DE102016122812B4 - Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen - Google Patents

Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen Download PDF

Info

Publication number
DE102016122812B4
DE102016122812B4 DE102016122812.5A DE102016122812A DE102016122812B4 DE 102016122812 B4 DE102016122812 B4 DE 102016122812B4 DE 102016122812 A DE102016122812 A DE 102016122812A DE 102016122812 B4 DE102016122812 B4 DE 102016122812B4
Authority
DE
Germany
Prior art keywords
group
radicals
substituted
organic
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016122812.5A
Other languages
English (en)
Other versions
DE102016122812A1 (de
Inventor
Daniel Zink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Cynora GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cynora GmbH filed Critical Cynora GmbH
Priority to DE102016122812.5A priority Critical patent/DE102016122812B4/de
Publication of DE102016122812A1 publication Critical patent/DE102016122812A1/de
Application granted granted Critical
Publication of DE102016122812B4 publication Critical patent/DE102016122812B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Abstract

Organisches Molekül aufweisend- eine erste chemische Einheit aufweisend eine oder bestehend aus einer Struktur gemäß Formel Iund- zwei zweite chemische Einheiten, die jeweils bei jedem Auftreten gleich oder verschieden sind, aufweisend eine oder bestehend aus einer Struktur gemäß Formel IIwobei die erste chemische Einheit jeweils über eine Einfachbindung mit den zwei zweiten chemischen Einheiten verknüpft ist;mitQ ist bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus O, S, C(CN)2und NR2;T ist N oder CRT;V ist N oder CRV;W ist N oder CRW;X ist N oder CRX;Y ist N oder CRY;wobei folgendes gilt:RTist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph;RVist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph;RWist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph;RXist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph;RYist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph;# kennzeichnet den jeweiligen Anknüpfungspunkt der Einfachbindung zwischen einer der beiden zweiten chemischen Einheit und der ersten chemischen Einheit;Z ist bei jedem Auftreten gleich oder verschieden eine direkte Bindung oder ist ausgewählt aus der Gruppe bestehend aus CR3R4, C=CR3R4, C=O, C=NR3, NR3, O, SiR3R4, S, S(O) und S(O)2;R1und R2ist bei jedem Auftreten gleich oder verschieden H, Deuterium, eine lineare Alkylgruppe mit 1 bis 5 C-Atomen, eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 8 C-Atomen, eine verzweigte oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 15 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6substituiert sein kann;Ra, R3und R4ist bei jedem Auftreten gleich oder verschieden H, Deuterium, Si(R5)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C=C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S oder CONR5ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3oder NO2ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5substituiert sein kann;R5ist bei jedem Auftreten gleich oder verschieden H, Deuterium, OH, Si(R6)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R6substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R6C=CR6, C=C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S oder CONR6ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3oder NO2ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R6substituiert sein kann;R6ist bei jedem Auftreten gleich oder verschieden H, Deuterium, CF3, CN, F, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 5 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 5 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 5 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3oder NO2ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen;wobei jeder der Reste Ra, R3, R4oder R5auch mit einem oder mehreren weiteren Resten Ra, R3, R4oder R5ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoanelliertes Ringsystem bilden kann;wobeimindestens ein Rest und maximal zwei Reste ausgewählt aus der Gruppe bestehend aus W, X und Y gleich N ist/sind und genau zwei Reste ausgewählt aus der Gruppe bestehend aus RT, RV, RW, RXund RYgleich einem Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit sind.

Description

  • Die Erfindung betrifft rein organische Moleküle und deren Verwendung in organischen lichtemittierenden Dioden (OLEDs) und in anderen organischen optoelektronischen Vorrichtungen.
  • Aus der WO 2014/000850 A1 sind Verbindungen für organische Solarzellen bekannt. Chi-Wan KIM et al., Journal of nanoscience and nanotechnology, 12, 2012, 4219-4223 beschreibt Carbazoldiimide als Lochtransportmaterial für organische lichtemittierende Vorrichtungen.
  • Beschreibung
  • Der vorliegenden Erfindung lag die Aufgabe zu Grunde, Moleküle bereitzustellen, die sich zur Verwendung in optoelektronischen Vorrichtungen eignen.
  • Diese Aufgabe wird durch die Erfindung gelöst, die eine neue Klasse von organischen Molekülen bereitstellt.
  • Die erfindungsgemäßen organischen Moleküle sind rein organische Moleküle, weisen also keine Metallionen auf und grenzen sich so von den zur Verwendung in organischen optoelektronischen Vorrichtungen bekannten Metallkomplexverbindungen ab.
  • Die erfindungsgemäßen organischen Moleküle zeichnen sich durch Emissionen im blauen, himmelblauen oder grünen Spektralbereich aus. Die Photolumineszenzquantenausbeuten der erfindungsgemäßen organischen Moleküle betragen insbesondere 20 % und mehr. Die erfindungsgemäßen Moleküle zeigen insbesondere thermisch aktivierte verzögerte Fluoreszenz (TADF). Die Verwendung der erfindungsgemäßen Moleküle in einer optoelektronischen Vorrichtung, beispielsweise einer organischen lichtemittierenden Diode (OLED), führt zu höheren Effizienzen der Vorrichtung. Entsprechende OLEDs weisen eine höhere Stabilität auf als OLEDs mit bekannten Emittermaterialien und vergleichbarer Farbe.
  • Unter dem blauen Spektralbereich wird hier der sichtbare Bereich von kleiner als 470 nm verstanden. Unter dem himmelblauen Spektralbereich wird hier der Bereich von 470 nm bis 499 nm verstanden. Unter dem grünen Spektralbereich wird hier der Bereich von 500 nm bis 599 nm verstanden. Dabei liegt das Emissionsmaximum im jeweiligen Bereich.
  • Die organischen Moleküle enthalten eine erste chemische Einheit aufweisend eine oder bestehend aus einer Struktur gemäß Formel I:
    Figure DE102016122812B4_0003
    und zwei zweite chemische Einheiten D jeweils bei jedem Auftreten gleich oder verschieden aufweisend eine oder bestehend aus einer Struktur gemäß Formel II,
    Figure DE102016122812B4_0004
    wobei die erste chemische Einheit jeweils über eine Einfachbindung mit den zwei zweiten chemischen Einheiten D verknüpft ist.
    Q ist bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus O, S, C(CN)2 und NR2.
    T ist N oder CRT.
    V ist N oder CRV.
    W ist N oder CRW.
    X ist N oder CRX.
    Y ist N oder CRY.
    RT ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D oder ausgewählt aus der Gruppe bestehend aus H, Me und Ph.
    RV ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D oder ausgewählt aus der Gruppe bestehend aus H, Me und Ph.
    RW ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D oder ausgewählt aus der Gruppe bestehend aus H, Me und Ph.
    RX ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D oder ausgewählt aus der Gruppe bestehend aus H, Me und Ph.
    RY ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D oder ausgewählt aus der Gruppe bestehend aus H, Me und Ph.
    # kennzeichnet den jeweiligen Anknüpfungspunkt der Einfachbindung zwischen einer zweiten chemischen Einheit D und der ersten chemischen Einheit.
    Z ist bei jedem Auftreten gleich oder verschieden eine direkte Bindung oder ausgewählt aus der Gruppe bestehend aus CR3R4, C=CR3R4, C=O, C=NR3, NR3, O, SiR3R4, S, S(O) und S(O)2.
    R1 und R2 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, eine lineare Alkylgruppe mit 1 bis 5 C-Atomen, eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 8 C-Atomen, eine verzweigte oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 15 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann.
    Ra, R3 und R4 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, Si(R5)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C=C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(RS), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann.
    R5 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, OH, Si(R6)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R6 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R6C=CR6, C=C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S oder CONR6 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R6 substituiert sein kann.
    R6 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, CF3, CN, F, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 5 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 5 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 5 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen. Erfindungsgemäß kann jeder der Reste Ra, R3, R4 oder R5 auch mit einem oder mehreren weiteren Resten Ra, R3, R4 oder R5 ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoanelliertes Ringsystem bilden.
  • Erfindungsgemäß ist mindestens ein Rest und maximal zwei Reste ausgewählt aus der Gruppe bestehend aus W, X und Y gleich N und sind genau zwei Reste ausgewählt aus der Gruppe bestehend aus RT, RV, RW, RX und RY gleich einem Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D.
  • In einer Ausführungsform ist Q bei jedem Auftreten gleich O.
  • In einer Ausführungsform ist R1 bei jedem Auftreten gleich oder verschieden H, Methyl oder Phenyl. In einer weiteren Ausführungsform ist R1 bei jedem Auftreten gleich H.
  • In einer Ausführungsform ist genau ein Rest aus der Gruppe bestehend aus W, X und Y gleich N, sind genau zwei Reste aus der Gruppe bestehend aus RT, RV, RW, RX und RY gleich einem Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit D und die übrigen Reste RT, RV, RW, RX und RY sind gleich H.
  • In einer weiteren Ausführungsform der organischen Moleküle weist die chemische Gruppe D bei jedem Auftreten gleich oder verschieden eine Struktur der Formel IIa auf bzw. besteht aus einer Struktur der Formel Ila:
    Figure DE102016122812B4_0005
    wobei für # und Ra die für Formel I und II genannten Definitionen gelten.
  • In einer weiteren Ausführungsform der erfindungsgemäßen organischen Moleküle weist die chemische Einheit D bei jedem Auftreten gleich oder verschieden eine Struktur der Formel Ilb, der Formel Ilb-2, der Formel Ilb-3 oder der der Formel Ilb-4 auf oder besteht daraus:
    Figure DE102016122812B4_0006
    wobei gilt
    Rb ist bei jedem Auftreten gleich oder verschieden Si(R5)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C=C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann. Ansonsten gelten die oben genannten Definitionen.
  • In einer weiteren Ausführungsform der erfindungsgemäßen organischen Moleküle weist die chemische Einheit D bei jedem Auftreten gleich oder verschieden eine Struktur der Formel llc, der Formel IIc-2, der Formel IIc-3 oder der Formel IIc-4 auf oder besteht daraus:
    Figure DE102016122812B4_0007
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform der erfindungsgemäßen organischen Moleküle ist Rb bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 oder Ph, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Pyridinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Triazinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, und Carbazolyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann.
  • Im Folgenden sind beispielhaft Ausführungsformen der chemischen Gruppe D gezeigt:
    Figure DE102016122812B4_0008
    Figure DE102016122812B4_0009
    Figure DE102016122812B4_0010
    Figure DE102016122812B4_0011
    Figure DE102016122812B4_0012
    Figure DE102016122812B4_0013
    Figure DE102016122812B4_0014
    Figure DE102016122812B4_0015
    Figure DE102016122812B4_0016
    wobei für #, Z, Ra, R3, R4 und R5 die oben genannten Definitionen gelten. In einer Ausführungsform ist der Rest R5 bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, Methyl, Ethyl, Phenyl und Mesityl. In einer Ausführungsform ist Ra bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, Methyl (Me), i-Propyl (CH(CH3)2) (iPr), t-Butyl (tBu), Phenyl (Ph), CN und CF3.
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel III auf:
    Figure DE102016122812B4_0017
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IIIa auf:
    Figure DE102016122812B4_0018
    wobei
    Rc bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 oder Ph, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Pyridinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Triazinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, und Carbazolyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, ist.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Illb auf:
    Figure DE102016122812B4_0019
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IIIc auf:
    Figure DE102016122812B4_0020
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Illd auf:
    Figure DE102016122812B4_0021
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IIIe auf:
    Figure DE102016122812B4_0022
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IV auf:
    Figure DE102016122812B4_0023
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IVa auf:
    Figure DE102016122812B4_0024
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IVb auf:
    Figure DE102016122812B4_0025
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IVc auf:
    Figure DE102016122812B4_0026
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IVd auf:
    Figure DE102016122812B4_0027
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IVe auf:
    Figure DE102016122812B4_0028
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel V auf:
    Figure DE102016122812B4_0029
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Va auf:
    Figure DE102016122812B4_0030
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIXb auf:
    Figure DE102016122812B4_0031
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vc auf:
    Figure DE102016122812B4_0032
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vd auf:
    Figure DE102016122812B4_0033
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Ve auf:
    Figure DE102016122812B4_0034
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel VI auf:
    Figure DE102016122812B4_0035
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel VIa auf:
    Figure DE102016122812B4_0036
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlb auf:
    Figure DE102016122812B4_0037
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlc auf:
    Figure DE102016122812B4_0038
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vld auf:
    Figure DE102016122812B4_0039
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vle auf:
    Figure DE102016122812B4_0040
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel VII auf:
    Figure DE102016122812B4_0041
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlla auf:
    Figure DE102016122812B4_0042
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vllb auf:
    Figure DE102016122812B4_0043
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vllc auf:
    Figure DE102016122812B4_0044
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlld auf:
    Figure DE102016122812B4_0045
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlle auf:
    Figure DE102016122812B4_0046
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel VIII auf:
    Figure DE102016122812B4_0047
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel VIIIa auf:
    Figure DE102016122812B4_0048
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlllb auf:
    Figure DE102016122812B4_0049
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vlllc auf:
    Figure DE102016122812B4_0050
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vllld auf:
    Figure DE102016122812B4_0051
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Vllle auf:
    Figure DE102016122812B4_0052
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IX auf:
    Figure DE102016122812B4_0053
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IXa auf:
    Figure DE102016122812B4_0054
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IXb auf:
    Figure DE102016122812B4_0055
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IXc auf:
    Figure DE102016122812B4_0056
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IXd auf:
    Figure DE102016122812B4_0057
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel IXe auf:
    Figure DE102016122812B4_0058
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel X auf:
    Figure DE102016122812B4_0059
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xa auf:
    Figure DE102016122812B4_0060
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xb auf:
    Figure DE102016122812B4_0061
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xc auf:
    Figure DE102016122812B4_0062
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xd auf:
    Figure DE102016122812B4_0063
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xe auf:
    Figure DE102016122812B4_0064
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XI auf:
    Figure DE102016122812B4_0065
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xla auf:
    Figure DE102016122812B4_0066
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xlb auf:
    Figure DE102016122812B4_0067
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xlc auf:
    Figure DE102016122812B4_0068
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xld auf:
    Figure DE102016122812B4_0069
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xle auf:
    Figure DE102016122812B4_0070
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XII auf:
    Figure DE102016122812B4_0071
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xlla auf:
    Figure DE102016122812B4_0072
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xllb auf:
    Figure DE102016122812B4_0073
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xllc auf:
    Figure DE102016122812B4_0074
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xlld auf:
    Figure DE102016122812B4_0075
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xlle auf:
    Figure DE102016122812B4_0076
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIII auf:
    Figure DE102016122812B4_0077
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xllla auf:
    Figure DE102016122812B4_0078
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xlllb auf:
    Figure DE102016122812B4_0079
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIIIc auf:
    Figure DE102016122812B4_0080
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xllld auf:
    Figure DE102016122812B4_0081
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel Xllle auf:
    Figure DE102016122812B4_0082
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIV auf:
    Figure DE102016122812B4_0083
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIVa auf:
    Figure DE102016122812B4_0084
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIVb auf:
    Figure DE102016122812B4_0085
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIVc auf:
    Figure DE102016122812B4_0086
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIVd auf:
    Figure DE102016122812B4_0087
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XIVe auf:
    Figure DE102016122812B4_0088
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XV auf:
    Figure DE102016122812B4_0089
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVa auf:
    Figure DE102016122812B4_0090
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVb auf:
    Figure DE102016122812B4_0091
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVc auf:
    Figure DE102016122812B4_0092
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVd auf:
    Figure DE102016122812B4_0093
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVe auf:
    Figure DE102016122812B4_0094
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVI auf:
    Figure DE102016122812B4_0095
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIa auf:
    Figure DE102016122812B4_0096
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIb auf:
    Figure DE102016122812B4_0097
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIc auf:
    Figure DE102016122812B4_0098
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVId auf:
    Figure DE102016122812B4_0099
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIe auf:
    Figure DE102016122812B4_0100
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVII auf:
    Figure DE102016122812B4_0101
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIa auf:
    Figure DE102016122812B4_0102
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIb auf:
    Figure DE102016122812B4_0103
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIc auf:
    Figure DE102016122812B4_0104
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIId auf:
    Figure DE102016122812B4_0105
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIe auf:
    Figure DE102016122812B4_0106
  • In einer Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIII auf:
    Figure DE102016122812B4_0107
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIIa auf:
    Figure DE102016122812B4_0108
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIIb auf:
    Figure DE102016122812B4_0109
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIIc auf:
    Figure DE102016122812B4_0110
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIId auf:
    Figure DE102016122812B4_0111
    wobei die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform weisen die erfindungsgemäßen organischen Moleküle eine Struktur der Formel XVIIIe auf:
    Figure DE102016122812B4_0112
  • In einer Ausführungsform ist Rc ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, Ph, das jeweils durch einen oder mehrere Reste ausgewählt aus Me, iPr, tBu, CN, CF3 oder Ph substituiert sein kann, Triazinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, und Carbazolyl, das jeweils durch einen oder mehrere Reste ausgewählt aus Me, iPr, tBu, oder Ph substituiert sein kann.
  • Im Sinne dieser Erfindung enthält eine Arylgruppe 6 bis 60 aromatische Ringatome; eine Heteroarylgruppe enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind insbesondere N, O und/oder S. Werden in der Beschreibung bestimmter Ausführungsformen der Erfindung andere, von der genannten Definition abweichende Definitionen angegeben, beispielsweise bezüglich der Zahl der aromatischen Ringatome oder der enthaltenen Heteroatome, so gelten diese.
  • Unter einer Arylgruppe bzw. Heteroarylgruppe wird ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin oder Thiophen, oder ein heteroaromatischer Polycyclus, beispielsweise Phenanthren, Chinolin oder Carbazol verstanden. Ein kondensierter (annelierter) aromatischer bzw. heteroaromatischer Polycyclus besteht im Sinne der vorliegenden Anmeldung aus zwei oder mehr miteinander kondensierten einfachen aromatischen bzw. heteroaromatischen Cyclen.
  • Unter einer Aryl- oder Heteroarylgruppe, die jeweils mit den oben genannten Resten substituiert sein kann und die über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, welche abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Fluoranthen, Benzanthracen, Benzphenanthren, Tetracen, Pentacen, Benzpyren, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen; Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Isochinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Napthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, Pyrazin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benztriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,2,3,4-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Kombinationen der genannten Gruppen.
  • Unter einer cyclischen Alkyl-, Alkoxy- oder Thioalkoxygruppe wird hier eine monocyclische, eine bicyclische oder eine polycyclische Gruppe verstanden.
  • Im Rahmen der vorliegenden Erfindung werden unter einer C1- bis C40-Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, beispielsweise die Reste Methyl, Ethyl, n-Propyl, i-Propyl, Cyclopropyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, Cyclobutyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t-Pentyl, 2-Pentyl, neoPentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 1-Methylcyclopentyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1-Methylcyclohexyl, n-Octyl, 2-Ethylhexyl, Cyclooctyl, 1-Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]-octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Adamantyl, Trifluor-methyl, Pentafluorethyl, 2,2,2-Trifluorethyl, 1,1-Dimethyl-n-hex-1-yl-, 1,1-Dimethyl-n-hept-1-yl-, 1,1-Dimethyl-n-oct-1-yl-, 1,1-Dimethyl-n-dec-1-yl-, 1,1-Dimethyl-n-dodec-1-yl-, 1,1-Dimethyl-n-tetradec-1-yl-, 1,1-Dimethyl-n-hexadec-1-yl-, 1,1-Dimethyl-n-octadec-1-yl-, 1,1-Diethyl-n-hex-1-yl-, 1,1-Diethyl-n-hept-1-yl-, 1,1-Diethyl-n-oct-1-yl-, 1,1-Diethyl-n-dec-1-yl-, 1,1-Diethyl-n-dodec-1-yl-, 1,1-Diethyl-n-tetradec-1-yl-, 1,1-Diethyln-n-hexadec-1-yl-, 1,1-Diethyl-n-octadec-1-yl-, 1-(n-Propyl)-cyclohex-1-yl-, 1-(n-Butyl)-cyclohex-1-yl-, 1-(n-Hexyl)-cyclohex-1-yl-, 1-(n-0ctyl)-cyclohex-1-yl- und 1-(n-Decyl)-cyclohex-1-yl- verstanden. Unter einer Alkenylgruppe werden beispielsweise Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl oder Cyclooctadienyl verstanden. Unter einer Alkinylgruppe werden beispielsweise Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer C1- bis C40-Alkoxygruppe werden beispielsweise Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2-Methylbutoxy verstanden.
  • Eine Ausführungsform der Erfindung betrifft organische Moleküle, welche einen ΔE(S1-T1)-Wert zwischen dem untersten angeregten Singulett (S1)- und dem darunter liegenden Triplett (T1)-Zustand von nicht höher als 5000 cm-1, insbesondere nicht höher als 3000 cm-1, oder nicht höher als 1500 cm-1 oder 1000 cm-1 aufweisen und/oder eine Emissionslebensdauer von höchstens 150 µs, insbesondere von höchstens 100 µs, von höchsten 50 µs, oder von höchstens 10 µs aufweisen und/oder eine Hauptemissionsbande mit einer Halbwertsbreite kleiner als 0,55 eV, insbesondere kleiner als 0,50 eV, kleiner als 0,48 eV, oder kleiner als 0,45 eV aufweisen.
  • Die organischen Moleküle zeigen insbesondere ein Emissionsmaximum zwischen 420 und 500 nm, zwischen 430 und 480 nm, insbesondere zwischen 450 und 470 nm.
  • Die Moleküle weisen insbesondere einen „blue material index“ (BMI), den Quotienten aus der PLQY (in %) und ihrer CIEy-Farbkoordinate des von dem erfindungsgemäßen Molekül emittierten Lichts, von größer 150, insbesondere von größer 200, von größer 250 oder von größer 300 auf.
  • In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines erfindungsgemäßen organischen Moleküls der hier beschriebenen Art (optional mit einer Folgeumsetzung), wobei ein in 3-, 4-, 5- und 6-Position R1-substituiertes Phtalsäureanhydrid mit Amin-difluorpyridin umgesetzt wird.
    Figure DE102016122812B4_0113
    Figure DE102016122812B4_0114
  • Erfindungsgemäße Amin-difluorpyridine sind beispielhaft 2-Amin-3,5-difluorpyridin, 2-Amin-3,4-difluorpyridin, 2-Amin-4,5-difluorpyridin, 2-Amin-3,6-difluorpyridin, 2-Amin-4,6-difluorpyridin, 2-Amin-5,6-difluorpyridin, 3-Amin-5,6-difluorpyridin, 3-Amin-4,6-difluorpyridin, 3-Amin-2,5-difluorpyridin, 3-Amin-2,4-difluorpyridin, 3-Amin-4,5-difluorpyridin, 4-Amin-3,5-difluorpyridin, 4-Amin-2,6-difluorpyridin, 4-Amin-2,5-difluorpyridin und 4-Amin-2,5-difluorpyridin.
  • Das Produkt wird durch Deprotonierung des entsprechenden Amins und anschließender nukleophiler Substitution der zwei Fluorgruppen erhalten. Hierbei werden zwei Stickstoffheterozyklen im Sinne einer nukleophilen aromatischen Substitution mit einem Edukt E1 umgesetzt. Typische Bedingungen beinhalten die Verwendung einer Base wie beispielweise tribasisches Kaliumphosphat oder Natriumhydrid in einem aprotischen polaren Lösungsmittel wie beispielweise Dimetylsulfoxid (DMSO) oder N,N-Dimethylformamid (DMF).
  • In einem weiteren Aspekt betrifft die Erfindung die Verwendung der organischen Moleküle als lumineszierender Emitter oder als Hostmaterial in einer organischen optoelektronischen Vorrichtung, insbesondere wobei die organische optoelektronische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:
    • • organischen lichtemittierenden Dioden (OLEDs),
    • • lichtemittierenden elektrochemischen Zellen,
    • • OLED-Sensoren, insbesondere in nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren,
    • • organischen Dioden,
    • • organischen Solarzellen,
    • • organischen Transistoren,
    • • organischen Feldeffekttransistoren,
    • • organischen Lasern und
    • • Down-Konversions-Elementen.
  • In einem weiteren Aspekt betrifft die Erfindung eine Zusammensetzung aufweisend oder bestehend aus:
    1. (a) mindestens einem erfindungsgemäßen organischen Molekül, insbesondere als Emitter und/oder Host, und
    2. (b) mindestens ein, d. h. ein oder mehrere Emitter- und/oder Hostmaterialien, die von dem erfindungsgemäßen organischen Molekül verschiedenen ist bzw. sind und
    3. (c) optional einem oder mehreren Farbstoffen und/ oder einem oder mehreren organischen Lösungsmitteln.
  • In einer Ausführungsform besteht die erfindungsgemäße Zusammensetzung aus einem erfindungsgemäßen organischen Molekül und einem oder mehreren Hostmaterialien. Das oder die Hostmaterialen weisen insbesondere Triplett (T1)- und Singulett (S1)- Energieniveaus auf, die energetisch höher liegen als die Triplett (T1)- und Singulett (S1)- Energieniveaus des erfindungsgemäßen organischen Moleküls. In einer Ausführungsform weist die Zusammensetzung neben dem erfindungsgemäßen organischen Molekül ein elektronendominantes und ein lochdominantes Hostmaterial auf. Das höchste besetzte Orbital (HOMO) und das niedrigste unbesetzte Orbital (LUMO) des lochdominanten Hostmaterials liegen energetisch insbesondere höher als das des elektronendominanten Hostmaterials. Das HOMO des lochdominanten Hostmaterials liegt energetisch unter dem HOMO des erfindungsgemäßen organischen Moleküls, während das LUMO des elektronendominanten Hostmaterials energetisch über dem LUMO des erfindungsgemäßen organischen Moleküls liegt. Um Exciplex-Formation zwischen Emitter und Hostmaterial oder Hostmaterialien zu vermeiden, sollten die Materialien so gewählt sein, dass die Energieabstände zwischen den jeweiligen Orbitalen gering sind. Der Abstand zwischen dem LUMO des elektronendominanten Hostmaterials und dem LUMO des erfindungsgemäßen organischen Moleküls beträgt insbesondere weniger als 0,5 eV, bevorzugt weniger als 0,3 eV, noch bevorzugter weniger als 0,2 eV. Der Abstand zwischen dem HOMO des lochdominanten Hostmaterials und dem HOMO des erfindungsgemäßen organischen Moleküls beträgt insbesondere weniger als 0,5 eV, bevorzugt weniger als 0,3 eV, noch bevorzugter weniger als 0,2 eV.
  • In einem weiteren Aspekt betrifft die Erfindung eine organische optoelektronische Vorrichtung, die ein erfindungsgemäßes organisches Molekül oder eine erfindungsgemäße Zusammensetzung aufweist. Die organische optoelektronische Vorrichtung ist insbesondere ausgeformt als eine Vorrichtung ausgewählt aus der Gruppe bestehend aus organischer lichtemittierender Diode (OLED); lichtemittierender elektrochemischer Zelle; OLED-Sensor, insbesondere nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren; organischer Diode; organischer Solarzelle; organischem Transistor; organischem Feldeffekttransistor; organischem Laser und Down-Konversion-Element.
  • Eine organische optoelektronische Vorrichtung aufweisend
    • - ein Substrat,
    • - eine Anode und
    • - eine Kathode, wobei die Anode oder die Kathode auf das Substrat aufgebracht sind, und
    • - mindestens eine lichtemittierende Schicht, die zwischen Anode und Kathode angeordnet ist und die ein erfindungsgemäßes organisches Molekül aufweist, stellt einen weitere Ausführungsform der Erfindung dar.
  • In einer Ausführungsform handelt es sich bei der optoelektronischen Vorrichtung um eine OLED. Eine typische OLED weist beispielsweise folgenden Schichtaufbau auf:
    1. 1. Substrat (Trägermaterial)
    2. 2. Anode
    3. 3. Lochinjektionsschicht (hole injection layer, HIL)
    4. 4. Lochtransportschicht (hole transport layer, HTL)
    5. 5. Elektronenblockierschicht (electron blocking layer, EBL)
    6. 6. Emitterschicht (emitting layer, EML)
    7. 7. Lochblockierschicht (hole blocking layer, HBL)
    8. 8. Elektronenleitschicht (electron transport layer, ETL)
    9. 9. Elektroneninjektionsschicht (electron injection layer, EIL)
    10. 10. Kathode.
  • Dabei sind einzelne Schichten lediglich in optionaler Weise vorhanden. Weiterhin können mehrere dieser Schichten zusammenfallen. Und es können einzelne Schichten mehrfach im Bauteil vorhanden sein.
  • Gemäß einer Ausführungsform ist mindestens eine Elektrode des organischen Bauelements transluzent ausgebildet. Hier wird mit „transluzent“ eine Schicht bezeichnet, die durchlässig für sichtbares Licht ist. Dabei kann die transluzente Schicht klar durchscheinend, also transparent, oder zumindest teilweise Licht absorbierend und/oder teilweise Licht streuend sein, so dass die transluzente Schicht beispielsweise auch diffus oder milchig durchscheinend sein kann. Insbesondere ist eine hier als transluzent bezeichnete Schicht möglichst transparent ausgebildet, so dass insbesondere die Absorption von Licht so gering wie möglich ist.
  • Gemäß einer weiteren Ausführungsform weist das organische Bauelement, insbesondere eine OLED, einen invertierten Aufbau auf. Der invertierte Aufbau zeichnet sich dadurch aus, dass sich die Kathode auf dem Substrat befindet und die anderen Schichten entsprechend invertiert aufgebracht werden:
    1. 1. Substrat (Trägermaterial)
    2. 2. Kathode
    3. 3. Elektroneninjektionsschicht (electron injection layer, EIL)
    4. 4. Elektronenleitschicht (electron transport layer, ETL)
    5. 5. Lochblockierschicht (hole blocking layer, HBL)
    6. 6. Emissionsschicht bzw. Emitterschicht (emitting layer, EML)
    7. 7. Elektronenblockierschicht (electron blocking layer, EBL)
    8. 8. Lochtransportschicht (hole transport layer, HTL)
    9. 9. Lochinjektionsschicht (hole injection layer, HIL)
    10. 10. Anode
  • Dabei sind einzelne Schichten lediglich in optionaler Weise vorhanden. Weiterhin können mehrere dieser Schichten zusammenfallen. Und es können einzelne Schichten mehrfach im Bauteil vorhanden sein.
  • In einer Ausführungsform wird bei der invertierten OLED die Anodenschicht des typischen Aufbaus, z.B. eine ITO-Schicht (Indium-Zinn-Oxid), als Kathode geschaltet.
  • Gemäß einer weiteren Ausführungsform weist das organische Bauelement, insbesondere eine OLED, einen gestapelten Aufbau auf. Hierbei werden die einzelnen OLEDs übereinander und nicht wie üblich nebeneinander angeordnet. Durch einen gestapelten Aufbau kann die Erzeugung von Mischlicht ermöglicht werden. Beispielsweise kann dieser Aufbau bei der Erzeugung von weißem Licht eingesetzt werden, für dessen Erzeugung das gesamte sichtbare Spektrum typischerweise durch die Kombination des emittierten Lichts von blauen, grünen und roten Emittern abgebildet wird. Weiterhin können bei praktisch gleicher Effizienz und identischer Leuchtdichte signifikant längere Lebensdauern im Vergleich zu üblichen OLEDs erzielt werden. Für den gestapelten Aufbau wird optional eine sogenannte Ladungserzeugungsschicht (charge generation layer, CGL) zwischen zwei OLEDs eingesetzt. Diese besteht aus einer n-dotierten und einem p-dotierten Schicht, wobei die n-dotierte Schicht typischerweise näher an der Anode aufgebracht wird.
  • In einer Ausführungsform - einer sogenannten Tandem-OLED - treten zwei oder mehr Emissionsschichten zwischen Anode und Kathode auf. In einer Ausführungsform sind drei Emissionsschichten übereinander angeordnet, wobei eine Emissionsschicht rotes Licht emittiert, eine Emissionsschicht grünes Licht emittiert und eine Emissionsschicht blaues Licht emittiert und optional weitere Ladungserzeugungs-, Blockier- oder Transportschichten zwischen den einzelnen Emissionsschichten aufgebracht sind. In einer weiteren Ausführungsform werden die jeweiligen Emissionsschichten direkt angrenzend aufgebracht. In einer weiteren Ausführungsform befindet sich jeweils eine Ladungserzeugungsschicht zwischen den Emissionsschichten. Weiterhin können in einer OLED direkt angrenzende und durch Ladungserzeugungsschichten getrennte Emissionsschichten kombiniert werden.
  • Über den Elektroden und den organischen Schichten kann weiterhin noch eine Verkapselung angeordnet sein. Die Verkapselung kann beispielsweise in Form eines Glasdeckels oder in Form einer Dünnschichtverkapselung ausgeführt sein.
  • Als Trägermaterial der optoelektronischen Vorrichtung kann beispielsweise Glas, Quarz, Kunststoff, Metall, ein Siliziumwafer oder jedes andere geeignete feste oder flexible, optional durchsichtige Material dienen. Das Trägermaterial kann beispielsweise ein oder mehrere Materialien in Form einer Schicht, einer Folie, einer Platte oder einem Laminat aufweisen.
  • Als Anode der optoelektronischen Vorrichtung können beispielsweise transparente leitende Metalloxide wie beispielsweise ITO (Indium-Zinn-Oxid), Zinkoxid, Zinnoxid, Cadmiumoxid, Titanoxid, Indiumoxid oder Aluminiumzinkoxid (AZO), Zn2SnO4, CdSnO3, ZnSnO3, MgIn2O4, GaInO3, Zn2In2O5 oder In4Sn3O12 oder Mischungen unterschiedlicher transparenter leitender Oxide dienen.
  • Als Materialien einer HIL können beispielsweise PEDOT:PSS (Poly-3,4-ethylendioxythiophen:Polystyrolsulfonsäure), PEDOT (Poly-3,4-ethylendioxythiophen), m-MTDATA (4,4',4"-Tris[phenyl(m-tolyl)amino]triphenylamin), Spiro-TAD (2,2',7,7'-Tetrakis(N,N-diphenylamino)-9,9-spirobifluoren), DNTPD (4,4'-Bis[N-[4-{N,N-bis(3-methylphenyl)amino}phenyl]-N-phenylamino]biphenyl), NPB (N,N'-Bis-(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamin), NPNPB (N,N'-Diphenyl-N,N'-di-[4-(N,N-diphenylamino)phenyl]benzol), MeO-TPD (N,N,N',N'-Tetrakis(4-methoxyphenyl)benzol), HAT-CN (1,4,5,8,9,11-Hexaazatriphenylen-hexacarbonitril) oder Spiro-NPD (N,N'-diphenyl-N,N'-Bis-(1-naphthyl)-9,9'-spirobifluorene-2,7-diamin) dienen. Beispielhaft ist die Schichtdicke 10-80 nm. Desweiteren können kleine Moleküle können verwendet werden (z. B. Kupfer-Phthalocyanin (CuPc z. B. 10 nm dick)) oder Metalloxide wie beispielhaft MoO3, V2O5.
  • Als Materialien einer HTL können tertiäre Amine, Carbazolderivate, mit Polystyrolsulfonsäure dotiertes Polyethylendioxythiophen, mit Camphersulfonsäure dotiertes Polyanilin poly-TPD (Poly(4-butylphenyl-diphenyl-amin)), [alpha]-NPD (Poly(4-butylphenyl-diphenyl-amin)), TAPC (4,4'-Cyclohexyliden-bis[N,N-bis(4-methylphenyl)benzenamin]), TCTA (Tris(4-carbazoyl-9-ylphenyl)amin), 2-TNATA (4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamin), Spiro-TAD, DNTPD, NPB, NPNPB, MeO-TPD, HAT-CN oder TrisPcz (9,9'-Diphenyl-6-(9-phenyl-9H-carbazol-3-yl)-9H,9'H-3,3'-bicarbazol) dienen. Beispielhaft ist die Schichtdicke 10 nm bis 100 nm.
  • Die HTL kann eine p-dotierte Schicht aufweisen, die einen anorganischen oder organischen Dotierstoff in einer organischen löcherleitenden Matrix aufweist. Als anorganischer Dotierstoff können beispielsweise Übergangsmetalloxide wie etwa Vanadiumoxid, Molybdänoxid oder Wolframoxid genutzt werden. Als organische Dotierstoffe können beispielsweise Tetrafluorotetracyanoquinodimethan (F4-TCNQ), Kupfer-Pentafluorobenzoat (Cu(I)pFBz) oder Übergangsmetallkomplexe verwendet werden. Beispielhaft ist die Schichtdicke 10 nm bis 100 nm.
  • Als Materialien einer Elektronenblockierschicht können beispielsweise mCP (1,3-Bis(carbazol-9-yl)benzol), TCTA, 2-TNATA, mCBP (3,3-Di(9H-carbazol-9-yl)biphenyl), tris-Pcz (9,9'-Diphenyl-6-(9-phenyl-9H-carbazol-3-yl)-9H,9'H-3,3'-bicarbazol), CzSi (9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazol) oder DCB (N,N'-Dicarbazolyl-1,4-dimethylbenzol) dienen. Beispielhaft ist die Schichtdicke 10nm bis 50 nm.
  • Die Emitter-Schicht EML oder Emissionsschicht besteht aus oder enthält Emittermaterial oder eine Mischung aufweisend mindestens zwei Emittermaterialien und optional ein oder mehreren Hostmaterialien. Geeignete Hostmaterialien sind beispielsweise mCP, TCTA, 2-TNATA, mCBP, CBP (4,4'-Bis-(N-carbazolyl)-biphenyl), Sif87 (Dibenzo[b,d]thiophen-2-yltriphenylsilan), Sif88 (Dibenzo[b,d]thiophen-2-yl)diphenylsilan) oder DPEPO (Bis[2-((oxo)diphenylphosphino)phenyl]ether). Für im Grünen oder im Roten emittierendes Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien eignen sich die gängigen Matrixmaterialien wie CBP. Für im Blauen emittierendes Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien können UHG-Matrixmaterialien (Ultra-High energy Gap Materialien) (siehe z. B. M.E. Thompson et al., Chem. Mater. 2004, 16, 4743) oder andere sogenannten Wide-Gap-Matrixmaterialien eingesetzt werden. Beispielhaft ist die Schichtdicke 10 nm bis 250 nm.
  • Die Lochblockierschicht HBL kann beispielsweise BCP (2,9-Dimethyl-4,7-diphenyl-1,10-phenanthrolin = Bathocuproin), Bis-(2-methyl-8-hydroxychinolinato)-(4-phenylphenolato)-aluminium(III) (BAIq), Nbphen (2,9-Bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthrolin), Alq3 (Aluminium-tris(8-hydroxychinolin)), TSPO1 (Diphenyl-4-triphenylsilylphenyl-phosphinoxid) oder TCB/TCP (1,3,5-Tris(N-carbazolyl)benzol/ 1,3,5-tris(carbazol)-9-yl) benzol) aufweisen. Beispielhaft ist die Schichtdicke 10 nm bis 50 nm.
  • Die Elektronentransportschicht ETL kann beispielsweise Materialien auf Basis von AlQ3, TSPO1, BPyTP2 (2,7-Di(2,2'-bipyridin-5-yl)triphenyl), Sif87, Sif88, BmPyPhB (1,3-Bis[3,5-di(pyridin-3-yl)phenyl]benzol) oder BTB (4,4'-Bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,1'-biphenyl) aufweisen. Beispielhaft ist die Schichtdicke 10 nm bis 200 nm.
  • Als Materialien einer dünnen Elektroneninjektionsschicht EIL können beispielsweise CsF, LiF, 8-Hydroxyquinolinolatolithium (Liq), Li2O, BaF2, MgO oder NaF verwendet werden.
  • Als Materialien der Kathodenschicht können Metalle oder Legierungen dienen, beispielsweise Al, Al > AIF, Ag, Pt, Au, Mg, Ag:Mg. Typische Schichtdicken betragen 100 nm bis 200 nm. Insbesondere werden ein oder mehrere Metalle verwendet, die stabil an der Luft sind und/oder die selbstpassivierend, beispielsweise durch Ausbildung einer dünnen schützenden Oxidschicht, sind.
  • Als Materialien zu Verkapselung sind beispielsweise Aluminiumoxid, Vanadiumoxid, Zinkoxid, Zirkoniumoxid, Titanoxid, Hafniumoxid, Lanthanoxid, Tantaloxid geeignet.
  • In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung ist das erfindungsgemäße organische Molekül als Emissionsmaterial in einer lichtemittierenden Schicht EML eingesetzt, wobei es entweder als Reinschicht oder in Kombination mit einem oder mehreren Hostmaterialien eingesetzt ist.
  • Eine Ausführungsform der Erfindung betrifft organische optoelektronische Vorrichtungen, welche eine externe Quanteneffizienz (EQE) bei 1000 cd/m2 von größer 5 %, insbesondere von größer 8 %, insbesondere von größer 10 %, oder von größer 13 %, oder von größer 16 % und insbesondere von größer 20 % und/oder ein Emissionsmaximum bei einer Wellenlänge zwischen 420 nm und 500 nm, insbesondere zwischen 430 nm und 490 nm, oder zwischen 440 nm und 480 nm und insbesondere zwischen 450 nm und 470 nm und/oder einen LT80 Wert bei 500 cd/m2 von größer 30 h, insbesondere von größer 70 h, oder von größer 100 h, oder von größer 150 h und insbesondere von größer 200 h aufweisen.
  • Der Massenanteil des erfindungsgemäßen organischen Moleküls an der Emitter-Schicht EML beträgt in einer weiteren Ausführungsform in einer lichtemittierenden Schicht in optischen Licht emittierenden Vorrichtungen, insbesondere in OLEDs, zwischen 1 % und 80 %. In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung ist die lichtemittierende Schicht auf ein Substrat aufgebracht, wobei bevorzugt eine Anode und eine Kathode auf das Substrat aufgebracht sind und die lichtemittierende Schicht zwischen Anode und Kathode aufgebracht ist.
  • Die lichtemittierende Schicht kann in einer Ausführungsform ausschließlich ein erfindungsgemäßes organisches Molekül in 100 % Konzentration aufweisen, wobei die Anode und die Kathode auf das Substrat aufgebracht sind, und die lichtemittierende Schicht zwischen Anode und Kathode aufgebracht ist.
  • In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung sind eine löcher- und elektroneninjizierende Schicht zwischen Anode und Kathode, und eine löcher- und elektronentransportierende Schicht zwischen löcher- und elektroneninjizierender Schicht, und die lichtemittierende Schicht zwischen löcher- und elektronentransportierender Schicht aufgebracht.
  • Die organische optoelektronische Vorrichtung weist in einer weiteren Ausführungsform der Erfindung auf: ein Substrat, eine Anode, eine Kathode und mindestens je eine löcher- und elektroneninjizierende Schicht, und mindestens je eine löcher- und elektronentransportierende Schicht, und mindestens eine lichtemittierende Schicht, die erfindungsgemäßes organisches Molekül und ein oder mehrere Hostmaterialen aufweist, deren Triplett (T1)- und Singulett (S1)-Energieniveaus energetisch höher liegen als die Triplett (T1)- und Singulett (S1)-Energieniveaus des organischen Moleküls, wobei die Anode und die Kathode auf das Substrat aufgebracht ist, und die löcher- und elektroneninjizierende Schicht zwischen Anode und Kathode aufgebracht ist, und die löcher- und elektronentransportierende Schicht zwischen löcher- und elektroneninjizierender Schicht aufgebracht ist, und die lichtemittierende Schicht zwischen löcher- und elektronentransportierender Schicht aufgebracht ist.
  • In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines optoelektronischen Bauelements. Dabei wird ein erfindungsgemäßes organisches Molekül verwendet.
  • In einer Ausführungsform umfasst das Herstellungsverfahren die Verarbeitung des erfindungsgemäßen organischen Moleküls mittels eines Vakuumverdampfungsverfahrens oder aus einer Lösung.
  • Erfindungsgemäß ist auch ein Verfahren zur Herstellung einer erfindungsgemäßen optoelektronischen Vorrichtung, bei dem mindestens eine Schicht der optoelektronischen Vorrichtung
    • - mit einem Sublimationsverfahren beschichtet wird,
    • - mit einem OVPD (Organic Vapor Phase Deposition) Verfahren beschichtet wird,
    • - mit einer Trägergassublimation beschichtet wird, und/oder
    • - aus Lösung oder mit einem Druckverfahren hergestellt wird.
  • Bei der Herstellung der erfindungsgemäßen optoelektronischen Vorrichtung werden bekannte Verfahren eingesetzt. Generell werden die Schichten einzeln auf ein geeignetes Substrat in aufeinanderfolgenden Abscheideverfahrensschritten aufgebracht. Bei der Gasphasenabscheidung können die gebräuchlichen Methoden, wie thermische Verdampfung, chemische Gasphasenabscheidung (CVD), physikalische Gasphasenabscheidung (PVD) angewendet werden. Für active matrix OLED (AMOLED) Displays erfolgt die Abscheidung auf eine AMOLED Backplane als Substrat.
  • Alternativ können Schichten aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln aufgebracht werden. Beispielhafte geeignete Beschichtungsverfahren sind Rotationsbeschichtung (spin-coating), Tauchbeschichtung (dip-coating) und Strahldruckmethoden. Die einzelnen Schichten können erfindungsgemäß sowohl über dasselbe als auch über jeweils verschiedene Beschichtungsmethoden hergestellt werden.
  • Beispiele
  • Allgemeines Syntheseschema I
    Figure DE102016122812B4_0115
  • Allgemeine Synthesevorschrift AAV1:
    Figure DE102016122812B4_0116
  • Phtalsäureanhydrid (1,00 Äquivalente) und 2-Amin-3,5-difluorpyridin (1,00 Äquivalente) werden in Eisessig suspendiert und 3 Stunden bei 100 °C gerührt. Nach dem Abkühlen wird die Reaktionslösung am Rotationsverdampfer soweit möglich eingeengt. Der Rückstand wird in CH2Cl2 aufgenommen und zweimal mit gesättigter Na2CO3 gewaschen. Die vereinigten organischen Phasen werden über MgSO4 getrocknet. Das Lösungsmittel wird am Rotationsverdampfer entfernt. Nach Trocknen am Hochvakuum wird Z1 als Feststoff erhalten, welches in der Regel ohne weitere Aufreinigung eingesetzt werden kann. Bei Bedarf kann das Produkt Z1 durch Umkristallisation weiter aufgereinigt werden.
  • Allgemeine Synthesevorschrift AAV2:
    Figure DE102016122812B4_0117
  • Die Synthese von Z2 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 2-Amin-3,4-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV3:
    Figure DE102016122812B4_0118
  • Die Synthese von Z3 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 2-Amin-4,5-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV4:
    Figure DE102016122812B4_0119
  • Die Synthese von Z4 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 2-Amin-3,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV5:
    Figure DE102016122812B4_0120
  • Die Synthese von Z5 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 2-Amin-4,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV6:
    Figure DE102016122812B4_0121
  • Die Synthese von Z6 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 2-Amin-5,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV7:
    Figure DE102016122812B4_0122
  • Die Synthese von Z7 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 3-Amin-5,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV8:
    Figure DE102016122812B4_0123
  • Die Synthese von Z8 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 3-Amin-4,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV9:
    Figure DE102016122812B4_0124
  • Die Synthese von Z9 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 3-Amin-2,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV10:
    Figure DE102016122812B4_0125
  • Die Synthese von Z10 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 3-Amin-2,5-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV11:
    Figure DE102016122812B4_0126
  • Die Synthese von Z11 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 3-Amin-2,4-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV12:
    Figure DE102016122812B4_0127
  • Die Synthese von Z12 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 3-Amin-4,5-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV13:
    Figure DE102016122812B4_0128
  • Die Synthese von Z13 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 4-Amin-3,5-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV14:
    Figure DE102016122812B4_0129
  • Die Synthese von Z14 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 4-Amin-2,6-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV15:
    Figure DE102016122812B4_0130
  • Die Synthese von Z15 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 4-Amin-2,5-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV16:
    Figure DE102016122812B4_0131
  • Die Synthese von Z16 erfolgt analog AAV1, wobei Phtalsäureanhydrid mit 4-Amin-2,3-difluorpyridin umgesetzt wird.
  • Allgemeine Synthesevorschrift AAV17:
    • Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15 oder Z16 (jeweils 1,00 Äquivalente), das entsprechende Donor-Molekül D-H (2,00 Äquivalente) und tribasisches Kaliumphosphat (4,00 Äquivalente) werden unter Stickstoff in DMSO suspendiert und bei 110 °C gerührt (16 h). Anschließend wird die Reaktionsmischung in gesättigte Natriumchlorid-Lösung gegeben und dreimal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden zweimal mit gesättigter Natriumchlorid-Lösung gewaschen, getrocknet über Magnesiumsulfat und das Lösemittel anschließend entfernt. Das Rohprodukt wird schließlich durch Umkristallisation aus Toluol oder über Flashchromatographie gereinigt. Das Produkt wird als Feststoff erhalten.
  • Im speziellen entspricht D-H einem 3,6-substituierten Carbazol (z. B. 3,6-Dimethylcarbazol, 3,6-Diphenylcarbazol, 3,6-Di-tert-butylcarbazol), einem 2,7-substituierten Carbazol (z. B. 2,7-Dimethylcarbazol, 2,7-Diphenylcarbazol, 2,7-Di-tert-butylcarbazol), einem 1,8-substituierten Carbazol (z. B. 1,8-Dimethylcarbazol, 1,8-Diphenylcarbazol, 1,8-Di-tert-butylcarbazol), einem 1-substituierten Carbazol (z. B. 1-Methylcarbazol, 1-Phenylcarbazol, 1-tert-Butylcarbazol), einem 2-substituierten Carbazol (z. B. 2-Methylcarbazol, 2-Phenylcarbazol, 2-tert-Butylcarbazol) oder einem 3-substituierten Carbazol (z. B. 3-Methylcarbazol, 3-Phenylcarbazol, 3-tert-Butylcarbazol).
  • Photophysikalische Messungen
  • Probenvorbereitung, Film: Spin-Coating
  • Gerät: Spin150, SPS euro.
  • Die Probenkonzentration entsprach 10 mg/ml, angesetzt in Toluol, Chlorbenzol oder einem geeigneten Lösemittel.
  • Programm: 1) 3 s bei 400 U/min; 2) 20 s bei 1000 U/min bei 1000 Upm/ s. 3) 10 s bei 4000 U/min bei 1000 Upm/s. Die Filme wurden nach dem Beschichten für 1 min bei 70 °C an Luft auf einer Präzisionsheizplatte von LHG getrocknet.
  • Photolumineszenzspektroskopie und TCSPC
  • Steady-state Emissionsspektroskopie wurde mit einem Fluoreszenzspektrometer der Horiba Scientific, Modell FluoroMax-4 durchgeführt, ausgestattet mit einer 150 W Xenon-Arc Lampe, Anregungs- und Emissionsmonochromatoren und einer Hamamatsu R928 Photomultiplier-Röhre, sowie einer „zeit-korrelierten Einphotonzähl“ (Time-correlated single-photon counting, TCSPC)-Option. Emissions- und Anregungsspektren wurden korrigiert durch Standardkorrekturkurven.
  • Die Emissionsabklingzeiten wurden ebenfalls auf diesem System gemessen unter Verwendung der TCSPC-Methode mit dem FM-2013 Zubehör und einem TCSPC-Hub von Horiba Yvon Jobin. Anregungsquellen:
    • NanoLED 370 (Wellenlänge: 371 nm, Pulsdauer: 1,1 ns)
    • NanoLED 290 (Wellenlänge: 294 nm, Pulsdauer: <1 ns)
    • SpectraLED 310 (Wellenlänge: 314 nm)
    • SpectraLED 355 (Wellenlänge: 355 nm).
  • Die Auswertung (exponentielles Fitten) erfolgte mit dem Softwarepaket DataStation und der DAS 6 Auswertungssoftware. Der Fit wurde über die Chi-Quadrat-Methode angegeben.
  • Quanteneffizienzbestimmung
  • Die Messung der Photolumineszenzquantenausbeute (PLQY) erfolgte mittels eines Absolute PL Quantum Yield Measurement C9920-03G-Systems der Hamamatsu Photonics. Die Auswertung der Quanteneffizienz und der CIE-Koordinaten erfolgte mit Hilfe der Software U6039-05 Version 3.6.0.
  • Das Emissionsmaximum wird in nm, die Quantenausbeute Φ in % und die CIE-Farbkoordinaten als x,y-Werte angegeben.
  • Die Photolumineszenzquantenausbeute wurde nach folgendem Protokoll bestimmt:
    1. 1) Durchführung der Qualitätssicherung: Als Referenzmaterial dient Anthracene in Ethanol mit bekannter Konzentration.
    2. 2) Ermitteln der Anregungswellenlänge: Es wurde zuerst das Absorbtionsmaximum des organischen Moleküls bestimmt und mit diesem angeregt.
    3. 3) Durchführung der Probenmessung:
      • Es wurde von entgasten Lösungen und Filmen unter Stickstoff-Atmosphäre die absolute Quantenausbeute bestimmt.
  • Die Berechnung erfolgte systemintern nach folgender Gleichung: Φ P L = n p h o t o n , e m i t t i e r t n p h o t o n , a b s o r b i e r t = λ h c [ I n t e m i t t i e r t P r o b e ( λ ) I n t a b s o r b i e r t P r o b e ( λ ) ] d λ λ h c [ I n t e m i t t i e r t R e f e r e n z ( λ ) I n t a b s o r b i e r t R e f e r e n z ( λ ) ] d λ
    Figure DE102016122812B4_0132
    mit der Photonenzahl nphoton und der Intensität Int.
  • Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen aus der Gasphase
  • Mit den erfindungsgemäßen organischen Molekülen können OLED-Devices mittels Vakuum-Sublimationstechnik erstellt werden. Enthält eine Schicht mehrere Komponenten, so ist das Verhältnis dieser in Massenprozent angegeben. Die Summe aller Massenprozentangaben ergibt 100 %, sodass der Massenprozentanteil einer Komponente, deren Wert nicht angegeben, der Differenz zwischen 100 % und der Summe der angegebenen Werte entspricht.
  • Diese noch nicht optimierten OLEDs können standardmäßig charakterisiert werden; hierfür werden die Elektrolumineszenzspektren, die externe Quanteneffizienz (gemessen in %) in Abhängigkeit von der Helligkeit, berechnet aus dem von der Fotodiode detektiertem Licht, und dem Strom aufgenommen. Aus dem zeitlichen Verlauf der Elektrolumineszenzspektren kann die Lebensdauer der OLEDs bestimmt werden. Der angegebene LT50-Wert entspricht hierbei der Zeit, bei der die Leuchtdichte auf 50 % des Startwertes abgefallen ist. Analog entspricht der LT70-Wert der Zeit, bei der die Leuchtdichte auf 70 % des Startwertes abgefallen ist. Beschleunigte Lebensdauermessungen wurden durchgeführt (z. B. bei erhöhten Spannungsdichten). Aus den so erhaltenen Lebensdauern werden die angegebenen Lebensdauern bestimmt. Beispielhaft erfolgt die Bestimmung des LT80 Werts bei 500 cd/m2 nach folgender Gleichung: LT 80 ( 500 c d 2 m 2 ) = LT 80 ( L 0 ) ( 500 c d 2 m 2 L 0 ) 1.6
    Figure DE102016122812B4_0133
    wobei L0 der Startleuchtdichte bei der verwendeten Spannungsdichte entspricht.
  • Die angegebenen Werte für OLEDs entsprechen dem Durchschnitt aus mehrern Pixeln (typischerweise zwei bis acht), die Standardabweichung zwischen diesen Pixeln ist angegeben. Figuren zeigen die Kennlinie eines Pixels.
  • HPLC-MS:
  • HPLC-MS Spektroskopie wurde mit einer HPLC-Anlage der Firma Agilent (1100er Serie) mit einem angeschlossenen MS-Detektor (Thermo LTQ XL) gemessen. Für die HPLC wurde eine Eclipse Plus C18 Säule von Agilent mit einer Partikelgröße von 3,5 µm, einer Länge von 150 mm und einem Innendurchmesser von 4,6 mm eingesetzt. Es wurde ohne Vorsäule und bei Raumtemperatur mit den Lösemitteln Acetonitril, Wasser und Tetrahydrofuran in diesen Konzentrationen gearbeitet:
    Lösemittel A: H2O (90%) MeCN (10%)
    Lösemittel B: H2O (10%) MeCN (90%)
    Lösemittel C: THF (100%)
  • Es wurde mit einem Einspritzvolumen von 15 µL und einer Konzentration von 10 µg/mL mit diesem Gradienten gearbeitet:
    Fluss [ml/min] Zeit [min] A[%] B[%] C[%] Druck [Bar]
    0.3 0 80 20 - 115
    0.3 5 80 20 - 115
    0.3 14 0 90 10 65
    0.3 25 0 90 10 65
    0.3 26 80 20 - 115
    0.3 33 80 20 - 115
  • Die Ionisation der Probe erfolgt durch APCI (atmospheric pressure chemical ionization).
  • Beispiel 1
  • Figure DE102016122812B4_0134
  • Beispiel 1 wurde nach AAV1 (Ausbeute 51%) und AAV17 hergestellt (Ausbeute 25%).
    MS (HPLC-MS), m/z (Retentionszeit): 779, (24,63 min)
    1 zeigt das Emissionsspektrum von Beispiel 1 (10 % in PMMA). Das Emissionsmaximum liegt bei 462 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 72% und die Halbwertsbreite beträgt 0,43 eV.
  • Weitere Beispiele erfindungsgemäßer organischer Moleküle:
    Figure DE102016122812B4_0135
    Figure DE102016122812B4_0136
    Figure DE102016122812B4_0137
    Figure DE102016122812B4_0138
    Figure DE102016122812B4_0139
    Figure DE102016122812B4_0140
    Figure DE102016122812B4_0141
    Figure DE102016122812B4_0142
    Figure DE102016122812B4_0143
    Figure DE102016122812B4_0144
    Figure DE102016122812B4_0145
    Figure DE102016122812B4_0146
    Figure DE102016122812B4_0147
    Figure DE102016122812B4_0148
    Figure DE102016122812B4_0149
    Figure DE102016122812B4_0150
    Figure DE102016122812B4_0151
    Figure DE102016122812B4_0152
    Figure DE102016122812B4_0153
    Figure DE102016122812B4_0154
    Figure DE102016122812B4_0155
    Figure DE102016122812B4_0156
    Figure DE102016122812B4_0157
    Figure DE102016122812B4_0158
    Figure DE102016122812B4_0159
    Figure DE102016122812B4_0160
    Figure DE102016122812B4_0161
    Figure DE102016122812B4_0162
    Figure DE102016122812B4_0163
    Figure DE102016122812B4_0164
    Figure DE102016122812B4_0165
    Figure DE102016122812B4_0166
    Figure DE102016122812B4_0167
    Figure DE102016122812B4_0168
    Figure DE102016122812B4_0169
    Figure DE102016122812B4_0170
    Figure DE102016122812B4_0171
    Figure DE102016122812B4_0172
    Figure DE102016122812B4_0173
    Figure DE102016122812B4_0174
    Figure DE102016122812B4_0175
    Figure DE102016122812B4_0176
    Figure DE102016122812B4_0177
    Figure DE102016122812B4_0178
    Figure DE102016122812B4_0179
    Figure DE102016122812B4_0180
    Figure DE102016122812B4_0181
    Figure DE102016122812B4_0182
    Figure DE102016122812B4_0183
    Figure DE102016122812B4_0184
    Figure DE102016122812B4_0185
    Figure DE102016122812B4_0186
    Figure DE102016122812B4_0187
    Figure DE102016122812B4_0188
    Figure DE102016122812B4_0189
    Figure DE102016122812B4_0190
    Figure DE102016122812B4_0191
    Figure DE102016122812B4_0192
    Figure DE102016122812B4_0193
    Figure DE102016122812B4_0194
    Figure DE102016122812B4_0195
    Figure DE102016122812B4_0196
    Figure DE102016122812B4_0197
    Figure DE102016122812B4_0198
  • Figur
    • Die Figur zeigt das Emissionsspektrum der Verbindung nach Beispiel 1 in 10 % PMMA.

Claims (19)

  1. Organisches Molekül aufweisend - eine erste chemische Einheit aufweisend eine oder bestehend aus einer Struktur gemäß Formel I
    Figure DE102016122812B4_0199
    und - zwei zweite chemische Einheiten, die jeweils bei jedem Auftreten gleich oder verschieden sind, aufweisend eine oder bestehend aus einer Struktur gemäß Formel II
    Figure DE102016122812B4_0200
    wobei die erste chemische Einheit jeweils über eine Einfachbindung mit den zwei zweiten chemischen Einheiten verknüpft ist; mit Q ist bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus O, S, C(CN)2 und NR2; T ist N oder CRT; V ist N oder CRV; W ist N oder CRW; X ist N oder CRX; Y ist N oder CRY; wobei folgendes gilt: RT ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph; RV ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph; RW ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph; RX ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph; RY ist Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer der beiden zweiten chemischen Einheit oder ist ausgewählt aus der Gruppe bestehend aus H, Me und Ph; # kennzeichnet den jeweiligen Anknüpfungspunkt der Einfachbindung zwischen einer der beiden zweiten chemischen Einheit und der ersten chemischen Einheit; Z ist bei jedem Auftreten gleich oder verschieden eine direkte Bindung oder ist ausgewählt aus der Gruppe bestehend aus CR3R4, C=CR3R4, C=O, C=NR3, NR3, O, SiR3R4, S, S(O) und S(O)2; R1 und R2 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, eine lineare Alkylgruppe mit 1 bis 5 C-Atomen, eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 8 C-Atomen, eine verzweigte oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 15 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann; Ra, R3 und R4 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, Si(R5)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C=C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann; R5 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, OH, Si(R6)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R6 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R6C=CR6, C=C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S oder CONR6 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R6 substituiert sein kann; R6 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, CF3, CN, F, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 5 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 5 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 5 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen; wobei jeder der Reste Ra, R3, R4 oder R5 auch mit einem oder mehreren weiteren Resten Ra, R3, R4 oder R5 ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoanelliertes Ringsystem bilden kann; wobei mindestens ein Rest und maximal zwei Reste ausgewählt aus der Gruppe bestehend aus W, X und Y gleich N ist/sind und genau zwei Reste ausgewählt aus der Gruppe bestehend aus RT, RV, RW, RX und RY gleich einem Anknüpfungspunkt der Einfachbindung zwischen der ersten chemischen Einheit und einer zweiten chemischen Einheit sind.
  2. Organisches Molekül nach Anspruch 1, wobei Q bei jedem Auftreten Sauerstoff ist.
  3. Organisches Molekül nach Anspruch 1 oder 2, wobei R1 bei jedem Auftreten gleich oder verschieden H, Methyl oder Phenyl ist.
  4. Organisches Molekül nach Anspruch 1 bis 3, wobei die zweite chemische Einheit bei jedem Auftreten gleich oder verschieden eine Struktur der Formel IIa aufweist oder aus einer derartigen Struktur besteht:
    Figure DE102016122812B4_0201
    wobei für # und Ra die in Anspruch 1 genannten Definitionen gelten.
  5. Organisches Molekül nach Anspruch 1 bis 4, wobei das organische Molekül eine Struktur der Formel III aufweist:
    Figure DE102016122812B4_0202
    wobei für Ra und R1 die in Anspruch 1 genannten Definitionen gelten.
  6. Organisches Molekül nach einem der Ansprüche 1 bis 4, wobei die zweite chemische Einheit jeweils eine Struktur der Formel IIb aufweist oder aus einer derartigen Struktur besteht:
    Figure DE102016122812B4_0203
    wobei Rb bei jedem Auftreten gleich oder verschieden Si(R5)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C=C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(RS), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann, ist; und für # und R5 die in Anspruch 1 genannten Definitionen gelten.
  7. Organisches Molekül nach einem der Ansprüche 1 bis 4, wobei die zweite chemische Einheit jeweils eine Struktur der Formel llc aufweist oder aus einer derartigen Struktur besteht:
    Figure DE102016122812B4_0204
    wobei Rb bei jedem Auftreten gleich oder verschieden Si(R5)3, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C=C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann, ist; und im Übrigen die in Anspruch 1 genannten Definitionen gelten.
  8. Organisches Molekül nach Anspruch 6 oder 7, wobei Rb bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 oder Ph, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Pyridinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Pyrimidinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, Triazinyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, und Carbazolyl, das jeweils durch einen oder mehrere Reste bei jedem Auftreten gleich oder verschieden und unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Me, iPr, tBu, CN, CF3 und Ph substituiert sein kann, ist.
  9. Verfahren zur Herstellung eines organischen Moleküls nach einem der Ansprüche 1 bis 8, wobei ein in 3-, 4-, 5- und 6-Position R1-substituiertes Phtalsäureanhydrid mit Amindifluorpyridin umgesetzt wird.
  10. Verwendung eines organischen Moleküls nach einem der Ansprüche 1 bis 8 als lumineszierender Emitter und/oder als Hostmaterial und/oder als Elektronentransportmaterial und/oder als Lochinjektionsmaterial und/oder als Lochblockiermaterial in einer organischen optoelektronischen Vorrichtung.
  11. Verwendung nach Anspruch 10, wobei die organische optoelektronische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus: • organischen lichtemittierenden Dioden (OLEDs), • lichtemittierenden elektrochemischen Zellen, • OLED-Sensoren, • organischen Dioden, • organischen Solarzellen, • organischen Transistoren, • organischen Feldeffekttransistoren, • organischen Lasern und • Down-Konversions-Elementen.
  12. Verwendung nach Anspruch 11, wobei die organische optoelektronische Vorrichtung ein nicht hermetisch nach außen abgeschirmter Gas- oder Dampf-Sensor ist.
  13. Zusammensetzung aufweisend oder bestehend aus: (a) mindestens einem organischen Molekül nach einem der Ansprüche 1 bis 8, und (b) einem oder mehrerer Emitter- und/oder Hostmaterialien, die von dem Molekül nach Anspruch 1 bis 8 verschiedenen sind und (c) optional einem oder mehreren Farbstoffen und/ oder einem oder mehreren Lösungsmitteln.
  14. Zusammensetzung nach Anspruch 13, wobei das mindestens eine organische Molekül nach Anspruch 1 bis 8 ein Emitter und/oder Host ist.
  15. Organische optoelektronische Vorrichtung, aufweisend ein organisches Molekül nach Anspruch 1 bis 8 oder eine Zusammensetzung nach Anspruch 13 oder 14.
  16. Organische optoelektronische Vorrichtung nach Anspruch 15, ausgeformt als eine Vorrichtung ausgewählt aus der Gruppe bestehend aus organischer lichtemittierender Diode (OLED), lichtemittierender elektrochemischer Zelle, OLED-Sensor, insbesondere nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren, organischer Diode, organischer Solarzelle, organischem Transistor, organischem Feldeffekttransistor, organischem Laser und Down-Konversion-Element.
  17. Organische optoelektronische Vorrichtung nach Anspruch 15 oder 16, aufweisend - ein Substrat, - eine Anode und - eine Kathode, wobei die Anode oder die Kathode auf das Substrat aufgebracht sind, und - mindestens eine lichtemittierende Schicht, die zwischen Anode und Kathode angeordnet ist und die ein organisches Molekül nach Anspruch 1 bis 8 oder eine Zusammensetzung nach Anspruch 13 oder 14 aufweist.
  18. Verfahren zur Herstellung eines optoelektronischen Bauelements, wobei ein organisches Molekül nach Anspruch 1 bis 8 verwendet wird.
  19. Verfahren nach Anspruch 18, umfassend die Verarbeitung des organischen Moleküls mittels eines Vakuumverdampfungsverfahrens oder aus einer Lösung.
DE102016122812.5A 2016-11-25 2016-11-25 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen Active DE102016122812B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102016122812.5A DE102016122812B4 (de) 2016-11-25 2016-11-25 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016122812.5A DE102016122812B4 (de) 2016-11-25 2016-11-25 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Publications (2)

Publication Number Publication Date
DE102016122812A1 DE102016122812A1 (de) 2018-05-30
DE102016122812B4 true DE102016122812B4 (de) 2020-10-22

Family

ID=62117742

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016122812.5A Active DE102016122812B4 (de) 2016-11-25 2016-11-25 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Country Status (1)

Country Link
DE (1) DE102016122812B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108912105A (zh) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 一种对称取代的双咔唑化合物及其应用
WO2020061146A1 (en) 2018-09-19 2020-03-26 Dow Agrosciences Llc Preparation of halogen analogs of picloram

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000850A1 (en) * 2012-06-25 2014-01-03 Tata Steel Nederland Technology B.V. Organic solar cell of the bulk heterojunction type comprising an imide based conjugated backbone compound as photoactive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000850A1 (en) * 2012-06-25 2014-01-03 Tata Steel Nederland Technology B.V. Organic solar cell of the bulk heterojunction type comprising an imide based conjugated backbone compound as photoactive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, Chi-Wan [et al.]: Thermally stable carbazole-diimides as hole transport maerials for organic light-emitting devices. In: Journal of nanoscience and nanotechnology, Vol. 12, 2012, No. 5, S. 4219-4223. - ISSN 1533-4880 *

Also Published As

Publication number Publication date
DE102016122812A1 (de) 2018-05-30

Similar Documents

Publication Publication Date Title
EP3315581B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
EP3287451B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
EP3287450B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
EP3507285B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016120373B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3504200B1 (de) Heterozyklisch substituierte biphenyle,insbesondere zur verwendung in optoelektronischen vorrichtungen
EP3478657B1 (de) Dicarbazolbiphenylderivate zur verwendung in optoelektronischen vorrichtungen
DE102017102662B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3266772B1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
DE102017102363B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3478656B1 (de) Dicarbazolbiphenylderivate zur verwendung in optoelektronischen vorrichtungen
DE102016115851B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016115853B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3581632B1 (de) Organische moleküle für optoelektronische vorrichtungen
DE102016122812B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3580300B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016112082A1 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3645523B1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
EP3399004B1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
DE102016121562B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3290411B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016123105B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3774774B1 (de) Pyridin-substituierte 2,2&#39;-di-9h-carbazol-9-yl-[1,1&#39;-biphenyl]-dicarbonitril-derivate und verwandte verbindungen zur verwendung in optoelektronischen vorrichtungen
WO2018077492A1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016115728B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: SAMSUNG DISPLAY CO., LTD., YONGIN-SI, KR

Free format text: FORMER OWNER: CYNORA GMBH, 76646 BRUCHSAL, DE

R082 Change of representative

Representative=s name: DR. WEITZEL & PARTNER PATENT- UND RECHTSANWAEL, DE