder die zweite Kurve (64) aus mehreren Kurvenstücken zusammengesetzt ist, wobei mindestens ein Kurvenstück geradlinig ausgebildet ist.
  8. Planetengetriebe nach einem der vorangehenden Ansprüche, gekennzeichnet, dass das Maximum des Außendurchmessers (D) des Planeten-Gleitlagerstifts (6) durch eine Umfangslinie gebildet ist.
  9. Planetengetriebe nach Anspruch 8, soweit rückbezogen auf Anspruch 5, dadurch gekennzeichnet, dass die erste Kurve (63) und die zweite Kurve (64) stetig ineinander übergehen.
  10. Planetengetriebe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Maximum des Außendurchmessers (D) des Planeten-Gleitlagerstifts (6) durch einen zylindrischen Bereich (62) konstanten Außendurchmessers gebildet ist, der sich über eine definierte axiale Länge (f) erstreckt.
  11. Planetengetriebe nach Anspruch 10, dadurch gekennzeichnet, dass das Verhältnis der axialen Länge des zylindrischen Bereichs (f) zur axialen Gesamtlänge (L) der Anlagefläche (60) zwischen 0 und 0,75 liegt.
  12. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) in seiner axialen Mitte (95) ein Maximum seines Außendurchmessers (D) aufweist.
  13. Planetengetriebe nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) außerhalb seiner axialen Mitte (95) ein Maximum seines Außendurchmessers (D) aufweist.
  14. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der halben Differenz (h1, h2) zwischen dem maximalen Außendurchmesser (D) und dem minimalen Außendurchmesser (d1, d2) des Planeten-Gleitlagerstifts (6) zum maximalen Außendurchmesser (D) zwischen 0,00005 und 0,005 liegt.
  15. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) als Rotationskörper ausgebildet ist.
  16. Planetengetriebe nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) eine ballig ausgebildete Anlagefläche (60) lediglich über einen Umfangswinkel kleiner als 360° ausbildet.
  17. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) ein axial vorderes Ende (67) und ein axial hinteres Ende (68) aufweist, die axial beabstandet zu dem axial vorderen Ende (65) und dem axial hinteren Ende (66) der Anlagefläche (60) sind, wobei der Planeten-Gleitlagerstift (6) an seinem vorderen axialen Ende (67) an einer vorderen Trägerplatte (81, 810) und an seinem hinteren axialen Ende (68) an einer hinteren Trägerplatte (82, 820) befestigt oder einstückig mit diesen ausgebildet ist.
  18. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) mit einem Drehmomentträger (70) gekoppelt sind und der Drehmomentträger (70) bei drehendem Sonnenrad (3) und fest angeordnetem Hohlrad (5) um die Drehachse (11) des Planetengetriebes (100) rotiert.
  19. Planetengetriebe nach Anspruch 18, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) innenseitig eine axiale Öffnung (690) aufweisen und dazu ausgebildet sind, einen Trägerstift (7) des Drehmomentträgers (70) aufzunehmen.
  20. Planetengetriebe nach Anspruch 18, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) fest mit einer vorderen Trägerplatte (810) und mit einer hinteren Trägerplatte (820) verbunden sind, wobei die vordere Trägerplatte (810) zur Drehmomentübertragung mit dem Drehmomentträger (70) gekoppelt ist.
  21. Gleitlagerstift (6) für ein Planetengetriebe (100), der eine außenseitige Anlagefläche (60) für ein Gleitlager aufweist, wobei die Anlagefläche (60) ein axial vorderes Ende (65) und ein axial hinteres Ende (66) aufweist, dadurch gekennzeichnet, dass der Gleitlagerstift (6) an seiner Anlagefläche (60) eine Balligkeit in dem Sinne ausbildet, dass sein Außendurchmesser von einem maximalen Außendurchmesser (D) zu mindestens einem axialen Ende (65, 66) der Anlagefläche (60) hin abnimmt und an dem axialen Ende (65, 66) ein Minimum aufweist.
  22. Getriebefan-Triebwerk, das aufweist: - eine Fanstufe (13), - eine Fanwelle, über die die Fanstufe (13) angetrieben wird, - eine Turbinenwelle, dadurch gekennzeichnet, dass die Turbinenwelle und die Fanwelle über ein Planetengetriebe (100) gemäß Anspruch 1 gekoppelt sind, wobei die Turbinenwelle die Sonnenwelle (30) bildet, die Planeten-Gleitlagerstifte (6) mit einem Drehmomentträger (70) gekoppelt sind und der Drehmomentträger (70) mit der Fanwelle gekoppelt ist.
DE102017127876.1A 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe Withdrawn DE102017127876A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102017127876.1A DE102017127876A1 (de) 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe
EP18206982.3A EP3489548B1 (de) 2017-11-24 2018-11-19 Planetengetriebe
EP18206995.5A EP3489549B1 (de) 2017-11-24 2018-11-19 Planetengetriebe und gleitlagerstift für ein planetengetriebe
EP18207036.7A EP3489550B1 (de) 2017-11-24 2018-11-19 Planetengetriebe und gleitlagerstift für ein planetengetriebe
US16/198,327 US10767755B2 (en) 2017-11-24 2018-11-21 Planetary gearing and planet pin for a planetary gearing
US16/198,172 US11085523B2 (en) 2017-11-24 2018-11-21 Planetary gearing
US16/198,253 US10816087B2 (en) 2017-11-24 2018-11-21 Planetary gearing and planet pin for a planetary gearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017127876.1A DE102017127876A1 (de) 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe

Publications (1)

Publication Number Publication Date
DE102017127876A1 true DE102017127876A1 (de) 2019-05-29

Family

ID=64362433

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017127876.1A Withdrawn DE102017127876A1 (de) 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe

Country Status (3)

Country Link
US (1) US10767755B2 (de)
EP (1) EP3489550B1 (de)
DE (1) DE102017127876A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209669A1 (de) * 2019-07-02 2021-01-07 Zf Friedrichshafen Ag Planetengleitlager mit konvexer Gleitfläche
DE102019135334A1 (de) * 2019-12-19 2021-06-24 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe und Gasturbinentriebwerk mit Planetengetriebe
DE102020122418A1 (de) 2020-06-23 2021-12-23 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102020116522A1 (de) 2020-06-23 2021-12-23 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102020122430A1 (de) 2020-08-27 2022-03-03 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102020122678A1 (de) 2020-08-31 2022-03-03 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088979B1 (fr) * 2018-11-23 2021-06-18 Safran Trans Systems Porte-satellites pour un reducteur mecanique de turbomachine d’aeronef
FR3088980B1 (fr) * 2018-11-23 2021-01-08 Safran Trans Systems Noyau de lubrification et de refroidissement pour un reducteur mecanique de turbomachine d’aeronef
FR3090061B1 (fr) * 2018-12-13 2021-01-29 Safran Trans Systems Porte-satellites pour un reducteur de vitesse
EP3770466B1 (de) * 2019-07-25 2022-09-28 Rolls-Royce Deutschland Ltd & Co KG Planetengetriebe
GB202005025D0 (en) * 2020-04-06 2020-05-20 Rolls Royce Plc Gearboxes for aircraft gas turbine engines
GB202005033D0 (en) * 2020-04-06 2020-05-20 Rolls Royce Plc Gearboxes for aircraft gas turbine engines
GB202005028D0 (en) * 2020-04-06 2020-05-20 Rolls Royce Plc Gearboxes for aircraft gas turbine engines
GB202005032D0 (en) * 2020-04-06 2020-05-20 Rolls Royce Plc Gearboxes for aircraft gas turbine engines
GB202005022D0 (en) 2020-04-06 2020-05-20 Rolls Royce Plc Gearboxes for aircraft gas turbine engines
GB202005027D0 (en) * 2020-04-06 2020-05-20 Rolls Royce Plc Gearboxes for aircraft gas turbine engines
GB202103169D0 (en) * 2021-03-08 2021-04-21 Rolls Royce Plc Planetary gearbox
DE102021109637A1 (de) 2021-04-16 2022-10-20 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe für ein Gasturbinentriebwerk
DE102021122146A1 (de) 2021-08-26 2023-03-02 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102021122300A1 (de) 2021-08-27 2023-03-02 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102021122450A1 (de) 2021-08-31 2023-03-02 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
US11566701B1 (en) * 2022-01-14 2023-01-31 Textron Innovations Inc. Propped cantilever carrier
DE102022116804A1 (de) 2022-07-06 2024-01-11 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD66534A1 (de) * 1967-08-23 1969-04-20 Einbaufertige wartungsfreie Gleitlagereinheit
DD289318A5 (de) * 1989-11-29 1991-04-25 Maschinenfabrik U. Eisengiesserei,De Spezielle planetengetriebeausfuehrung
DE10318945B3 (de) * 2003-04-26 2004-10-28 Aerodyn Gmbh Getriebeanordnung für Windenergieanlagen
DE102013221265A1 (de) * 2013-10-21 2015-05-07 Schaeffler Technologies Gmbh & Co. Kg Planetenradlageranordnung
US20150300255A1 (en) 2012-02-23 2015-10-22 Snecma Device for recovering lubricating oil from an epicyclic reduction gear

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE66534C (de) 1892-03-22 1893-01-04 C. JEDDING in Oythe bei Vechta, Oldenburg Querschüttler für Dreschmaschinen
US1425430A (en) 1918-05-06 1922-08-08 Skayef Ball Bearing Company Planetary gear
US2127463A (en) * 1937-03-26 1938-08-16 Wright Aeronautical Corp Reduction gear
US2547877A (en) * 1945-10-15 1951-04-03 Packard Motor Car Co Bearing support for gears
US2498295A (en) 1947-09-19 1950-02-21 Westinghouse Electric Corp Reduction gear drive
US2749778A (en) * 1952-03-11 1956-06-12 Farrel Birmingham Co Inc Articulated planetary gearing
US2936655A (en) * 1955-11-04 1960-05-17 Gen Motors Corp Self-aligning planetary gearing
US2932992A (en) 1956-10-08 1960-04-19 Everett P Larsh Geared power transmission and method of increasing the load carrying capacity of gears
US3363413A (en) 1963-04-26 1968-01-16 Williams Res Corp Gas turbine
US3257869A (en) 1963-09-20 1966-06-28 Pennsalt Chemicals Corp Planetary gearing
GB1085088A (en) 1965-08-10 1967-09-27 Ass Elect Ind Improvements in or relating to epicyclic helical gearboxes
US3355789A (en) 1965-10-13 1967-12-05 Hawker Siddeley Canada Ltd Multi-stage parallel-axis gear transmission and manufacturing method therefor
DE2235448C3 (de) 1972-07-20 1975-06-26 A. Friedr. Flender & Co, 4290 Bocholt Umlaufrädergetriebe mit Lastverteilung der Zahnkräfte
SU533779A1 (ru) * 1974-07-24 1976-10-30 Московское Ордена Ленина И Ордена Трудового Красного Знамени Высшее Техническое Училище Им.Н.Э.Баумана (Мвту) Двухступенчатый планетарный редуктор
SE395048B (sv) 1975-11-10 1977-07-25 Stal Laval Turbin Ab Epicyklisk vexel med anordning vid planethjulshallare for att kompensera tangentiell utbojning
US4271928A (en) 1978-07-11 1981-06-09 Rolls-Royce Limited Lubricant supply device
DE2843459A1 (de) 1978-10-05 1980-04-24 Hurth Masch Zahnrad Carl Stirnrad-planetengetriebe mit lastausgleich
WO1985001334A1 (en) * 1983-09-17 1985-03-28 Fujihensokuki Co., Ltd. Gear apparatus
JPH01105039A (ja) 1987-10-16 1989-04-21 Shiyouji Igaku 一体型非対称遊星歯車装置
US5518319A (en) * 1995-06-07 1996-05-21 Selby; Theodore W. Non-linear hydrodynamic bearing
IT1308368B1 (it) 1999-02-12 2001-12-17 Fiatavio Spa Perno per il collegamento di ruote dentate ad un organo di supporto etrasmissione provvista di tale perno.
US20030236148A1 (en) 2002-06-21 2003-12-25 The Timken Company Epicyclic drive with unified planet assemblies
US6964155B2 (en) 2002-12-30 2005-11-15 United Technologies Corporation Turbofan engine comprising an spicyclic transmission having bearing journals
FR2850144B1 (fr) 2003-01-17 2006-01-13 Snecma Moteurs Agencement de montage d'un satellite epicycloidal
FR2853382B1 (fr) 2003-04-04 2006-04-28 Hispano Suiza Sa Systeme de liaison souple entre un porte-satellites et le support fixe dans un reducteur de vitesse
US7104918B2 (en) 2003-07-29 2006-09-12 Pratt & Whitney Canada Corp. Compact epicyclic gear carrier
US6994651B2 (en) 2003-10-07 2006-02-07 The Timken Company Epicyclic gear system
DE102005054088A1 (de) 2005-11-12 2007-05-16 Mtu Aero Engines Gmbh Planetengetriebe
DE102007031726A1 (de) 2007-07-06 2009-01-08 Zf Friedrichshafen Ag Ausgestaltung eines Planeten- bzw. Lagerbolzens in einem Getriebe eines Kraftfahrzeugs
US8205432B2 (en) 2007-10-03 2012-06-26 United Technologies Corporation Epicyclic gear train for turbo fan engine
US8313412B2 (en) * 2009-02-05 2012-11-20 Friede & Goldman, Ltd. Gear assembly with asymmetric flex pin
CN201396406Y (zh) 2009-05-09 2010-02-03 浙江午马减速机有限公司 力矩分流减速机
US8333678B2 (en) 2009-06-26 2012-12-18 United Technologies Corporation Epicyclic gear system with load share reduction
US8075190B1 (en) * 2010-09-16 2011-12-13 Vestas Wind Systems A/S Spherical plain bearing pocket arrangement and wind turbine having such a spherical plain bearing
US8900083B2 (en) 2011-04-27 2014-12-02 United Technologies Corporation Fan drive gear system integrated carrier and torque frame
CN202082374U (zh) * 2011-05-24 2011-12-21 江苏省金象减速机有限公司 超大型多分流行星传动变速箱的行星架轴承润滑结构
US8899916B2 (en) 2011-08-30 2014-12-02 United Technologies Corporation Torque frame and asymmetric journal bearing for fan drive gear system
JP5622716B2 (ja) 2011-12-28 2014-11-12 三菱重工業株式会社 遊星歯車装置および風力発電装置
AT512436B1 (de) 2012-01-16 2013-10-15 Miba Gleitlager Gmbh Windkraftanlage
GB201417505D0 (en) 2014-10-03 2014-11-19 Rolls Royce Deutschland A gas turbine architecture
US9982771B2 (en) 2014-12-01 2018-05-29 United Technologies Corporation Lightweight and compliant journal pin
DE102015221633A1 (de) * 2015-11-04 2017-05-04 Zf Friedrichshafen Ag Planetenlager mit sphärischer Laufbahn
US10234019B2 (en) 2016-03-11 2019-03-19 GM Global Technology Operations LLC Planetary gear set bearing retainer
DE102016124738A1 (de) 2016-12-19 2018-06-21 Schaeffler Technologies AG & Co. KG Planetenbolzen für ein Planetengetriebe
EP3489548B1 (de) * 2017-11-24 2022-01-05 Rolls-Royce Deutschland Ltd & Co KG Planetengetriebe
EP3489549B1 (de) * 2017-11-24 2022-01-05 Rolls-Royce Deutschland Ltd & Co KG Planetengetriebe und gleitlagerstift für ein planetengetriebe
US11060605B2 (en) 2018-07-09 2021-07-13 Textron Innovations Inc. Spherical mounted cylindrical roller bearing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD66534A1 (de) * 1967-08-23 1969-04-20 Einbaufertige wartungsfreie Gleitlagereinheit
DD289318A5 (de) * 1989-11-29 1991-04-25 Maschinenfabrik U. Eisengiesserei,De Spezielle planetengetriebeausfuehrung
DE10318945B3 (de) * 2003-04-26 2004-10-28 Aerodyn Gmbh Getriebeanordnung für Windenergieanlagen
US20150300255A1 (en) 2012-02-23 2015-10-22 Snecma Device for recovering lubricating oil from an epicyclic reduction gear
DE102013221265A1 (de) * 2013-10-21 2015-05-07 Schaeffler Technologies Gmbh & Co. Kg Planetenradlageranordnung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209669A1 (de) * 2019-07-02 2021-01-07 Zf Friedrichshafen Ag Planetengleitlager mit konvexer Gleitfläche
DE102019135334A1 (de) * 2019-12-19 2021-06-24 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe und Gasturbinentriebwerk mit Planetengetriebe
DE102020122418A1 (de) 2020-06-23 2021-12-23 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102020116522A1 (de) 2020-06-23 2021-12-23 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
DE102020122430A1 (de) 2020-08-27 2022-03-03 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe
US11970981B2 (en) 2020-08-27 2024-04-30 Rolls-Royce Deutschland Ltd & Co. Kg Planetary gearbox
DE102020122678A1 (de) 2020-08-31 2022-03-03 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe

Also Published As

Publication number Publication date
US10767755B2 (en) 2020-09-08
EP3489550B1 (de) 2022-01-05
EP3489550A1 (de) 2019-05-29
US20190162294A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
DE102017127876A1 (de) Planetengetriebe und Gleitlagerstift für ein Planetengetriebe
EP3489549B1 (de) Planetengetriebe und gleitlagerstift für ein planetengetriebe
EP3489548B1 (de) Planetengetriebe
DE60121884T2 (de) Lager und Dichtungsvorrichtung sowie deren Montage
EP1032779A1 (de) Planetengetriebe
WO2007121861A1 (de) Ausgleichswelle
DE60127067T2 (de) Lager für Turbolader
DE2801206A1 (de) Spiralartige einrichtung mit einem festen gekroepften kurbelantriebsmechanismus
DE102017127874A1 (de) Planetengetriebe und Planetenrad für ein Planetengetriebe
EP1857708A1 (de) Planetenrad mit radialer Durchgangsbohrung
EP3406941B1 (de) Stirnradanordnung, getriebe und windenergieanlage
EP2681428A1 (de) Turbo-compound-system, insbesondere eines kraftfahrzeugs
DE3936069C2 (de)
DE102012108973A1 (de) Lagervorrichtung und Abgasturbolader
DE102008046821B4 (de) Kurbelwelle für eine Brennkraftmaschine mit varibaler Verdichtung und Brennkraftmaschine mit variabler Verdichtung
EP3625480A1 (de) Differentialgetriebe für ein kraftfahrzeug
DE102017127866A1 (de) Planetengetriebe und Gleitlagerstift für ein Planetengetriebe
DE102017108333A1 (de) Getriebevorrichtung
DE10302192B4 (de) Planetengetriebe mit einer Ausgleichskupplung
DE102018106484A1 (de) Getriebefan-Triebwerk und Keilwellenanordnung
DE2114874A1 (de) Hydraulische Verdrängungspumpe
DE10238415A1 (de) Gleitlager für eine Welle eines Abgasturboladers
DE102013224413A1 (de) Axiallager mit Schmiermittelzuführung für eine schnelllaufende Welle
EP2796665B1 (de) Abgasturbolader mit einer Welle aus unterschiedlichen Materialien
DE102011083134A1 (de) Pleuel

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee