DE102016210482A1 - Optisches Sortiersystem sowie entsprechendes Sortierverfahren - Google Patents

Optisches Sortiersystem sowie entsprechendes Sortierverfahren Download PDF

Info

Publication number
DE102016210482A1
DE102016210482A1 DE102016210482.9A DE102016210482A DE102016210482A1 DE 102016210482 A1 DE102016210482 A1 DE 102016210482A1 DE 102016210482 A DE102016210482 A DE 102016210482A DE 102016210482 A1 DE102016210482 A1 DE 102016210482A1
Authority
DE
Germany
Prior art keywords
evaluation
objects
sorting
unit
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016210482.9A
Other languages
English (en)
Inventor
Thomas Längle
Wolfgang Karl
Georg Maier
Michael Bromberger
Mario Kicherer
Thomas Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Karlsruher Institut fuer Technologie KIT
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Karlsruher Institut fuer Technologie KIT filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102016210482.9A priority Critical patent/DE102016210482A1/de
Priority to EP17729466.7A priority patent/EP3468727B1/de
Priority to PCT/EP2017/064329 priority patent/WO2017216124A1/de
Publication of DE102016210482A1 publication Critical patent/DE102016210482A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/361Processing or control devices therefor, e.g. escort memory

Abstract

Optisches Sortiersystem zum Sortieren von Objekten (O) eines Materialstroms (M) umfassend eine Bildaufnahmeeinheit (1) zum optischen Erfassen des Materialstroms (M) und zum Erzeugen von Bilddaten (4) desselben (M), eine Auswerteeinheit (2) zum Identifizieren und Klassifizieren von Objekten (O) im Materialstrom (M), und eine Sortiereinheit (3) zum Sortieren klassifizierter Objekte (O) des Materialstroms (M), dadurch gekennzeichnet, dass mit der Auswerteeinheit (2) aus den erzeugten Bilddaten (4) ein oder mehrere Belegungsparameter (5), der/die den Materialstrom (M) hinsichtlich seiner Belegung mit den Objekten (O) kennzeichnet/n, bestimmbar ist/sind und dass auf Basis des/der bestimmten Belegungsparameter(s) (5) ein oder mehrere das Identifizieren und Klassifizieren der Objekte (O) durch die Auswerteeinheit (2) steuernde(r) Auswertungsparameter (6, 8) einstellbar ist/sind.

Description

  • Die vorliegende Erfindung bezieht sich auf ein optisches Sortiersystem (sowie ein entsprechendes Verfahren) gemäß Oberbegriff des Anspruchs 1.
  • Bei der optischen Sortierung von Schüttgütern in Materialströmen, die sich gut anhand optischer Merkmale im sichtbaren Spektrum wie Farbe, Form und/oder Textur, oder auch Materialeigenschaften im nahen Infrarotbereich trennen lassen, haben Anlagenbetreiber Interesse daran, den Materialdurchsatz zu maximieren. Daraus resultiert eine bessere Wirtschaftlichkeit. Erreicht werden kann ein höherer Materialdurchsatz durch höhere Schüttdichten, größere Sortierbreiten und/oder höhere Materialgeschwindigkeiten.
  • Für eine möglichst genaue Ausschleusung und somit ein bestmögliches Sortierergebnis ist es notwendig, die Sensorik und die Separationstechnik räumlich möglichst nahe beieinander anzuordnen. Hierdurch kann die Lage der Objekte im Materialstrom auf Höhe des Separationsmechanismus besser vorhergesagt und es kann entsprechend präzise, z. B. durch pneumatische Ventile, ausgeschleust werden. Darüber hinaus kann der Beifang (also der ungewollte Ausschuss von Objekten) nahe einem auszuschleusenden Objekt so gering wie möglich gehalten werden.
  • Für viele bekannte Merkmale, z. B. geometrische Deskriptoren, ist die Berechnungszeit direkt vom Objekt abhängig. Bei sehr hohen Schüttdichten bzw. Belegungsdichten im Materialstrom entstehen aus Sicht der Bildverarbeitung zusätzlich häufig Objektagglomerate (Objektcluster), welche algorithmisch nur noch schwergetrennt (insbesondere: segmentiert) werden können. Dies hat zur Folge, dass sich selbst bei der Sortierung von homogenen Produkten bzw. Objekten stark unterschiedliche Rechenaufwände zur Klassifikation ergeben können.
  • Die genannten Aspekte stellen Auswerteverfahren vor große Herausforderungen, da mit ihnen stets die Forderung nach Echtzeitauswertungen einhergeht. Werden Echtzeitschranken für bestimmte im Materialstrom enthaltene Objekte verletzt, liegt keine rechtzeitige Entscheidung des Auswertesystems über jene Objekte vor, d. h. eine Sortierentscheidung für ein entsprechendes Objekt (insbesondere: soll dieses Objekt ausgeschleust werden oder nicht) kann nicht rechtzeitig getroffen werden. Dies führt potentiell (oder auch tatsächlich) zu Fehlsortierungen.
  • Aus dem Stand der Technik bekannt sind Sortiersysteme, insbesondere zum Sortieren von Schüttgütern, aus den folgenden Offenlegungsschriften:
  • Siehe zudem „Stand der Technik der sensorgestützten Sortierung" von H. Wotruba, BHM, 153. Jg. (2008), Heft 6, Seiten 221–224.
  • Aufgabe der vorliegenden Erfindung ist es, die Leistungsfähigkeit optischer Sortiersysteme zum Sortieren von Objekten in Materialströmen zu verbessern, insbesondere die Echtzeitfähigkeit der Systeme zu verbessern, d. h., die Wahrscheinlichkeit zu erhöhen, dass für jedes Objekt im Materialstrom zum Ausschleusungszeitpunkt tatsächlich eine Sortierentscheidung vorliegt. Zudem soll die vorliegende Erfindung eine leistungsfähigere Verarbeitung von Sensordaten zur Verfügung stellen, um auch bei kurzen Abständen zwischen Bildaufnahmeeinheit (Sensorik) und Sortiereinheit (Einheit zur Ausschleusung von Objekten) eine Echtzeitfähigkeit zu ermöglichen (und damit in der Konsequenz die Sortierleistung zu steigern). Die vorliegende Erfindung soll dazu insbesondere neue Ansätze bezüglich der Sensordatenverarbeitung zur Verfügung stellen.
  • Diese Aufgabe wird durch ein optisches Sortiersystem gemäß Anspruch 1 sowie ein Sortierverfahren gemäß Anspruch 14 gelöst. Vorteilhafterweise realisierbare Varianten lassen sich den abhängigen Ansprüchen entnehmen.
  • Die vorliegende Erfindung geht zunächst von folgenden Grundüberlegungen aus: Bei herkömmlichen Systemen besteht das Problem, dass für manche Objekte bei Erreichen des Separationsmechanismus (Sortiereinheit) keine Sortierentscheidung vorliegt, da die benötigten Berechnungen des Auswertesystems (Auswerteeinheit) noch nicht abgeschlossen sind. Eine Teilmenge aus dem Stand der Technik bekannter Anlagen behandelt diesen Zustand überhaupt nicht, wodurch sich zwangsweise Einbußen hinsichtlich Sortierleistung und/oder Sortierqualität ergeben. Um diese Probleme zu lösen, scheinen sich zunächst folgende Ansätze anzubieten:
    • • Verringerung der Materialzufuhr: Liegen wenige(r) Objekte zur Auswertung vor, kann mehr Zeit pro Objekt für Berechnungen genutzt werden. Allerdings würde sich dies negativ auf die Wirtschaftlichkeit der Anlage auswirken.
    • • Vergrößerung des Abstands zwischen der sensorischen Erfassung und der Separation: Hierdurch kann der Auswerteeinheit (bei konstanter Materialgeschwindigkeit) eine größere Latenz zur Bildauswertung gewährt werden. Dies würde jedoch den Nachteil mit sich bringen, dass die Position von Objekten bei Erreichen der Sortiereinheit (Separationsmechanismus) schlechter prognostiziert werden kann. Durch größere Ausblasfenster könnte dem entgegengewirkt werden, jedoch würde dadurch der Beifang (ungewollter Ausschuss von Objekten nahe an einem auszuschleusenden Objekt) erhöht.
    • • Implementierung der Bildauswertung in Hardware: Hierdurch würden zwar sehr hohe Verarbeitungsgeschwindigkeiten erreicht werden, dies hätte jedoch den Nachteil, dass die entsprechende Realisierung auf eine ganz bestimmte Sortieraufgabe zugeschnitten werden müsste. Es würde dann an Flexibilität hinsichtlich der zugrundeliegenden Sortieraufgabe mangeln (in vielen Anlagen müssen aber unterschiedliche Sortieraufgaben gelöst werden).
  • Allen diesen Lösungsansätzen ist gemein, dass sie entweder hohe Verarbeitungsgeschwindigkeiten unterstützen oder aber die tolerierbare Latenz erhöhen. Aus diesen Grundüberlegungen zieht die vorliegende Erfindung daher den Schluss, dass ein adaptives Verhalten des Sortiersystems notwendig ist, um die Echtzeitfähigkeit des Systems zu gewährleisten bzw. zu verbessern. Mit anderen Worten besteht eine Grundidee der vorliegenden Erfindung darin, passend auf die in Abhängigkeit der Sensordaten bzw. der konkreten Verhältnisse im Materialstrom und/oder bei dessen Objekten schwankenden benötigten Berechnungszeiten einzugehen.
  • Die grundlegende Realisierung dieser Grundidee beschreibt das optische Sortiersystem gemäß Anspruch 1.
  • Das erfindungsgemäße System kann als Bandsortiersystem realisiert sein, es sind aber auch Rutschensortiersysteme denkbar. Das optische Erfassen des Materialstroms bedeutet dabei in der Regel die Aufnahme einer Vielzahl von einzelnen Bildern des Materialstroms bzw. von Ausschnitten desselben je Zeiteinheit. Beispielsweise können, während das Sortiersystem arbeitet, Videobilder (schnelle Einzelbildfolgen) eines neutralen Hintergrundes, über den der Materialstrom hinweg transportiert wird, aufgenommen werden und mittels der Auswerteeinheit in Echtzeit (hinsichtlich der vor besagtem Hintergrund aufgenommenen Objekte im Materialstrom) ausgewertet werden.
  • Dabei kann als bildgebende Sensorik (Bildaufnahmeeinheit) ein Farb-Zeilen- oder ein Farb-Flächen-Kamerasystem (Array), beispielsweise auf CCD- oder auf CMOS-Basis, eingesetzt werden. Die einzelnen Aufnahmen bzw. Videobilder der Bildaufnahmeeinheit können mit Bildverarbeitungsalgorithmen durch die Auswerteeinheit ausgewertet werden, um die sechsdimensionale Pose (also die dreidimensionale Lage und die dreidimensionale Orientierung) oder zumindest die dreidimensionale Lage jedes einzelnen Objekts des Materialstroms zu definierten Zeitpunkten zu bestimmen.
  • Das Einstellen des/der Auswertungsparameter(s) erfolgt vorzugsweise durch die bzw. in der Auswerteeinheit, insbesondere durch einen Mikrocontroller oder eine Rechnereinheit derselben.
  • Das Sortieren „der klassifizierten” Objekte schließt dabei nicht aus, dass auch nicht-klassifizierte Objekte sortiert werden (nämlich beispielsweise sicherheitshalber einfach immer als „Schlecht-Objekte” ausgesondert bzw. ausgeschleust werden). Das Sortieren kann insbesondere ein mechanisches Trennen der klassifizierten Objekte sein. Im einfachsten Fall werden die Objekte in zwei Klassen klassifiziert, nämlich in „Gut-Objekte” und in „Schlecht-Objekte”. Die Objekte der beiden Klassen können bei der Sortierung in getrennten Behältnissen aufgefangen werden. Dazu können (was dem Fachmann grundsätzlich bekannt ist, vgl. auch den vorgenannten Stand der Technik) schnelle Luftventile zum Ausblasen der Schlecht-Objekte eingesetzt werden.
  • Erste vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 2 entnehmen.
  • Anders ausgedrückt kann mit der besagten Mindestwahrscheinlichkeit für ein beliebiges Objekt im Materialstrom durch die Auswerteeinheit eine Sortierentscheidung getroffen werden, so dass die Sortiereinheit gemäß der getroffenen Sortierentscheidung auf dieses Objekt reagieren kann. Falls die (Mindest-)Wahrscheinlichkeit gleich 100% ist, trifft die Auswerteeinheit mit absoluter Sicherheit für alle Objekte im Materialstrom jeweils eine Entscheidung des Identifizierens und Klassifizierens, also eine Sortierentscheidung. Dabei kann (insbesondere bei sehr hohen Bandgeschwindigkeiten des Transportbandes eines Bandsortiersystems und/oder bei sehr hohen Belegungsdichten der Objekte im Materialstrom) die Sortierentscheidung auch falsch sein. Es kann auch vorkommen, dass durch ein fehlerhaftes Einwirken der Sortiereinheit auf den Materialstrom ein bestimmtes, klassifiziertes Objekt trotz einer (korrekten) Sortierentscheidung der Auswerteeinheit auf „Ausschleusen” dennoch nicht ausgeschleust wird. Ebenso kann es vorkommen, dass ein bestimmtes, klassifiziertes Objekt ausgeschleust wird, obwohl die (korrekte) Sortierentscheidung für dieses Objekt auf „nicht Ausschleusen” lautet.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 3 entnehmen.
  • Es kann also die Genauigkeit GK eines oder mehrerer Prozessschritts/e (z. B. des Prozessschritts der Segmentierung oder des Prozessschritts der Anwendung eines Klassifikators auf Entscheidungsbaumbasis) vorgegeben bzw. eingestellt werden. Der/die Prozessschritt(e) wird/werden daraufhin mit der (jeweils) eingestellten GK durchgeführt. Das Einstellen einer geringen GK kann beispielsweise heißen, dass die Bilddaten bzw. die aus den Bilddaten hervorgehenden Daten als Eingangsdaten des Prozessschritts nur grobgerastert bearbeitet werden, um die Zahl der rechnergestützt durchzuführenden Berechnungen möglichst gering zu halten. In diesem Fall wird der mit dieser Genauigkeit GK durchgeführte Prozessschritt in jedem Fall beendet.
  • Dies kann aber – bei iterativen Berechnungen oder bei rekursiven Berechnungen – auch heißen, dass nach einer definierten (beispielsweise geringen) Wiederholungsanzahl der Iterationsschleife (bei iterativen Berechnungen) oder nach Erreichen einer definierten (beispielsweise geringen) Rekursionstiefe (bei rekursiven Berechnungen), also nach Erfüllen eines definierten Abbruchkriteriums, ein Abbruch der Berechnungen des Prozessschrittes erfolgt.
  • Als Folge eines solchen Vorgebens bzw. Einstellens unterschiedlicher Genauigkeiten ergeben sich variierende Berechnungszeiten und/oder Wiederholungsanzahlen (bei iterativen Berechnungen) bzw. Rekursionstiefen (bei rekursiven Berechnungen).
  • Erfindungsgemäß können insbesondere die Genauigkeit schrittweise verfeinernde Algorithmen (insbesondere: rekursiv, iterativ und/oder inkrementell verfeinernde Algorithmen) eingesetzt werden. Dies muss aber nicht der Fall sein, die Algorithmen können auch nicht repetitiv und/oder analytisch sein.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 4 entnehmen.
  • Es kann also die Berechnungszeit BZ eines oder mehrerer Prozessschritts/e zumindest näherungsweise vorgegeben bzw. eingestellt werden. Der/die Prozessschritt(e) kann/können dann mit der (jeweils) eingestellten BZ bzw. solange, bis die BZ abgelaufen ist (Abbruchkriterium), durchgeführt werden.
  • Als Folge des Vorgebens bzw. Einstellens unterschiedlicher Berechnungszeiten ergeben sich variierende Genauigkeiten und/oder Wiederholungsanzahlen (bei iterativen Berechnungen) bzw. Rekursionstiefen (bei rekursiven Berechnungen).
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 5 entnehmen.
  • Es können also Häufigkeiten, mit denen Berechnungsfolgen von Prozessschritten wiederholt werden, vorgegeben bzw. eingestellt werden (bei rekursiven Algorithmen entspricht die Häufigkeit der Rekursionstiefe). Ein Einstellen einer geringeren Häufigkeit führt in der Regel zu einer geringeren Genauigkeit, mit der ein Prozessschritt durchgeführt wird, bzw. zu einer geringeren Berechnungszeit für den Prozessschritt. Nachdem die Berechnungsfolgen entsprechend häufig wiederholt wurden (bzw. die gewählte Rekursionstiefe erreicht wurde) wird der Prozessschritt beendet. Das Abbruchkriterium ist hier also eine Häufigkeit. Als Folge eines solchen Vorgebens bzw. Einstellens von unterschiedlichen Wiederholhäufigkeiten (nachfolgend auch mit WH abgekürzt) ergeben sich variierende Genauigkeiten GK und/oder Berechnungszeiten BZ für die entsprechenden Prozessschritte.
  • Gemäß der Ansprüche 3 bis 5 können erfindungsgemäß schrittweise genauigkeitsverfeinernde Prozessschritte implementiert bzw. realisiert werden. Zwei beliebige oder alle drei der genannten Auswertungsparametertypen (GK, BZ und/oder WH) können durch die Auswerteeinheit zum Identifizieren und Klassifizieren der Objekte des Materialstroms zusammen eingesetzt werden. So kann beispielsweise bei einem Prozessschritt (z. B. der Segmentierung in den Bilddaten) die GK eingestellt werden, während bei einem anderen Prozessschritt (beispielsweise dem Anwenden eines Klassifikators auf Entscheidungsbaumbasis) die BZ eingestellt wird.
  • Vorteilhafterweise erfolgt das Implementieren der verwendeten Algorithmen so, dass für alle verwendeten Auswertungsparameter bzw. Typen von Auswertungsparametern für jeden Prozessschritt zu jedem Zeitpunkt während des Durchführens eines solchen Prozessschrittes (bzw. zum Zeitpunkt eines Abbruchs der Berechnungen eines solchen Prozessschrittes) die Bedingungen gemäß Anspruch 2 erfüllt sind.
  • Mit anderen Worten werden vorzugsweise sämtliche Berechnungen für alle Objekte im Materialstrom in derjenigen Zeit durchgeführt und abgeschlossen (notfalls beispielsweise durch vorzeitigen Abbruch der Berechnungen bei noch recht geringer Genauigkeit), die die Objekte jeweils brauchen, um nach ihrer Erfassung durch die Bildaufnahmeeinheit (beispielsweise auf dem Transportband) zu demjenigen letztmöglichen Ort zu gelangen, an dem sie noch durch die Sortiereinheit aussortiert werden können. Erfindungsgemäß kann also dafür gesorgt werden, dass für jedes Objekt oder zumindest für 90%, 95% oder 99% der Objekte immer eine momentane (ggfs. noch sehr grobe) Klassifikationsentscheidung (der dann eine entsprechende Sortierentscheidung folgen kann) gegeben ist.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 6 entnehmen.
  • Das Identifizieren und Klassifizieren bzw. die Auswertung kann also in mehreren Prozessschritten (nachfolgend auch alternativ als Komponenten bezeichnet) der Auswerteeinheit durchgeführt werden. Für jeden Prozessschritt (jede Komponente) kann jeweils ein Typ, bevorzugt genau ein Typ, von Auswertungsparameter gemäß der Ansprüche 3 bis 5 festgelegt werden.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 7 entnehmen.
  • Gemeint ist damit, dass die sich ergebende(n) bzw. die gewählte(n) Berechnungszeit(en), vgl. dazu auch die vorangehenden abhängigen Ansprüche, so sind, dass auch bei Änderungen im Materialstrom bzw. bei den Objekten desselben der/die Belegungsparameter so schnell bestimmt und davon ausgehend der/die Auswertungsparameter so schnell angepasst werden kann/können, dass auch im veränderten Materialstrom bzw. für die veränderten Objekte die Bedingungen des Anspruchs 2 erfüllt werden können. Dies kann durch eine geeignete Hard- und/oder Software und/oder auch durch geeignete, hinreichend gering eingestellte Genauigkeiten realisiert werden.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 8 entnehmen.
  • Gemäß der ersten Variante dieses Anspruchs können somit Auswertungsparameter eingestellt werden, die in der Auswerteeinheit direkt verwendet werden, um durch die Auswerteeinheit das Identifizieren und Klassifizieren (bzw. die Prozessschritte desselben) direkt, also unmittelbar, zu steuern.
  • Gemäß der zweiten Variante dieses Anspruchs können Auswertungsparameter eingestellt werden, die die Bildaufnahmeeinheit 1 steuern und die somit indirekt bzw. mittelbar, also als Folge dieser Steuerung, das von der Auswerteeinheit durchgeführte Identifizieren und Klassifizieren (bzw. die Prozessschritte desselben) beeinflussen. Ein Beispiel für einen solchen Auswertungsparameter ist die Bildauflösung (oder die Pixelzahl je Flächeneinheit) bei der Bildaufnahmeeinheit: Diese kann herabgesetzt werden (z. B. durch Zusammenfassen von mehreren Pixeln). Die Bilddaten haben dann eine geringere Bildauflösung, die Belegungsparameter werden somit ungenauer/gröber und/oder liegen in geringerer Anzahl vor (und können somit schneller bestimmt werden). Letzteres vereinfacht bzw. beschleunigt dann indirekt auch das Identifizieren und Klassifizieren durch die bzw. in der Auswerteeinheit. Letzteres kann auch dadurch bewirkt werden, dass man auf Basis des/der Auswertungsparameter(s) der Bildaufnahmeeinheit wiederum einen oder mehrere Auswertungsparameter der Auswerteeinheit hinsichtlich der Einstellung verändert.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 9 entnehmen.
  • Ein solcher Sortierparameter kann bevorzugt durch die Sortiereinheit eingestellt werden. Ein möglicher Sortierparameter ist ein Zusammenschalten mehrerer benachbarter Ausblasdüsen der Sortiereinheit zu einem Düsencluster.
  • Beispielsweise können mit einem solchen Düsencluster große Objekte sicherer aussortiert werden oder es können (bei geringer Belegungsdichte) größere Ausblasbereiche um auszusortierende Objekte herum bewirkt werden. Damit lässt sich die Wahrscheinlichkeit des tatsächlichen Aussortieren auszusortierender Objekte durch die Sortiereinheit weiter erhöhen.
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 10 entnehmen.
  • Die Belegungsdichte kann insbesondere als mittlere Anzahl von Objekten pro Flächeneinheit des Materialstroms definiert werden (beispielsweise als mittlere Anzahl von Objekten, mit denen eine Flächeneinheit des Transportbandes eines Sortiersystems vom Bandtyp belegt ist). Bei Sortiersystemen vom Rutschentyp oder vom Falltyp kann als Belegungsdichte die mittlere Anzahl von Objekten je Fallstrecke oder je Fallflächeneinheit gemeint sein.
  • Die Belegungsverteilung kann erfassen oder beschreiben, ob die Objekte im Materialstrom alle ausgeeinzelt sind oder mit welcher Wahrscheinlichkeit ein beliebiges Objekt ausgeeinzelt auf beispielsweise dem Transportband vorliegt (oder ob sich Objekte noch überlappen bzw. mit welcher Wahrscheinlichkeit Clusterbildungen vorliegen).
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 11 entnehmen.
  • Falls mehrere dieser Prozessschritte durchgeführt werden, werden diese bevorzugt in einer zeitlichen Reihenfolge gemäß ihrer Reihenfolge in der Aufzählung dieses Anspruchs durchgeführt (Beispiel: Segmentieren gefolgt von Zusammenhangsanalyse gefolgt von Klassifikation).
  • Die Zusammenhangsanalyse als Teil des Identifizierens kann eine „Connected-Component-Analyse” sein, wie sie z. B. in "Topological Algorithms for Digital Image Processing" von T. Y. Kong, A. Rosenfeld, North Holland, Amsterdam, NL, 1996, beschrieben ist.
  • Die Segmentierung als Teil des Identifizierens kann z. B. so durchgeführt werden, wie es in "Digitale Bildverarbeitung und Bildgewinnung" von B. Jähne, Springer, Heidelberg, Deutschland, 2012, beschrieben ist.
  • Das Identifizieren und Klassifizieren, insbesondere das Identifizieren, kann weitere Prozessschritte wie beispielsweise einen Bildvorverarbeitungsschritt (vor dem Segmentieren und vor der Zusammenhangsanalyse) und/oder einen Merkmalsberechnungsschritt (nach dem Segmentieren und nach der Zusammenhangsanalyse) umfassen. Siehe dazu beispielsweise "Digitale Bildverarbeitung und Bildgewinnung" von B. Jähne, Springer, Heidelberg, Deutschland, 2012 und "Automatische Sichtprüfung: Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung", J. Beyerer, F. P. Leὁn, C. Frese, Springer-Verlag Berlin Heidelberg, Deutschland, 2012.
  • Nach mehreren Identifizier-Prozessschritten kann ein Prozessschritt der Klassifikation und danach ein Prozessschritt der Sortierentscheidung erfolgen (der Prozessschritt der Klassifikation kann auch bereits die Sortierentscheidung beinhalten).
  • Weitere vorteilhafterweise realisierbare Merkmale lassen sich Anspruch 12 und Anspruch 13 entnehmen.
  • Gemäß Anspruch 13 kann die Implementierung einzelner Prozessschritte sowohl in Software als auch in Hardware, aber auch nur in Software oder nur in Hardware erfolgen. Bevorzugt wird eine zentrale Recheneinheit (Serversystem) eingesetzt, mit der alle Einheiten des Sortiersystems über bidirektionale Datenleitungen verbunden sind. Diese zentrale Recheneinheit kann computergestützt alle notwendigen Datenverarbeitungsmaßnahmen, Berechnungen und/oder Prozessschritte ausführen.
  • Ein erfindungsgemäßes Sortierverfahren lässt sich Anspruch 14 entnehmen.
  • Die vorliegende Erfindung beschreibt somit eine Vorgehensweise, bei der grundsätzlich innerhalb der zur Verfügung stehenden Rechenzeit eine bestmögliche Sortierentscheidung getroffen werden kann, um hierdurch eine prinzipielle Einhaltung von Echtzeitschranken zu ermöglichen. Die damit verbundene Aufwertung des Auswertesystems (Auswerteeinheit) kann somit direkt qualitative Fortschritte in der optischen Schüttgutsortierung unterstützen, da Zeitschranken enger gefasst werden können. Dies wird erfindungsgemäß durch die Verwendung von Algorithmen, die eine Sortierentscheidung inkrementell verfeinern oder die alternativ ihre Berechnungen an einem zugesprochenen Zeitbudget ausrichten, realisiert.
  • Es kann eine Menge an Implementierungen, welche sich in Genauigkeit GK und Berechnungsaufwand BZ unterscheiden, für Teilaufgaben des Auswertesystems verwendet werden. Während der einzelnen Prozessschritte (insbesondere bei der Auswertung) kann ein Laufzeitsystem konkrete Implementierungen auswählen, um Echtzeitschranken einzuhalten und um während der zur Verfügung stehenden Zeit das bestmögliche Ergebnis zu erzielen. Das zur Verfügung stehende Zeitbudget kann an Auswertungsalgorithmen propagiert werden. Die Algorithmen können um Intelligenz so erweitert werden, dass sie die zur Verfügung stehende Zeit bestmöglich ausnutzen.
  • Erfindungsgemäß können unterbrechbare Teilprozesse (die Prozessschritte) realisiert werden. Die Auswertealgorithmik kann durch ein Steuersystem zu jedem beliebigen Zeitpunkt unterbrochen werden und es kann das bis zu diesem Zeitpunkt beste Prozessschrittergebnis abgefragt werden. Durch das Verwenden der bis zu diesem Zeitpunkt bestmöglichen Entscheidung können in jedem Fall immer Informationen über ein zu sortierendes Objekt für eine Sortierentscheidung ausgewertet werden. Es kommt also nicht zu dem Fall, dass bei einer Überschreitung der Zeitschranke ein Objekt für eine Klassifizierung bzw. Sortierung überhaupt nicht beachtet wird. Dies resultiert letztendlich in einer Steigerung der Sortierleistung sowie der Sortierqualität.
  • Erfindungsgemäß kann sichergestellt werden, dass für jedes im Materialstrom enthaltene Objekt bei Erreichen des Separationsmechanismus (Sortiereinheit) eine Sortierentscheidung vorliegt. Diese Entscheidung beruht in der Regel auf Informationen, welche über das Objekt durch den Sensor (Bildaufnahmeeinheit) erfasst wurden, wobei die Auswertungsqualität sich je nach zur Verfügung stehender Zeit unterscheidet. Dies bedeutet, dass eine bessere Entscheidung getroffen werden kann, als es bei herkömmlichen Systemen nach dem Stand der Technik der Fall ist. Zudem kann bei der vorliegenden Erfindung eine geringere Latenz zwischen der sensorischen Erfassung und der Separation ermöglicht werden, wodurch die räumliche Trennung minimiert wird, eine Steigerung der Sortierqualität erzielt wird, und ein kompakteres Sortiersystem realisiert wird.
  • Durch die Erfindung kann eine verbesserte Trennung bei der automatisierten Sortierung beliebiger Schüttgüter bzw. Materialströme erzielt werden. Zudem können im Vergleich zum Stand der Technik kleinere Ausblasfenster angewandt werden. Die Erfindung kann für die Sortierung komplexer Schüttgüter, welche anhand vieler komplexer Merkmale klassifiziert werden, eingesetzt werden.
  • Optische Sortiersysteme wie bei der vorliegenden Erfindung können eingesetzt werden, wenn sich die Materialien bzw. die Objekte anhand optischer Merkmale, vorzugsweise im sichtbaren oder auch im nahen Infrarotbereich, unterscheiden und somit für eine Sortierung klassifizieren lassen. Die Erfindung kann für die Rohstoff-verarbeitende Industrie eingesetzt werden, bei der neben einer kostengünstigen Produktion immer auch eine konstant hohe Qualität sichergestellt werden muss. Hierzu zählt beispielsweise die Sortierung von Industriemineralien, beispielsweise zur Reduktion des Eisengehaltes in einem Rohstoff. Die Erfindung kann auch im Lebensmittel- oder Genussmittelbereich eingesetzt werden, wo Verunreinigungen in Produkten (beispielsweise: getrocknete Paprika, getrocknete Weintrauben ...) beseitigt werden müssen. Ein weiteres wichtiges Einsatzgebiet ist das Recycling von Produkten (beispielsweise Altglassortierung).
  • Die vorliegende Erfindung kann bei optischen Sortiersystemen einen wesentlichen Beitrag zur besseren Wirtschaftlichkeit leisten.
  • Wie im nachfolgenden Ausführungsbeispiel noch detaillierter erläutert, kann erfindungsgemäß mit Hilfe der gewonnenen Sensordaten (Bilddaten) eine Materialbelegung (z. B. Belegungsdichte) sowie eine Verteilung der Objekte im Materialstrom durch eine Überwachungseinheit bestimmt werden. Dies kann durch erlernte Modelle sowie durch bestimmte Metriken erreicht werden. Anhand dieses Wissens können durch eine Steuerungskomponente einzelne Glieder (Komponenten bzw. Prozessschritte) der Verarbeitungskette beispielsweise bzgl. der Genauigkeit eingestellt werden. Somit kann eine kürzere Berechnungszeit dieser Glieder erreicht werden. Beispielsweise kann bei einer hohen Belegungsdichte und/oder einer ungünstigen Verteilung in der Belegung (beispielsweise wenn Objektcluster vorliegen) die Genauigkeit mindestens eines Gliedes bzw. eines Prozessschrittes auf „gröber” bzw. „geringer” eingestellt werden, so dass die Echtzeitbedingungen in jedem Fall eingehalten werden können (auch wenn dadurch die Genauigkeit der Klassifikations- bzw. Sortierentscheidungen geringer wird bzw. auch wenn dadurch die Fehlerrate, d. h. die Wahrscheinlichkeit für eine falsche Sortierentscheidung bzw. Klassifizierentscheidung für ein gerade betrachtetes Objekt, steigt). Erfindungsgemäß wird dadurch die Wahrscheinlichkeit zur Einhaltung aller Echtzeitbedingungen im Sortiersystem stark erhöht. Hieraus resultieren bessere Sortierentscheidungen, da durch besagte Erhöhung der Einhaltung für mehr Objekte im Materialstrom eine Klassifikation überhaupt vorgenommen werden kann. (Im Extremfall wird in jedem Fall, d. h. für jedes einzelne Objekt im Materialstrom, eine Klassifikationsentscheidung und somit auch eine Sortierentscheidung gefällt.)
  • Erfindungsgemäß kann die Steuerungskomponente (Auswertungseinheit) die Auswertungsparameter, insbesondere die Genauigkeit, die Berechnungszeit und/oder die Wiederholhäufigkeit, anhand von mit bekannten Materialströmen (mit bekannter Objektbelegung, mit bekannten Objekttypen, Objektgrößen, Objektgewichten etc.) ermittelten Zusammenhängen einstellen. Diese Zusammenhänge können dabei Abhängigkeiten zwischen der Materialbelegung bzw. den Belegungsparametern einerseits und den vorzunehmenden Einstellungen der Auswertungsparameter andererseits widerspiegeln. Entsprechend der eingestellten Auswertungsparameter ergeben sich Sortiergüte und Sortierleistung.
  • 1 bis 5 zeigen ein Ausführungsbeispiel für ein erfindungsgemäßes optisches Sortiersystem (sowie ein entsprechendes Sortierverfahren) wie folgt.
  • Dabei zeigt:
  • 1 einen optischen Bandsortierer gemäß der Erfindung.
  • 2 den Verarbeitungsablauf im Sortiersystem gemäß 1 aus Sicht der digitalen Daten (insbesondere: der Bilddaten) und des Materialstroms bzw. des Weges von dessen Objekten.
  • 3 den Ablauf des Sortierprozesses gemäß der 1 und 2, insbesondere die Prozessschritte der Auswertung (Identifizieren und Klassifizieren) in der Auswerteeinheit des Systems.
  • 4 ein Beispiel für einen gemäß der 1 bis 3 bestimmten Belegungsparameter (hier: Materialbelegungsdichte) sowie einen unter Verwendung desselben eingestellten Auswertungsparameter (hier: Genauigkeit GK), der das Identifizieren und Klassifizieren der Objekte, also die Auswertung, durch die Auswerteeinheit steuert.
  • 5 ein Beispiel für den Prozessschritt der Klassifikation in der Auswertung gemäß 3.
  • 1 zeigt einen optischen Bandsortierer, der grundsätzlich dem Aufbau nach dem Stand der Technik folgt, wobei die erfindungsgemäßen Besonderheiten insbesondere in der Auswerteeinheit 2 bzw. der Auswertung der Bilddaten 4 durch dieselbe liegen. Im Bandsortierer wird ein Schüttgutstrom bzw. Materialstrom M mittels eines Förderbandes 11 auf eine dem Fachmann an sich bekannte Art und Weise an einer Bildaufnahmeeinheit 1 vorbei hin zu einer in einem definierten Abstand zur Bildaufnahmeeinheit 1 angeordneten Sortiereinheit 3 transportiert. Der Schüttgutstrom M umfasst eine Vielzahl einzelner Objekte O, die hier in lediglich zwei Klassen zu klassifizieren bzw. zu sortieren sind, nämlich in Gut-Objekte (einzusortieren in den Auffangbehälter 13b der Sortiereinheit 3) und Schlecht-Objekte (einzusortieren in den weiteren Auffangbehälter 13a der Sortiereinheit 3). Hierzu müssen die Objekte O des Materialstroms M zunächst durch die Bildaufnahmeeinheit erfasst werden, anschließend durch Auswertung der durch diese Einheit 1 aufgenommenen Bilddaten 4 in der Auswerteeinheit 2 in Gut-Objekte und Schlecht-Objekte klassifiziert werden und schließlich sortiert werden. Das Einsortieren in bzw. Aufteilen auf die beiden Behältnisse 13a, 13b gemäß des Sortier- bzw. Klassifizierergebnisses 13 erfolgt durch die Druckluftventile der Sortiereinheit 3, die anhand der Auswertungsergebnisse 10 der Auswerteeinheit 2 Schlecht-Objekte aus dem Materialstrom M durch Ausblasvorgänge entfernen.
  • Die ausgeblasenen Schlecht-Objekte fallen in das Behältnis 13a der Schlecht-Objekte, die Gut-Objekte verbleiben im Materialstrom M, werden also nicht ausgeblasen, und fallen in das Behältnis 13b für Gut-Objekte. Dies beschreibt den Idealzustand des Sortierergebnisses 13.
  • Die Bildaufnahmeeinheit 1 umfasst eine bildgebende Sensorik, hier eine CCD-Farb-Zeilenkamera 1a, die den Materialstrom M bzw. die Objekte O desselben im Abwurfbereich des Förderbandes 11 gegen einen Hintergrund 12 erfasst bzw. eine schnelle Abbildungsfolge des Materialstroms M gegen den Hintergrund 12 aufnimmt. Eine Beleuchtung 1b der Einheit 1 beleuchtet dazu den Materialstrom M gegen den Hintergrund 12 der Einheit 1, um optimale Bildaufnahmeverhältnisse für die Kamera 1a sicherzustellen.
  • Die aufgenommenen Bilddaten bzw. Videodaten 4 werden über eine Datenleitungsverbindung zwischen Kamera 1a und Auswerteeinheit 2 an letztere übermittelt. Die Auswerteeinheit 2 führt dann die nachfolgend noch im Detail beschriebenen Prozessschritte des Identifizierens und Klassifizierens der Objekte O des Materialstroms M in den Bilddaten 4 durch und übermittelt die Auswerteergebnisse 10 der durchgeführten Prozessschritte 7a7g (vgl. 3) über eine Datenverbindung an die Sortiereinheit 3. Letztere führt schließlich beabstandet vom Abwurfbereich des Förderbandes 11 bzw. von der Aufnahmeeinheit 1 das Ausschleusen von Schlecht-Objekten durch, wodurch sich die Trennung in Gut-Objekte (Behälter 13b) und Schlecht-Objekte (Behälter 13a) im Sortierergebnis 13 ergibt.
  • 2 zeigt den Materialfluss (durchgezogene Pfeile) sowie den Datenfluss (gestrichelte Pfeile), insbesondere den Datenfluss bei der Bilddatenerfassung und -auswertung, im System gemäß 1. Der Materialaufgabe auf das Förderband 11 folgt zunächst eine Vereinzelung und Beruhigung der Objekte O auf dem Förderband, bevor der in 1 links im Bild gezeigte Transportzustand bzw. Zustand der Objekte O im Materialstrom M auf dem Förderband 11 vorliegt. Im Abwurfbereich erfolgt schließlich die Bilderfassung bzw. sensorische Erfassung der Objekte O im Materialstrom M mittels der Bildaufnahmeeinheit 1 bzw. der Kamera 1a derselben. Die Bilddaten 4 werden an die Auswertung in der Auswerteeinheit 2 übermittelt, die zum Abschluss der Auswertung die Klassifikation vornimmt bzw. die Sortierentscheidung für die einzelnen Objekte O trifft. Während der Auswertung mit der Auswerteeinheit 2 (also der Durchführung aller notwendigen Prozessschritte 7, vgl. 3, bzw. Berechnungsvorgänge) fällt der Materialstrom M stromabwärts des Abwurfbereichs des Förderbandes 11 gesehen entlang der Abwurfparabel. Die Zeitspanne des freien Fallens der Objekte O entlang der Abwurfparabel (bis zum Erreichen des Ausschleusungsbereiches der Einheit 3) ist durch den Abstand zwischen Förderbandende einerseits und Einwirkungsbereich der Druckluftventile der Sortiereinheit 3 andererseits definiert und entspricht der Latenzzeit bzw. der Zeit, die für ein Treffen einer Sortierentscheidung für ein Objekt O zur Verfügung steht.
  • Erfindungsgemäß wird für jedes Objekt im Materialstrom M, vgl. dazu auch 4, in dieser Latenzzeit eine Klassifikations- und Sortierentscheidung gefällt. Dies geschieht in der Auswerteeinheit 2. Die Sortierentscheidung (in Gut-Objekt oder Schlecht-Objekt) wird schließlich nach Abschluss der Latenzzeit für jedes Objekt durch die Sortiereinheit 3 umgesetzt (Separation).
  • 3 zeigt vereinfacht den Ablauf im Sortiersystem gemäß der 1 und 2: Nach der Materialaufgabe 30 auf das und dem Materialtransport 31 auf dem Förderband 11 erfolgt die Bilderfassung 32 mittels der Kamera 1a der Bildaufnahmeeinheit 1. Sodann beginnt die Auswertung 33 mittels der Auswerteeinheit 2, der sich die Separation 34 durch die Sortiereinheit 3 anschließt.
  • Gemäß 3 umfasst die Auswertung, also das Identifizieren und Klassifizieren der Objekte O durch die Auswerteeinheit 2, hier insgesamt sieben einzelne Prozessschritte 7. Eingangsdaten der Auswertung sind die Bilddaten 4. Auf Basis des bestimmten Belegungsparameters 5 (vgl. 4: Materialbelegungsdichte) wird für jeden einzelnen Prozessschritt 7 genau ein diesen Prozessschritt in der Auswerteeinheit steuernder Auswerteparameter 6 eingestellt. Das dazu notwendige Auswerten der Belegungsdichte zum Berechnen der Auswertungsparameter 6a6g der einzelnen Prozessschritte 7a7g des Identifizierens und Klassifizierens durch die Auswerteeinheit 2 erfolgt im Rechnersystem der Auswerteeinheit 2 (nicht gezeigt).
  • Im gezeigten Beispiel der 3 wird durch die Auswertungseinheit 2 für den ersten Prozessschritt 7a der Bilddatenvorverarbeitung der Bilddaten 4 als der diese Vorverarbeitung steuernde Auswertungsparameter eine Bilddatenvorverarbeitungs-Genauigkeitsstufe GK 6a eingestellt. Die Genauigkeitsstufe kann dabei z. B. auf „gering”, „mittel” oder „hoch” lauten (vgl. auch 4).
  • In dem zeitlich dem Schritt 7a nachfolgenden Prozessschritt 7b der Bildbereinigung wird als Auswertungsparameter 6b durch die Auswerteeinheit 2 eine feste Berechnungszeit BZ eingestellt. Die Steuerung des Schritts 7b der Auswertung erfolgt somit anhand einer BZ. Der nachfolgende dritte Prozessschritt 7c der Segmentierung wird wiederum mit einer mittels der Einheit 2 eingestellten Genauigkeitsstufe GK als Auswertungsparameter 6c durchgeführt bzw. gesteuert. Für die Zusammenhangsanalyse 7d wird ebenfalls als Auswertungsparameter 6d einer der drei Genauigkeitsstufenwerte „gering”, „mittel” oder „hoch” zugeordnet bzw. eingestellt.
  • Der zeitlich gesehen fünfte Prozessschritt der Merkmalsberechnung 7e wird auf Basis einer eingestellten Wiederholhäufigkeit WH als Auswertungsparameter 6e durchgeführt bzw. gesteuert. Die Merkmalsberechnung umfasst hier eine rekursiv durchzuführende Berechnungsfolge, wobei die Wiederholhäufigkeit WH 6e z. B. einen Wert zwischen 3 und 7 annehmen kann (d. h. die Rekursionstiefe der Berechnungen kann zwischen 3 und 7 gewählt werden, wobei 3 einen geringen Rechenaufwand erfordert und somit ein schnelles Durchführen des Schrittes 7e ermöglicht und wobei ein Wert von 7 einen hohen Berechnungsaufwand erfordert, so dass das Durchführen des Schrittes 7e lange dauert, aber mit hoher Genauigkeit erfolgen kann – letzteres ist somit nur bei geringer Belegungsdichte 5 sinnvoll bzw. möglich, wenn für alle Objekte O Sortierentscheidungen zu fällen sind).
  • Als sechster Schritt 7f erfolgt schließlich die Klassifikation, wobei für diesen Prozessschritt 7f als Auswertungsparameter 6f wiederum eine Genauigkeit GK eingestellt wird. Auch die abschließende Sortierentscheidung 7g erfolgt auf Basis des Einstellens eines Genauigkeitswertes GK 6g.
  • Das Ergebnis der insgesamt sieben Prozessschritte 7a7g mit den dazu jeweils eingestellten Auswertungsparametern 6a6g ist für jedes einzelne Objekt O des Materialstroms M das Sortierergebnis 13 aus 1.
  • 4 zeigt, wie im System der 1 bis 3 Auswertungsparameter 6 auf Basis zuvor in den Bilddaten 4 bestimmter Belegungsparameter 5 eingestellt werden können. Dies wird anhand eines einzelnen Belegungsparameters 5, hier der Materialbelegungsdichte, gezeigt, der mit der Auswerteeinheit 2 aus den mit der Bildaufnahmeeinheit 1 bzw. der Kamera 1a derselben aufgenommenen Bilddaten (gezeigt sind hier Einzelbilder 4) bestimmt wird.
  • Aus dem hier genau einen Belegungsparameter Materialbelegungsdichte 5, der den Materialstrom M hinsichtlich der Anzahl von Objekten O pro Flächeneinheit kennzeichnet, wird mittels der Auswerteeinheit 2 genau ein Auswertungsparameter 6, hier eine Genauigkeit (z. B. – hier vereinfacht – genau eine alle einzelnen Prozessschritte 7 steuernde Berechnungsgenauigkeit, die einen der Werte „hoch”, „mittel” oder „gering” annimmt), bestimmt und eingestellt. Diese Genauigkeit 6 ist ein Auswertungsparameter der Auswerteeinheit 2, der bei der Auswerteeinheit 2 eingestellt wird, um das Identifizieren und Klassifizieren der Objekte O durch die Auswerteeinheit 2 zu steuern. Wie 4 zeigt, wird im Falle einer geringen Materialbelegungsdichte 5 für das Identifizieren und Klassifizieren bzw. für alle einzelnen Prozessschritte desselben eine hohe Genauigkeit 6 als Auswertungsparameter eingestellt, so dass die Auswerteeinheit 2 sämtliche Identifizierungs- und Klassifizierungs-Prozessschritte 7 mit der Genauigkeit „hoch” durchführt, ohne dass es zu einer Verletzung der Echtzeitbedingungen bei der Auswertung kommt (vgl. 4, mittlere Bildzeile).
  • Erhöht sich die Materialbelegungsdichte 5 im Materialstrom M auf „hoch”, so dass bei Beibehaltung der hohen Genauigkeit der Auswertungs-Prozessschritte die Echtzeitbedingungen nicht mehr eingehalten werden würden, so wird durch die Auswerteeinheit 2 für sämtliche Prozessschritte 7 die Genauigkeit 6 auf „gering” eingestellt. Das Identifizieren und Klassifizieren wird ab diesem Zeitpunkt mit geringer Genauigkeit durchgeführt bzw. so gesteuert, dass die Echtzeitbedingungen wieder eingehalten werden können (vgl. 4, untere Bildzeile).
  • 4 zeigt darüber hinaus, dass auf Basis der Materialbelegungsdichte 5 auch Auswertungsparameter 8 der Bildaufnahmeeinheit 1 eingestellt werden können. So kann beispielsweise als hier einziger Auswertungsparameter 8 der Bildaufnahmeeinheit 1 deren Bildauflösung eingestellt werden. Bei geringer Materialbelegungsdichte 5 kann die Kamera 1a die Bilddaten 4 mit hoher Bildauflösung 8 aufnehmen, wohingegen bei einer deutlichen Erhöhung der Materialbelegungsdichte 5, wie in der unteren Zeile von 4 gezeigt, die Bildauflösung 8 bei der Aufnahme der Bilddaten 4 deutlich herabgesetzt werden kann. Der so einstellbare Auswertungsparameter 8 der Bildaufnahmeeinheit 1 (Bildauflösung) kann dann indirekt auch die Bestimmung des/der Belegungsparameter(s) 5 und somit auch das Einstellen des/der Auswertungsparameter(s) 6 der Auswerteeinheit 2 beeinflussen.
  • 5 zeigt schließlich ein Beispiel für eine mögliche Implementierung eines der Prozessschritte bzw. Teilaufgaben aus 3, nämlich der Klassifikation 7f. Das Beispiel zeigt eine Implementierung eines unterbrechbaren Klassifikators zum Treffen einer bestmöglichen Klassifikationsentscheidung (bzw. der dieser folgenden Sortierentscheidung). Als Grundlage für den Klassifikator wird ein Entscheidungsbaum verwendet. In jedem inneren Knoten des Entscheidungsbaums wird ein Merkmal eines gefundenen Objektes gegen einen Schwellwert verglichen und entsprechend des Vergleichsergebnisses wird der Pfad nach rechts oder nach links verfolgt, wie in 5 gezeigt. In den Blättern des Entscheidungsbaums werden die resultierenden Klassen gespeichert. Gemäß der 1 bis 4 gibt es hier lediglich zwei Klassen, nämlich die Klasse der Gut-Objekte und die Klasse der Schlecht-Objekte.
  • Erfindungsgemäß können verschiedene dem Fachmann an sich bekannte Verfahren zum automatischen Lernen eines entsprechenden Entscheidungsbaums auf Basis einer gegebenen Trainingsmenge eingesetzt werden. Siehe hierzu beispielsweise „Machine Learning" von T. M. Mitchell, McGraw-Hill, Boston, USA, 1997.
  • Erfindungsgemäß können diese Verfahren dahingehend erweitert werden, dass nicht nur in den Blättern des Entscheidungsbaums eine Klassenzugehörigkeit gespeichert wird, sondern dass auch in jedem inneren Entscheidungsbaumknoten eine Wahrscheinlichkeit für die verschiedenen Klassenzugehörigkeiten (auf Basis der Trainingsmenge) hinterlegt wird. Unterscheidet man beispielsweise zwei Klassen, nämlich eine Klasse A für Gut-Objekte und Klasse B für Schlecht-Objekte, wobei für beide Klassen jeweils gleich viele Beispiele in der Trainingsmenge vorhanden sind, dann liegen die Wahrscheinlichkeiten für die Klassenzugehörigkeit für A und B im obersten Knoten f8 bei jeweils 50%. Hier beschreibt f den Merkmalsvektor und das achte enthaltene Merkmale wird entsprechend durch f8 beschrieben. Hierbei gilt zu beachten, dass ein einzelnes Merkmal in mehreren Knoten des Entscheidungsbaums als Prüfkriterium herangezogen werden kann.
  • Ein zu klassifizierendes Objekt O fällt nach dem Vergleich mit f8 im ersten, obersten Knoten in den linken oder in den rechten Teilbaum. Im nächsten Knoten, beispielsweise rechts, wird nun mit f4 verglichen. Die Wahrscheinlichkeiten können dabei neu verteilt sein. Zum Beispiel ist es denkbar, dass im letztgenannten Knoten die Wahrscheinlichkeiten für A mit 30% und für B mit 70% hinterlegt sind. Wird dann der Prozessschritt der Klassifikation an dieser Stelle (bzw. wenn die Berechnungen bis zu dieser Stelle gelangt sind) unterbrochen, so kann mit Sicherheit die Aussage getroffen werden, dass nach derzeitigem Kenntnisstand eine Zugehörigkeit zur Klasse B wahrscheinlicher ist als zur Klasse A.
  • Der Prozessschritt der Zusammenhangsanalyse 7d (vgl. 3) kann erfindungsgemäß beispielsweise durch eine „Connected-Component-Analyse” realisiert werden. Siehe dazu z. B. M. B. Dillencourt et al. „A General Approach to Connected-Component-Labeling for arbitrary Image Representations", Journal of the ACM 39(2), 1992.
  • Hierbei können mehrere Unterbrechungspunkte gewährt werden, indem das Bild z. B. mit einem verschobenen Raster unterabgetastet wird. Beispielsweise kann in einem ersten Durchlauf nur jedes vierte Pixel betrachtet werden: Für alle nicht betrachteten Pixel kann dann der gleiche Wert wie für das zuletzt betrachtete Pixel angenommen werden. Steht genug Berechnungszeit zur Verfügung, so kann das Raster verschoben werden: Auf diese Weise wird die Information über das Bild mit jedem Durchlauf bzw. jeder Wiederholung verfeinert. Es handelt sich dabei um ein iteratives Verfahren, das nach jedem Durchlauf eine gültige Information liefern kann, diese Information jedoch sukzessive verbessert.
  • Unterbrechbare Teilprozesse bzw. Prozessschritte können beispielsweise auch wie folgt realisiert werden. Es wird die Fläche eines Objektes in Pixel bestimmt. Hierzu werden in einem Algorithmus einfach die Pixel gezählt. Ein solcher Vorgang kann jederzeit unterbrochen werden und die bisher gezählten Pixel können als Fläche angenommen werden. Alternativ kann die Fläche aus anderen Daten, sofern bereits vorhanden, geschätzt werden. Beispielsweise wenn eine achsenausgerichtete „Bounding Box” bekannt ist, kann die Fläche dieser Box anstelle der echten Fläche als Schätzwert verwendet werden (dies kann Vorteile durch weniger Speicherzugriffe bieten).
  • Generell können im Rahmen der Erfindung iterative Verfahren bzw. iterativ durchgeführte Prozessschritte bei jedem Schleifendurchlauf unterbrochen werden. Bei einer Unterbrechung während eines Schleifendurchlaufs kann das Ergebnis des zuletzt vollständig durchgeführten Schleifendurchlaufs verwendet werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102009007481 A1 [0006]
    • DE 102010046438 A1 [0006]
    • DE 102011103253 A1 [0006]
    • DE 102012001868 A1 [0006]
  • Zitierte Nicht-Patentliteratur
    • „Stand der Technik der sensorgestützten Sortierung” von H. Wotruba, BHM, 153. Jg. (2008), Heft 6, Seiten 221–224 [0007]
    • ”Topological Algorithms for Digital Image Processing” von T. Y. Kong, A. Rosenfeld, North Holland, Amsterdam, NL, 1996 [0047]
    • ”Digitale Bildverarbeitung und Bildgewinnung” von B. Jähne, Springer, Heidelberg, Deutschland, 2012 [0048]
    • ”Digitale Bildverarbeitung und Bildgewinnung” von B. Jähne, Springer, Heidelberg, Deutschland, 2012 [0049]
    • ”Automatische Sichtprüfung: Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung”, J. Beyerer, F. P. Leὁn, C. Frese, Springer-Verlag Berlin Heidelberg, Deutschland, 2012 [0049]
    • „Machine Learning” von T. M. Mitchell, McGraw-Hill, Boston, USA, 1997 [0088]
    • M. B. Dillencourt et al. „A General Approach to Connected-Component-Labeling for arbitrary Image Representations”, Journal of the ACM 39(2), 1992 [0091]

Claims (14)

  1. Optisches Sortiersystem zum Sortieren von Objekten (O) eines Materialstroms (M) umfassend eine Bildaufnahmeeinheit (1) zum optischen Erfassen des Materialstroms (M) und zum Erzeugen von Bilddaten (4) desselben (M), eine Auswerteeinheit (2) zum Identifizieren und Klassifizieren von Objekten (O) im Materialstrom (M), und eine Sortiereinheit (3) zum Sortieren klassifizierter Objekte (O) des Materialstroms (M), dadurch gekennzeichnet, dass mit der Auswerteeinheit (2) aus den erzeugten Bilddaten (4) ein oder mehrere Belegungsparameter (5), der/die den Materialstrom (M) hinsichtlich seiner Belegung mit den Objekten (O) kennzeichnet/n, bestimmbar ist/sind und dass auf Basis des/der bestimmten Belegungsparameter(s) (5) ein oder mehrere das Identifizieren und Klassifizieren der Objekte (O) durch die Auswerteeinheit (2) steuernde(r) Auswertungsparameter (6, 8) einstellbar ist/sind.
  2. Optisches Sortiersystem nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der/die Auswertungsparameter (6, 8) so einstellbar ist/sind, dass für jedes Objekt (O) im Materialstrom (M) mit einer Wahrscheinlichkeit von ≥ 90%, bevorzugt von ≥ 95%, bevorzugt von ≥ 99%, besonders bevorzugt von 100%, durch die Auswerteeinheit (2) sowohl eine Identifikation als auch eine Klassifizierung erfolgt.
  3. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Auswertungsparameter (6) eine oder mehrere Genauigkeit(en) GK, mit der/denen durch die Auswerteeinheit (2) (ein) Prozessschritt(e) des Identifizierens und Klassifizierens durchführbar ist/sind, einstellbar ist/sind.
  4. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Auswertungsparameter (6) eine oder mehrere Berechnungszeit(en) BZ, mit der/denen durch die Auswerteeinheit (2) (ein) Prozessschritt(e) des Identifizierens und Klassifizierens durchführbar ist/sind, einstellbar ist/sind.
  5. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Auswertungsparameter (6) eine oder mehrere Wiederholhäufigkeit(en) WH, mit der/denen (eine) iterative, rekursive oder inkrementelle Berechnungsfolge(n) von (einem) durch die Auswerteeinheit (2) durchzuführenden Prozessschritt(en) des Identifizierens und Klassifizierens zu wiederholen ist/sind, einstellbar ist/sind.
  6. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Identifizieren und Klassifizieren der Objekte (O) im Materialstrom (M) durch die Auswerteeinheit (2) in mehreren zeitlich aufeinanderfolgend oder zeitlich parallel durchzuführenden Prozessschritten (7a, 7b, ...) erfolgt, wobei für jeden der Prozessschritte (7a, 7b, ...) jeweils ein oder mehrere Auswertungsparameter (6a, 6b, ...) einstellbar ist/sind.
  7. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bestimmen des/der Belegungsparameter(s) (5) und/oder das Einstellen des/der Auswertungsparameter(s) (6, 8) in Echtzeit erfolgt.
  8. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf Basis des/der bestimmten Belegungsparameter(s) (5) ein oder mehrere Auswertungsparameter (6) der Auswerteeinheit (2) einstellbar ist/sind, also (ein) Auswertungsparameter, mit dem/denen ein oder mehrere mit der Auswerteeinheit (2) durchzuführende(r) Prozessschritt(e) (7a, 7b, ...) des Identifizierens und Klassifizierens durch die Auswerteeinheit (2) steuerbar ist/sind, und/oder dass auf Basis des/der bestimmten Belegungsparameter(s) (5) ein oder mehrere Auswertungsparameter (8) der Bildaufnahmeeinheit (1) einstellbar ist/sind, also (ein) Auswertungsparameter, mit dem/denen ein oder mehrere Ablauf/Abläufe in der Bildaufnahmeeinheit (1) steuerbar ist/sind, der/die das Durchführen eines oder mehrerer der Prozessschritte(s) (7a, 7b, ...) des Identifizierens und Klassifizierens durch die Auswerteeinheit (2) beeinflusst/beeinflussen.
  9. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich (ein) das Sortieren von klassifizierten Objekten (O) durch die Sortiereinheit (3) steuernde(r) Sortierparameter auf Basis eines/mehrerer bestimmten/r Belegungsparameter(s) einstellbar ist/sind.
  10. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Belegungsparameter (5) eine Belegungsdichte und/oder eine Belegungsverteilung der Objekte (O) im Materialstrom (M) bestimmbar ist/sind.
  11. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Identifizieren und Klassifizieren der Objekte (O) durch die Auswerteeinheit (2) als Prozessschritt(e) einen, mehrere oder alle der folgenden Schritte enthält: • einen Schritt des Segmentierens, • einen Schritt der Zusammenhangsanalyse, und/oder • einen Schritt der Klassifikation mittels eines oder mehrerer trainingsmengenbasierten/r Entscheidungsbaumes/-bäume.
  12. Optisches Sortiersystem nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass bei der Klassifikation in jedem Knoten des/der Entscheidungsbaumes/-bäume (eine) Wahrscheinlichkeit(en) auf Basis einer/von Trainingsmenge(n) hinterlegt ist/sind.
  13. Optisches Sortiersystem nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine oder mehrere bevorzugt computer- oder mikrocontrollergestützte Recheneinheit(en), mittels derer das Erfassen, das Erzeugen, das Identifizieren, das Klassifizieren, das Sortieren, das Bestimmen, das Steuern und/oder das Einstellen durchführbar ist/sind.
  14. Optisches Sortierverfahren zum Sortieren von Objekten (O) eines Materialstroms (M), dadurch gekennzeichnet, dass ein optisches Sortiersystem nach einem der vorhergehenden Ansprüche zum Durchführen des Verfahrens eingesetzt wird.
DE102016210482.9A 2016-06-14 2016-06-14 Optisches Sortiersystem sowie entsprechendes Sortierverfahren Withdrawn DE102016210482A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102016210482.9A DE102016210482A1 (de) 2016-06-14 2016-06-14 Optisches Sortiersystem sowie entsprechendes Sortierverfahren
EP17729466.7A EP3468727B1 (de) 2016-06-14 2017-06-13 Sortiervorrichtung sowie entsprechendes sortierverfahren
PCT/EP2017/064329 WO2017216124A1 (de) 2016-06-14 2017-06-13 Sortiervorrichtung sowie entsprechendes sortierverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016210482.9A DE102016210482A1 (de) 2016-06-14 2016-06-14 Optisches Sortiersystem sowie entsprechendes Sortierverfahren

Publications (1)

Publication Number Publication Date
DE102016210482A1 true DE102016210482A1 (de) 2017-12-14

Family

ID=59054125

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016210482.9A Withdrawn DE102016210482A1 (de) 2016-06-14 2016-06-14 Optisches Sortiersystem sowie entsprechendes Sortierverfahren

Country Status (3)

Country Link
EP (1) EP3468727B1 (de)
DE (1) DE102016210482A1 (de)
WO (1) WO2017216124A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533511A (zh) * 2018-12-25 2019-03-29 哈尔滨联科包装机械有限公司 双向拣选机及拣选方法
DE102020110976A1 (de) 2020-04-22 2021-10-28 Separation AG Optische Sortieranlage für die Sortierung von Granulatpartikeln

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989904B (zh) * 2019-12-13 2021-05-28 威海新北洋正棋机器人股份有限公司 交叉带分拣设备的配置方法、装置及交叉带分拣系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085325A (en) * 1988-03-08 1992-02-04 Simco/Ramic Corporation Color sorting system and method
DE69512293T2 (de) * 1994-03-15 2000-05-11 Key Technology Inc Vorrichtung zum integrierten Sortieren und Analysieren von Nahrungsmitteln
DE102009007481A1 (de) 2009-01-30 2010-09-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fördersystem zum Transport von Materialien, insbesondere von Schüttgut
DE102010046438A1 (de) 2010-09-24 2012-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur optischen Charakterisierung von Materialien
DE102011103253A1 (de) 2011-05-31 2012-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur optischen Bestimmung einer Probe und entsprechendes Verfahren
DE102012001868A1 (de) 2012-01-24 2013-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Einrichtung einer dem optischen Identifizieren von Objekten dienender Anlage, Laborbildaufnahmesystem zum Durchführen eines solchen Verfahrens und Anordnung umfassend das Laborbildaufnahmesystem sowie die Anlage
DE102014207157A1 (de) * 2014-02-28 2015-09-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fördersystem, Anlage zur Schüttgutsortierung mit einem solchen Fördersystem und Transportverfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219079B (en) * 1988-05-06 1992-09-09 Gersan Ets A method of identifying individual objects or zones
GB2273154B (en) * 1992-12-02 1996-12-11 Buehler Ag Method for cleaning and sorting bulk material
US6545240B2 (en) * 1996-02-16 2003-04-08 Huron Valley Steel Corporation Metal scrap sorting system
US6266390B1 (en) * 1998-09-21 2001-07-24 Spectramet, Llc High speed materials sorting using x-ray fluorescence

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085325A (en) * 1988-03-08 1992-02-04 Simco/Ramic Corporation Color sorting system and method
DE69512293T2 (de) * 1994-03-15 2000-05-11 Key Technology Inc Vorrichtung zum integrierten Sortieren und Analysieren von Nahrungsmitteln
DE102009007481A1 (de) 2009-01-30 2010-09-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fördersystem zum Transport von Materialien, insbesondere von Schüttgut
DE102010046438A1 (de) 2010-09-24 2012-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur optischen Charakterisierung von Materialien
DE102011103253A1 (de) 2011-05-31 2012-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur optischen Bestimmung einer Probe und entsprechendes Verfahren
DE102012001868A1 (de) 2012-01-24 2013-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Einrichtung einer dem optischen Identifizieren von Objekten dienender Anlage, Laborbildaufnahmesystem zum Durchführen eines solchen Verfahrens und Anordnung umfassend das Laborbildaufnahmesystem sowie die Anlage
DE102014207157A1 (de) * 2014-02-28 2015-09-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fördersystem, Anlage zur Schüttgutsortierung mit einem solchen Fördersystem und Transportverfahren

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Automatische Sichtprüfung: Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung", J. Beyerer, F. P. Leὁn, C. Frese, Springer-Verlag Berlin Heidelberg, Deutschland, 2012
"Digitale Bildverarbeitung und Bildgewinnung" von B. Jähne, Springer, Heidelberg, Deutschland, 2012
"Topological Algorithms for Digital Image Processing" von T. Y. Kong, A. Rosenfeld, North Holland, Amsterdam, NL, 1996
„Machine Learning" von T. M. Mitchell, McGraw-Hill, Boston, USA, 1997
„Stand der Technik der sensorgestützten Sortierung" von H. Wotruba, BHM, 153. Jg. (2008), Heft 6, Seiten 221–224
M. B. Dillencourt et al. „A General Approach to Connected-Component-Labeling for arbitrary Image Representations", Journal of the ACM 39(2), 1992

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533511A (zh) * 2018-12-25 2019-03-29 哈尔滨联科包装机械有限公司 双向拣选机及拣选方法
DE102020110976A1 (de) 2020-04-22 2021-10-28 Separation AG Optische Sortieranlage für die Sortierung von Granulatpartikeln
DE102020110976B4 (de) 2020-04-22 2023-12-21 Separation AG Optische Sortieranlage für die Sortierung von Granulatpartikeln

Also Published As

Publication number Publication date
EP3468727A1 (de) 2019-04-17
EP3468727B1 (de) 2020-10-14
WO2017216124A1 (de) 2017-12-21

Similar Documents

Publication Publication Date Title
DE102018133188A1 (de) Abstandbestimmung einer probenebene in einem mikroskopsystem
DE102018128531A1 (de) System und Verfahren zum Analysieren einer durch eine Punktwolke dargestellten dreidimensionalen Umgebung durch tiefes Lernen
EP2849151A1 (de) Verfahren zur Analyse von freien Warteschlangen
DE102004063769A1 (de) Verfahren und Einrichtung zur automatischen und quantitativen Erfassung des Anteils von Saatgütern oder Körnerfrüchten bestimmter Qualität
DE102008056600A1 (de) Verfahren und Vorrichtung zum Erkennen von Objekten
EP3468727B1 (de) Sortiervorrichtung sowie entsprechendes sortierverfahren
DE102017218889A1 (de) Unscharf parametriertes KI-Modul sowie Verfahren zum Betreiben
DE102018208126A1 (de) Verfahren zum Hantieren eines Werkstücks mit Hilfe eines Entnahmewerkzeugs und Maschine zur Durchführung des Verfahrens
WO2005122092A1 (de) Verfahren und vorrichtung zur segmentierung einer digitalen abbildung von zellen
DE102017006566B3 (de) Vorrichtung und Verfahren zur optischen Überwachung von Oberflächen eines Körpers
EP2787485A1 (de) Verfahren und Vorrichtung zur automatischen Fehlerstellenerkennung bei biegeschlaffen Körpern
DE102016204506A1 (de) Fortdruckinspektion mit lokaler Optimierung
WO2008034599A2 (de) Verfahren und vorrichtung zur bildverarbeitung
EP3923193B1 (de) Messung der empfindlichkeit von bildklassifikatoren gegen veränderungen des eingabebildes
DE102020215227B4 (de) Vorrichtung und Verfahren zum Erstellen einer Referenzaufnahme des unbeladenen Zustands eines Werkstückträgers
DE102019206621A1 (de) Maschinelles Lernsystem, sowie ein Verfahren, ein Computerprogramm und eine Vorrichtung zum Erstellen des maschinellen Lernsystems
DE19612465C2 (de) Automatisches Optimieren von Objekt-Erkennungssystemen
DE19720121C2 (de) Verfahren zur quantitativen Bestimmung der Anteile verschiedenartiger Stoffe in Schüttgütern
EP2808843B1 (de) Verfahren zur Parametrierung eines Bildverarbeitungssystems für die Überwachung einer Werkzeugmaschine
EP2642749B1 (de) Vorrichtung und Verfahren zur Optimierung der Bestimmung von Aufnahmebereichen
DE102021204040A1 (de) Verfahren, Vorrichtung und Computerprogramm zur Erstellung von Trainingsdaten im Fahrzeug
WO2021063572A1 (de) Vorrichtung und verfahren zum verarbeiten von daten eines neuronalen netzes
DE102018209032A1 (de) Vorrichtung und Verfahren zum automatisierten Ermitteln der Position des Barcodes eines Reifens oder Reifenrohlings sowie ein entsprechendes Computerprogramm, Computerprogrammprodukt und ein computerlesbarer Datenträger
AT511399B1 (de) Verfahren zur automatisierten klassifikation von einschlüssen
DE102021124348A1 (de) Verfahren zum Bestimmen, ob ein Transportgut in einem Überwachungsbereich angeordnet ist

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee