DE102016209924A1 - Verfahren zur Überwachung eines NOx-Sensors - Google Patents

Verfahren zur Überwachung eines NOx-Sensors Download PDF

Info

Publication number
DE102016209924A1
DE102016209924A1 DE102016209924.8A DE102016209924A DE102016209924A1 DE 102016209924 A1 DE102016209924 A1 DE 102016209924A1 DE 102016209924 A DE102016209924 A DE 102016209924A DE 102016209924 A1 DE102016209924 A1 DE 102016209924A1
Authority
DE
Germany
Prior art keywords
nox
nox sensor
sensor
diagnosis
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016209924.8A
Other languages
English (en)
Inventor
Torsten Handler
Eckehard Knoefler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016209924.8A priority Critical patent/DE102016209924A1/de
Priority to US16/307,641 priority patent/US10845332B2/en
Priority to EP17722424.3A priority patent/EP3465195B1/de
Priority to CN201780034894.8A priority patent/CN109196345B/zh
Priority to PCT/EP2017/060901 priority patent/WO2017211521A1/de
Priority to KR1020197000008A priority patent/KR102348621B1/ko
Publication of DE102016209924A1 publication Critical patent/DE102016209924A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Bei einem Verfahren zur Überwachung eines NOx-Sensors (10) mit einem sauerstoffionenleitenden Festelektrolyten und wenigstens einem Hohlraum (12) wird während einer Eigendiagnose des NOx-Sensors wenigstens ein Hohlraum (12) des NOx-Sensors mit einer definierten Sauerstoffkonzentration geflutet. Der Gradient eines hieraus resultierenden Pumpstroms wird ausgewertet und bei einer Abweichung im Vergleich mit Referenzwerten wird auf eine gegebenenfalls vorliegende beeinträchtigte Dynamik des NOx-Sensors geschlossen.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Überwachung eines NOx-Sensors mit einem sauerstoffionenleitenden Festelektrolyten und wenigstens einem Hohlraum (Messkammer). Weiterhin betrifft die Erfindung ein Computerprogramm zur Durchführung des Verfahrens sowie ein maschinenlesbares Speichermedium und ein elektronisches Steuergerät, die zur Durchführung des Verfahrens eingerichtet sind.
  • Stand der Technik
  • Zur Messung der NOx-Konzentration in einem Messgas, beispielsweise in dem Abgas einer Brennkraftmaschine, sind NOx-Sensoren (NOx-Messsonden) bekannt, die auf dem Nernst-Prinzip basieren. Beispielsweise geht aus der deutschen Offenlegungsschrift DE 103 12 732 A1 eine NOx-Messsonde hervor, bei der in einer ersten Kavität, die vom Abgas durch eine Diffusionsbarriere getrennt ist, die Sauerstoffkonzentration durch einen ersten Pumpstrom erniedrigt wird. In einer zweiten Kavität, die von der ersten Kavität durch eine Diffusionsbarriere getrennt ist, wird die Sauerstoffkonzentration durch einen zweiten Pumpstrom weiter erniedrigt. An einer Messelektrode in der zweiten Kavität werden die im Gas enthaltenen Stickoxide zersetzt. Der hierbei freiwerdende Sauerstoff wird mit einem dritten Pumpstrom zu einer Außenelektrode transportiert und ist dabei ein Maß für die NOx-Konzentration in der zweiten Kavität und damit auch in dem zu messenden Abgas.
  • Da es sich bei einem NOx-Sensor um eine abgasrelevante Komponente handelt, ist vom Gesetzgeber eine Überwachung des NOx-Sensors vorgeschrieben. Zur Überwachung von NOx-Sensoren ist bereits eine sogenannte NOx-Sensoreigendiagnose bekannt. Hierbei wird eine Messkammer des NOx-Sensors mit einer definierten Sauerstoffkonzentration geflutet, beispielsweise durch Absenkung der Nernstspannung des Sensors. Der Sauerstoff wird dann an der Messelektrode (NOx-Elektrode) umgesetzt. Der resultierende Pumpstromverlauf wird gemessen und kann für die Eigendiagnose ausgewertet werden, indem ein Integral des resultierenden Pumpstroms mit einem Referenzwert, z.B. mit einem Referenzwert, der bei dem Sensor als Neuteil gemessen wurde, verglichen wird. Diese NOx-Sensoreigendiagnose wird auch als NOx-Zellenstatusüberwachung bezeichnet.
  • Neben der Detektion einer Kennliniendrift eines NOx-Sensors muss auch die Dynamik des NOx-Signals überwacht werden. Wenn allerdings ein solcher NOx-Sensor stromabwärts eines SCR-Katalysators angeordnet ist, ist eine Dynamik-Überwachung des NOx-Signals nicht mehr möglich, da bei den gegebenen strengen Grenzwerten für NOx keine nennenswerten NOx-Emissionen stromabwärts eines SCR-Katalysators auftreten.
  • Bei einer Einbaulage des NOx-Sensors beispielsweise nach einem Abgasturbolader oder nach einem Dieseloxidationskatalysator und/oder einem Dieselpartikelfilter, in denen kein NOx umgesetzt wird, sind im Prinzip zwei Verfahren zur Dynamiküberwachung des NOx-Sensors bekannt. Bei einem ersten Verfahren wird bei einem Übergang von einem Lastbetrieb in einen Schubbetrieb der Gradient des NOx-Signals bewertet. In einem aktuelleren, zweiten Verfahren werden die hochfrequenten Anteile eines NOx-Modells mit den Sensordaten unter dynamischen Bedingungen verglichen. Voraussetzung für die Durchführung des zweiten Verfahrens ist das Vorhandensein eines dynamischen NOx-Rohemissionsmodells.
  • Moderne Abgasnachbehandlungssysteme basieren oftmals auf einer Kombination eines Stickoxid-Speicherkatalysators (NSC) und einem SCR-Katalysator. In der Regel ist dabei ein erster NOx-Sensor stromabwärts des NSC und ein zweiter NOx-Sensor stromabwärts des SCR-Katalysators angeordnet. Da im NSC NOx umgesetzt wird und es für die Position stromabwärts des NSC kein NOx-Modell gibt, ist der erste NOx-Sensor zwischen dem NSC und dem SCR-Katalysator erforderlich, um ein NOx-Konzentrationssignal generieren zu können, das für eine Vorsteuerung der Reduktionsmitteldosiermenge für den SCR-Katalysator notwendig ist. Da aber ein genaues und dynamisches NOx-Modell zur Bestimmung der NOx-Konzentration stromabwärts des NSC nicht existiert, ist das oben beschriebene Verfahren zur Dynamiküberwachung, das eine solches dynamisches NOx-Emissionsmodell erfordert, nicht möglich.
  • Offenbarung der Erfindung
  • Vorteile der Erfindung
  • Die vorliegende Erfindung stellt ein Verfahren zur Überwachung und insbesondere zur Dynamiküberwachung eines NOx-Sensors bereit, das insbesondere auch in solchen Fällen mit Vorteil zum Einsatz kommen kann, in denen herkömmliche Verfahren nicht eingesetzt werden können. Das Verfahren geht von einem NOx-Sensor aus, der auf einem sauerstoffionenleitenden Festelektrolyten basiert. Der NOx-Sensor ist beispielsweise mit einem Schichtaufbau so ausgestaltet, dass er wenigstens einen Hohlraum (Messkammer) aufweist. Beispielsweise sind zwei Hohlräume (erster Hohlraum und zweiter Hohlraum als Messkammer) und ein Referenzgasraum vorgesehen. Durch geeignete Anordnung von verschiedenen Elektroden, beispielsweise wenigstens einer Innenelektrode (innere Pumpelektrode) und wenigstens einer Außenelektrode (äußere Pumpelektrode) sowie einer Referenzelektrode und einer Messelektrode (NOx-Pumpelektrode) und entsprechender Gegenelektroden, erfolgt eine Messung der NOx-Konzentration in einem Messgas, wobei die Anordnung der Elektroden vorzugsweise eine Sauerstoffpumpzelle und eine Nernstzelle, vergleichbar mit Breitbandlambdasonden, bilden. Darüber hinaus ist eine NOx-Pumpzelle als dritte Zelle vorgesehen. Für die reguläre Messung wird vorzugsweise durch Anlegen von Pumpströmen die Sauerstoffkonzentration in einer ersten Hohlkammer erniedrigt. An einer Messelektrode in der zweiten Hohlkammer (Messkammer), die durch eine Diffusionsbarriere von dem ersten Hohlraum getrennt ist, erfolgt eine Zersetzung von NO, wobei der hierbei freiwerdende Sauerstoff mittels eines weiteren Pumpstroms aus dem entsprechenden Hohlraum (Messkammer) herausgepumpt wird. Dieser Pumpstrom ist ein Maß für die NOx-Konzentration. Während einer Eigendiagnose des NOx-Sensors wird wenigstens ein Hohlraum des NOx-Sensors, vorzugsweise zumindest der zweite Hohlraum (Messkammer), mit einer definierten Sauerstoffkonzentration geflutet. Erfindungsgemäß wird hierbei der zeitliche Verlauf, beispielsweise der Gradient des resultierenden Pumpstroms ausgewertet. Bei einer Abweichung von wenigstens einer Größe, die diesen zeitlichen Verlauf des Pumpstroms repräsentiert, im Vergleich mit Referenzwerten wird auf eine gegebenenfalls vorhandene beeinträchtigte Dynamik des NOx-Sensors geschlossen. Anders gesagt wird also der Pumpstrom, der aus der Flutung mit Sauerstoff und der sich daraus ergebenden definierten Sauerstoffkonzentration in der Messkammer des Sensors resultiert, derart ausgewertet, dass der zeitliche Verlauf des Pumpstroms betrachtet wird. Bisher bekannte Verfahren werten immer ein Gesamtintegral von NOx bei der Eigendiagnose aus. Bei einer Auswertung des zeitlichen Verlaufs im Vergleich mit Referenzwerten oder Erwartungswerten kann bei einer vorliegenden Abweichung auf eine beeinträchtigte Dynamik des NOx-Sensors geschlossen werden. Herkömmliche Verfahren mit einer Auswertung des Gesamtintegrals des resultierenden Pumpstroms erlauben hingegen nur eine Aussage im Hinblick auf die Gesamtsensitivität des Sensors, nicht aber im Hinblick auf die Dynamik.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens wird beispielsweise zu Beginn der Eigendiagnose die Hohlkammer (z. B. Messkammer) durch Absenkung der Nernstspannung beispielsweise auf ca. 225 mV mit einer definierten Sauerstoffkonzentration geflutet. Der Sauerstoff wird an der NOx-Elektrode umgesetzt, sodass ein bestimmter Pumpstrom resultiert. Aufgrund der schnellen Erhöhung der Sauerstoffkonzentration in dem Hohlraum ist zu erwarten, dass der resultierende Pumpstrom ebenfalls stark und schnell ansteigt. Wenn allerdings beispielsweise eine Schädigung der NOx-Elektrode oder einer entsprechenden Diffusionsbarriere im Sensor vorliegt, verzögert sich die Reaktion des NOx-Sensors und der resultierende Pumpstrom steigt weniger schnell an. Dies wird erfindungsgemäß mittels einer Auswertung beispielsweise des Gradienten während der Eigendiagnose detektiert.
  • In einer möglichen Ausgestaltung der Erfindung kann der zeitliche Verlauf des Pumpstroms durch Betrachtung einer Größe, die den Gradienten des ansteigenden Pumpstroms während der Eigendiagnose repräsentiert, ausgewertet werden. Alternativ oder zusätzlich ist es auch möglich, dass beispielsweise der Gradient des abfallenden Pumpstroms während der Eigendiagnose ausgewertet wird. Der abfallende Pumpstrom tritt am Ende der Eigendiagnose bzw. nach Beendigung der Flutung des Hohlraums mit Sauerstoff auf. Im Prinzip kann also eine Bewertung des zeitlichen Signalverlaufs in beide Richtungen erfolgen, nach oben während des Starts der Eigendiagnose und nach unten am Ende der Eigendiagnose, sodass eine beidseitige NOx-Signaldynamiküberwachung, auch in Kombination miteinander, möglich ist.
  • Bei einer feststellbaren beeinträchtigten Dynamik des NOx-Sensors kann auf eine vergiftete NOx-Elektrode und/oder auf eine versottete NOx-Diffusionsbarriere im NOx-Sensor geschlossen werden.
  • Vorzugsweise ist der NOx-Sensor, der erfindungsgemäß überwacht wird, zur Anordnung in dem Abgasstrang der Brennkraftmaschine eines Kraftfahrzeugs vorgesehen. Beispielsweise kann der NOx-Sensor stromabwärts eines der Brennkraftmaschine zugeordneten Turboladers und/oder stromabwärts eines Stickoxid-Speicherkatalysators und/oder stromabwärts eines Dieselpartikelfilters und/oder stromaufwärts eines SCR-Katalysators und/oder stromabwärts eines SCR-Katalysators angeordnet sein. Mit besonderem Vorteil kann das erfindungsgemäße Verfahren bei NOx-Sensoren zum Einsatz kommen, die an Einbauorten platziert sind, für die keine dynamischen NOx-Emissionsmodelle existieren. Da an solchen Einbauorten eines NOx-Sensors herkömmliche Verfahren, die mit NOx-Emissionsmodellen zur dynamischen Überwachung arbeiten, nicht eingesetzt werden können, kann das erfindungsgemäße Verfahren für solche NOx-Sensoren mit besonderem Vorteil genutzt werden. Das erfindungsgemäße Verfahren ist dabei insbesondere für die Dynamiküberwachung von NOx-Sensoren geeignet, die stromabwärts eines Katalysators angeordnet sind, an dem ein Umsatz von Stickoxiden stattfindet. Beispielsweise kann das erfindungsgemäße Verfahren mit besonderem Vorteil für solche NOx-Sensoren eingesetzt werden, die zwischen einem NSC und einem SCR-Katalysator oder stromabwärts eines SCR-Katalysators angeordnet sind.
  • Die Erfindung umfasst weiterhin ein Computerprogramm, das zur Durchführung der Schritte des beschriebenen Verfahrens eingerichtet ist. Weiterhin umfasst die Erfindung ein maschinenlesbares Speichermedium, auf welchem ein solches Computerprogramm gespeichert ist, sowie ein elektronisches Steuergerät, das zur Durchführung der Schritte des beschriebenen Verfahrens eingerichtet ist. Die Implementierung des erfindungsgemäßen Verfahrens als Computerprogramm bzw. als maschinenlesbares Speichermedium oder als elektronisches Steuergerät hat den besonderen Vorteil, dass damit die Vorteile des erfindungsgemäßen Verfahrens zur Dynamiküberwachung eines NOx-Sensors auch bei bestehenden Kraftfahrzeugen genutzt werden können.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Hierbei können die einzelnen Merkmale jeweils für sich oder in Kombination miteinander verwirklicht sein.
  • In den Zeichnungen zeigen:
  • 1 schematische Darstellung des Aufbaus eines NOx-Sensors, basierend auf dem Nernst-Prinzip, aus dem Stand der Technik;
  • 2 beispielhafter Signalverlauf (NOx und Nernstspannung) bei der Eigendiagnose eines NOx-Sensors gemäß dem Stand der Technik; und
  • 3 beispielhafter Signalverlauf bei der erfindungsgemäßen Dynamiküberwachung eines NOx-Sensors.
  • Beschreibung von Ausführungsbeispielen
  • 1 illustriert eine beispielhafte Auslegung eines an sich bekannten NOx Sensors 10, der gemäß dem Nernst-Prinzip aufgebaut ist. Der Sensor 10 ist in einem Schichtaufbau auf der Basis eines Sauerstoffionen leitenden Festelektrolyten (Zirkoniumdioxid) und isolierenden Schichten aus Aluminiumoxid realisiert, wobei ein erster Hohlraum 11, ein zweiter Hohlraum (Messkammer) 12 und ein Referenzgasraum 13 vorgesehen ist. Das Abgas strömt in Pfeilrichtung über eine erste Diffusionsbarriere 14 in den ersten Hohlraum 11 ein. Der zweite Hohlraum 12 ist vom ersten Hohlraum 11 über eine zweite Diffusionsbarriere 15 getrennt. Eine dem Abgas ausgesetzte äußere Pumpelektrode (APE) 16 und eine innere Pumpelektrode (IPE) 17 im ersten Hohlraum 11 bilden die Sauerstoffpumpzelle 18. Weiterhin befindet sich im ersten Hohlraum 11 eine Nernst-Elektrode (NE) 19. In dem Referenzgasraum 13 befindet sich die entsprechende Referenzelektrode (RE) 20. Dieses Paar bildet die Nernst-Zelle 21. Im zweiten Hohlraum (Messkammer) 12 ist eine NOx-Pumpelektrode (NOE) 22 angeordnet. Deren Gegenelektrode (NOCE) 23 befindet sich im Referenzgasraum 13. Diese beiden Elektroden bilden die NOx-Pumpzelle 24. Alle Elektroden im ersten und im zweiten Hohlraum 11, 12 weisen einen gemeinsamen Rückleiter (COM) 25 auf. Weiterhin ist ein Heizer 26 für den Sensor 10 vorgesehen.
  • Der Betrieb des Sensors 10 erfolgt mittels einer Sensor-Kontrolleinheit (SCU) 100 in an sich bekannter Weise. Die innere Pumpelektrode 17 ist beispielsweise durch eine Legierung von Platin mit Gold in ihrer katalytischen Aktivität nur schwach. Die beim herkömmlichen Messbetrieb angelegte Pumpspannung genügt daher nur, um Sauerstoffmoleküle zu spalten (dissoziieren). NO wird bei der eingeregelten Pumpspannung nur wenig dissoziiert und passiert den ersten Hohlraum 11 mit nur geringen Verlusten. NO2 wird als starkes Oxidationsmittel an der inneren Pumpelektrode 17 unmittelbar in NO umgewandelt. Ammoniak reagiert an der inneren Pumpelektrode 17 in Anwesenheit von Sauerstoff und bei Temperaturen von beispielsweise 650 °C zu NO und Wasser. Aufgrund der höheren Spannung, die an der NOx-Pumpelektrode 22 angelegt wird und durch die Beimengung von beispielsweise Rhodium, durch das die katalytische Aktivität der NOx-Pumpelektrode 22 erhöht wird, wird an der NOx-Pumpelektrode 22 NO vollständig dissoziiert. Der hierbei gebildete Sauerstoff wird durch den Festelektrolyten abgepumpt. Der resultierende Pumpstrom ist ein Maß für die Stickoxide im Abgas.
  • Um insbesondere die OBD-II-Gesetzgebung zu erfüllen, muss ein NOx-Sensor dem Motorsteuergerät verschiedene Diagnosen ermöglichen. Hierbei wird unterschieden zwischen elektrischen Diagnosen, die Kurzschlüsse zwischen den verschiedenen Kontakten zur Masse oder zur Batterie detektieren, und Plausibilisierungen, um den Offset des Sensors (Fehler bei 0 ppm) zu überwachen, und der sogenannten Eigendiagnose (NOx-Zellen-Statusfunktion), die einen möglichen Sensorfehler bei hohen NOx-Konzentrationen detektieren kann. Die Durchführung der an sich bekannten Eigendiagnose wird anhand der 2 illustriert. Um einen definierten NOx-Pumpstrom > 0 zu simulieren, wird die Nernstspannung (VS) von beispielsweise 425 mV auf 225 mV gesenkt. Dadurch wird ein kleiner Anteil der O2-Moleküle aus dem Abgas nicht mehr an der Sauerstoffpumpzelle 18 abgepumpt, sondern gelangt durch die zweite Diffusionsbarriere 15 bis zur NOx-Pumpelektrode 22. Nach einigen Sekunden hat sich ein stabiler NOx-Pumpstrom eingestellt, der in diesem Beispiel etwa 300 ppm entspricht. Das NOx-Signal wird über einige Sekunden integriert, sodass das Ergebnis ein Integralwert ist. Anschließend wird die Nernstspannung wieder auf 425 mV erhöht, und der Sensor kehrt in den normalen Betriebsmodus zurück, wobei nach einer kurzen Wartezeit das NOx-Signal wieder freigegeben wird. Bei einer anfänglichen Kalibrierung des Systems (Neuteil) wird üblicherweise der gemessene Integralwert als Referenzwert abgespeichert, sodass der im späteren Betrieb messbare Integralwert mit diesem Referenzwert verglichen werden kann.
  • 3 illustriert den Signalverlauf bei der Eigendiagnose gemäß dem erfindungsgemäßen Verfahren, wobei nicht das Integral des NOx-Signals nach der Absenkung der Nernstspannung betrachtet wird, sondern der zeitliche Verlauf des resultierenden Pumpstroms, um auf eine gegebenenfalls beeinträchtigte Dynamik des NOx-Sensors schließen zu können. Das dargestellte NO/O2-Signal resultiert aus der durchgeführten Eigendiagnose, vergleichbar mit dem anhand der 2 illustrierten Verfahren. In 3 ist ein Signalverlauf 300 dargestellt, der bei einem NOx-Sensor zu erwarten ist, der in Ordnung ist. Weiterhin ist ein Signalverlauf 400 dargestellt, der auf einen Sensor rückschließen lässt, der nicht in Ordnung ist. Der Anstieg und Abfall des Signals 300 ist wesentlich steiler als bei dem Signal 400. Erfindungsgemäß wird der dynamische Verlauf des jeweiligen Signals ausgewertet, beispielsweise anhand eines Gradienten des Signalverlaufs. Es kann beispielsweise ein Wert ermittelt werden, der den Gradienten bei dem ansteigenden Pumpstrom oder den Gradienten bei dem nach Erhöhung der Nernstspannung wieder abfallenden Pumpstrom repräsentiert. Der jeweilige Wert kann mit einem geeigneten Referenzwert oder Erwartungswert verglichen werden, sodass auf eine gegebenenfalls vorhandene beeinträchtigte Dynamik, wie bei dem Signalverlauf 400, geschlossen werden kann. Hierdurch kann insbesondere eine Schädigung an der NOx-Pumpelektrode (vergiftete Elektrode) und/oder an einer Diffusionsbarriere (versottete NOx-Diffusionsbarriere) innerhalb des NOx-Sensors festgestellt werden. Wird zum Beispiel während des Betriebs die NOx-Pumpelektrode aufgrund einer Vergiftung stark geschädigt, verzögert sich die Reaktion an der NOx-Pumpzelle, sodass dies durch eine Auswertung des Gradienten während der Eigendiagnose erkannt werden kann. Eine Bewertung des Signalgradienten kann dabei in beide Richtungen erfolgen. Zum einen kann der Gradient während eines Anstiegs des Pumpstroms, der während der Absenkung der Nernstspannung (zu Beginn der Eigendiagnose) auftritt, ausgewertet werden. Zum anderen kann der Gradient bei dem Abfall des Pumpstroms infolge der Erhöhung der Nernstspannung (Ende der Eigendiagnose) ausgewertet werden.
  • Das erfindungsgemäße Verfahren ist nicht auf solche NOx-Sensoren beschränkt, wie sie schematisch in der 1 dargestellt sind. Vielmehr kann das erfindungsgemäße Verfahren auch bei anderen NOx-Sensoren eingesetzt werden, bei denen eine Eigendiagnose durch Flutung mit Sauerstoff durchgeführt wird.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10312732 A1 [0002]

Claims (8)

  1. Verfahren zur Überwachung eines NOx-Sensors (10) mit einem sauerstoffionenleitenden Festelektrolyten und wenigsten einem Hohlraum (12), dadurch gekennzeichnet, dass während einer Eigendiagnose des NOx-Sensors, bei der wenigstens ein Hohlraum (12) des NOx-Sensors mit einer definierten Sauerstoffkonzentration geflutet wird, der zeitliche Verlauf eines resultierenden Pumpstroms (300, 400) ausgewertet wird, wobei wenigstens eine Größe, die den zeitlichen Verlauf des resultierenden Pumpstroms (300, 400) repräsentiert, ausgewertet wird und bei einer Abweichung im Vergleich mit Referenzwerten auf eine beeinträchtigte Dynamik des NOx-Sensors (10) geschlossen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der zeitliche Verlauf anhand einer Größe, die den Gradienten bei einem ansteigenden Pumpstrom (300, 400) während der Eigendiagnose repräsentiert, ausgewertet wird.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass der zeitliche Verlauf anhand einer Größe, die den Gradienten bei einem abfallenden Pumpstrom (300, 400) während der Eigendiagnose repräsentiert, ausgewertet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einer beeinträchtigten Dynamik des NOx-Sensors (10) auf eine vergiftete NOx-Elektrode (22) in dem NOx-Sensor und/oder auf eine versottete NOx-Diffusionsbarriere (15) in dem NOx-Sensor geschlossen wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der NOx-Sensor (10) zur Anordnung in dem Abgasstrang einer Brennkraftmaschine eines Kraftfahrzeugs vorgesehen ist, wobei vorzugsweise der NOx-Sensor stromabwärts eines der Brennkraftmaschine zugeordneten Turboladers und/oder stromabwärts eines Stickoxid-Speicherkatalysators und/oder stromabwärts eines Dieselpartikelfilters und/oder stromaufwärts eines SCR-Katalysators und/oder stromabwärts eines SCR-Katalysators angeordnet ist.
  6. Computerprogramm, das eingerichtet ist, die Schritte eines Verfahrens gemäß einem der Ansprüche 1 bis 5 durchzuführen.
  7. Maschinenlesbares Speichermedium, auf welchem ein Computerprogramm nach Anspruch 6 gespeichert ist.
  8. Elektronisches Steuergerät, das eingerichtet ist, die Schritte eines Verfahrens gemäß einem der Ansprüche 1 bis 5 durchzuführen.
DE102016209924.8A 2016-06-06 2016-06-06 Verfahren zur Überwachung eines NOx-Sensors Withdrawn DE102016209924A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102016209924.8A DE102016209924A1 (de) 2016-06-06 2016-06-06 Verfahren zur Überwachung eines NOx-Sensors
US16/307,641 US10845332B2 (en) 2016-06-06 2017-05-08 Method for the dynamic monitoring of a NOx sensor
EP17722424.3A EP3465195B1 (de) 2016-06-06 2017-05-08 Verfahren zur dynamiküberwachung eines nox-sensors
CN201780034894.8A CN109196345B (zh) 2016-06-06 2017-05-08 用于动态监视nox-传感器的方法
PCT/EP2017/060901 WO2017211521A1 (de) 2016-06-06 2017-05-08 Verfahren zur dynamiküberwachung eines nox-sensors
KR1020197000008A KR102348621B1 (ko) 2016-06-06 2017-05-08 NOx 센서의 동특성 모니터링 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016209924.8A DE102016209924A1 (de) 2016-06-06 2016-06-06 Verfahren zur Überwachung eines NOx-Sensors

Publications (1)

Publication Number Publication Date
DE102016209924A1 true DE102016209924A1 (de) 2017-12-07

Family

ID=58692487

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016209924.8A Withdrawn DE102016209924A1 (de) 2016-06-06 2016-06-06 Verfahren zur Überwachung eines NOx-Sensors

Country Status (6)

Country Link
US (1) US10845332B2 (de)
EP (1) EP3465195B1 (de)
KR (1) KR102348621B1 (de)
CN (1) CN109196345B (de)
DE (1) DE102016209924A1 (de)
WO (1) WO2017211521A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018201266A1 (de) * 2018-01-29 2019-08-01 Continental Automotive Gmbh Verfahren zum Ermitteln eines angepassten Kompensationsfaktors eines amperometrischen Sensors und amperometrischer Sensor
WO2019170639A1 (de) * 2018-03-07 2019-09-12 Robert Bosch Gmbh Verfahren zum betreiben eines sensors zum nachweis mindestens eines anteils einer messgaskomponente mit gebundenem sauerstoff in einem messgas
FR3081555A1 (fr) * 2018-05-25 2019-11-29 Robert Bosch Gmbh « Procédé de diagnostic de capteurs de gaz d’échappement »
WO2020007674A1 (de) * 2018-07-03 2020-01-09 Robert Bosch Gmbh Verfahren zum betreiben eines sensors zum nachweis mindestens eines anteils einer messgaskomponente mit gebundenem sauerstoff in einem messgas
DE102019203749A1 (de) * 2019-03-19 2020-04-02 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019203704A1 (de) * 2019-03-19 2020-09-24 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016209924A1 (de) * 2016-06-06 2017-12-07 Robert Bosch Gmbh Verfahren zur Überwachung eines NOx-Sensors
DE102017200549A1 (de) * 2017-01-16 2018-07-19 Robert Bosch Gmbh Verfahren zur Überprüfung der Funktionsfähigkeit eines Stickoxid-Sensors
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
DE102020210925A1 (de) * 2020-08-31 2022-03-03 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Leitungszuordnung eines Kurzschlusses einer Breitband-Lambdasonde

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312732A1 (de) 2003-03-21 2004-10-07 Siemens Ag Verfahren zum Betrieb einer Messsonde zur Messung einer Gaskonzentration

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19982982B8 (de) * 1998-12-21 2007-03-15 Kabushiki Kaisha Riken Gassensor
DE19960338A1 (de) * 1999-12-15 2001-07-05 Bosch Gmbh Robert Gassensor zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen und dessen Verwendung
DE10244125B4 (de) * 2002-09-23 2008-01-31 Siemens Ag Verfahren zur Bewertung des Zeitverhaltens eines NOx-Sensors
DE102004016986B3 (de) * 2004-04-02 2005-10-06 Siemens Ag Vorrichtung und Verfahren zur Messung mehrerer Abgasbestandteile
US20130062200A1 (en) * 2010-06-23 2013-03-14 Toyota Jidosha Kabushiki Kaisha Abnormality diagnostic apparatus for gas sensor
DE102010042701A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Verfahren zur Vermessung und/oder Kalibrierung eines Gassensors
US8930121B2 (en) 2011-04-07 2015-01-06 GM Global Technology Operations LLC Offset and slow response diagnostic methods for NOx sensors in vehicle exhaust treatment applications
DE102014200063A1 (de) * 2014-01-07 2015-07-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der Fettgas-Messfähigkeit einer Abgas-Sonde
DE102014209794A1 (de) 2014-05-22 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Ausbaus einer Komponente einer Abgasreinigungsanlage
DE102016209924A1 (de) * 2016-06-06 2017-12-07 Robert Bosch Gmbh Verfahren zur Überwachung eines NOx-Sensors
DE102017200549A1 (de) 2017-01-16 2018-07-19 Robert Bosch Gmbh Verfahren zur Überprüfung der Funktionsfähigkeit eines Stickoxid-Sensors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312732A1 (de) 2003-03-21 2004-10-07 Siemens Ag Verfahren zum Betrieb einer Messsonde zur Messung einer Gaskonzentration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018201266A1 (de) * 2018-01-29 2019-08-01 Continental Automotive Gmbh Verfahren zum Ermitteln eines angepassten Kompensationsfaktors eines amperometrischen Sensors und amperometrischer Sensor
WO2019170639A1 (de) * 2018-03-07 2019-09-12 Robert Bosch Gmbh Verfahren zum betreiben eines sensors zum nachweis mindestens eines anteils einer messgaskomponente mit gebundenem sauerstoff in einem messgas
FR3081555A1 (fr) * 2018-05-25 2019-11-29 Robert Bosch Gmbh « Procédé de diagnostic de capteurs de gaz d’échappement »
CN110530951A (zh) * 2018-05-25 2019-12-03 罗伯特·博世有限公司 用于诊断废气传感器的方法
CN110530951B (zh) * 2018-05-25 2023-06-06 罗伯特·博世有限公司 用于诊断废气传感器的方法
WO2020007674A1 (de) * 2018-07-03 2020-01-09 Robert Bosch Gmbh Verfahren zum betreiben eines sensors zum nachweis mindestens eines anteils einer messgaskomponente mit gebundenem sauerstoff in einem messgas
DE102019203749A1 (de) * 2019-03-19 2020-04-02 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019203704A1 (de) * 2019-03-19 2020-09-24 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019203704B4 (de) 2019-03-19 2023-10-26 Vitesco Technologies GmbH Verfahren zum Steuern des Betriebs eines mit zwei Messpfaden ausgestatteten Abgassensors einer Brennkraftmaschine zum Ermitteln eines Fehlers des Abgassensors durch Vergleich der Pumpströme beider Messpfade

Also Published As

Publication number Publication date
EP3465195B1 (de) 2022-10-12
CN109196345B (zh) 2021-08-27
WO2017211521A1 (de) 2017-12-14
US20190195828A1 (en) 2019-06-27
KR102348621B1 (ko) 2022-01-10
US10845332B2 (en) 2020-11-24
EP3465195A1 (de) 2019-04-10
CN109196345A (zh) 2019-01-11
KR20190012250A (ko) 2019-02-08

Similar Documents

Publication Publication Date Title
EP3465195B1 (de) Verfahren zur dynamiküberwachung eines nox-sensors
EP3111061B1 (de) Verfahren zur alterungsbestimmung eines oxidationskatalysators in einem abgasnachbehandlungssystem einer brennkraftmaschine, verfahren zur ascheerkennung in einem partikelfilter eines abgasnachbehandlungssystems, steuereinrichtung und brennkraftmaschine
DE102013010562A1 (de) Verfahren zum Bestimmen einer HC-Konvertierungsfähigkeit eines Katalysators, zur Ausführung des Verfahrens eingerichtete Diagnoseeinrichtung sowie Kraftfahrzeug mit einer solchen
DE102009046232A1 (de) Verfahren zur Diagnose eines NOx-Messwertaufnehmers
DE102007035768B4 (de) Verfahren zur Diagnose eines in einer Abgasanlagen einer Verbrennungskraftmaschine angeordneten NOx-Sensors
DE112018002709T5 (de) Gassensor-steuervorrichtung
DE102008027575A1 (de) Diagnoseverfahren für ein katalytisch wirksames Abgasreinigungselement eines Kraftfahrzeug-Verbrennungsmotors
DE102020214708A1 (de) Verfahren zum Ermitteln eines Fehlers eines Abgassensors und Abgassensor
DE102016200158A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102019104537A1 (de) Verfahren zur Überwachung eines Ammoniak-Schlupf-Katalysators
EP4045902B1 (de) Verfahren zum betreiben einer breitbandlambdasonde
EP1944481A2 (de) Vorrichtung zur Abschätzung des Beladungszustandes eines NOx-Speicherkatalysators
DE102015200751A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102013224811A1 (de) Steuereinheit zum Betrieb einer Breitband-Lambdasonde
DE102016210143A1 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
EP3289347A1 (de) Verfahren und vorrichtung zur bestimmung eines innenwiderstandes eines sensorelements
DE102019207251A1 (de) Verfahren zum Überwachen eines Gassensors
EP3899520B1 (de) Verfahren zur verringerung von messfehlern bei der erfassung von ammoniak beim betreiben eines sensorsystems
DE102014224943A1 (de) Verfahren zur Erkennung von mindestens zwei Arten von elektrischen Fehlern in mindestens einem Stromkreis
DE102019210362A1 (de) Verfahren zum Überwachen mindestens einer Ammoniakmesszelle
DE112019004369T5 (de) Steuervorrichtung
EP2081020A2 (de) Verfahren zum Betreiben eines Sensorelements zur Bestimmung der Konzentration von Gaskomponenten
DE102007057785B3 (de) Verfahren zur Bestimmung der Verzugszeit einer Sauerstoffsonde zur Messung der Sauerstoffspeicherkapazität eines Katalysators eines Kraftfahrzeugs und zugehörige Messeinrichtung
DE102008043407B4 (de) Verfahren und Vorrichtung zur Erkennung von Manipulationen an Lambdasonden
DE102018219567A1 (de) Verfahren zum Erkennen einer Anpassungsnotwendigkeit eines Kompensationsfaktors eines amperometrischen Sensors und amperometrischer Sensor

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination