DE102016112377B4 - Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen - Google Patents

Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen Download PDF

Info

Publication number
DE102016112377B4
DE102016112377B4 DE102016112377.3A DE102016112377A DE102016112377B4 DE 102016112377 B4 DE102016112377 B4 DE 102016112377B4 DE 102016112377 A DE102016112377 A DE 102016112377A DE 102016112377 B4 DE102016112377 B4 DE 102016112377B4
Authority
DE
Germany
Prior art keywords
group
atoms
organic
radicals
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016112377.3A
Other languages
English (en)
Other versions
DE102016112377A1 (de
Inventor
Stefan Seifermann
Daniel Zink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Cynora GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cynora GmbH filed Critical Cynora GmbH
Priority to DE102016112377.3A priority Critical patent/DE102016112377B4/de
Publication of DE102016112377A1 publication Critical patent/DE102016112377A1/de
Application granted granted Critical
Publication of DE102016112377B4 publication Critical patent/DE102016112377B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Organisches Molekül, aufweisend eine Struktur der Formel ImitX = N oder C-CN, wobei mindestens ein X gleich N ist;Z ist eine direkte Bindung;Rund Rist bei jedem Auftreten gleich oder verschieden H, Deuterium, eine lineare Alkylgruppe mit 1 bis 5 C-Atomen, eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 8 C-Atomen, eine verzweigte oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 15 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste Rsubstituiert sein kann;Rist bei jedem Auftreten gleich oder verschieden H, Deuterium, N(R), OH, Si(R), B(OR), OSOR, CF, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten Rsubstituiert sein kann, wobei eine oder mehrere nicht benachbarte CH-Gruppen durch RC=CR, C≡C, Si(R), Ge(R), Sn(R), C=O, C=S, C=Se, C=NR, P(=O)(R), SO, SO, NR, O, S oder CONRersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CFoder NOersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste Rsubstituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste Rsubstituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste Rsubstituiert sein kann;Rist bei jedem Auftreten gleich oder verschieden H, Deuterium, N(R), OH, Si(R), B(OR), OSOR, CF, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten Rsubstituiert sein kann, wobei eine oder mehrere nicht benachbarte CH-Gruppen durch RC=CR, C≡C, Si(R), Ge(R), Sn(R), C=O, C=S, C=Se, C=NR, P(=O)(R), SO, SO, NR, O, S oder CONRersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CFoder NOersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste Rsubstituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste Rsubstituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste Rsubstituiert sein kann;Rist bei jedem Auftreten gleich oder verschieden H, Deuterium, OH, CF, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 5 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 5 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 5 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, CN, CFoder NOersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen;wobei jeder der Reste Roder Rauch mit einem oder mehreren weiteren Resten Roder Rein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden kann.

Description

  • Die Erfindung betrifft rein organische Moleküle und deren Verwendung in organischen lichtemittierenden Dioden (OLEDs) und in anderen organischen optoelektronischen Vorrichtungen.
  • Aus der WO 2015/175 678 A1 sind Materialien für organische lichtemittierende Dioden bekannt. Die KR 10 2015 0086994 A beschreibt organische Verbindungen und organische elektrolumineszente Vorrichtungen. Organische Moleküle zur Verwendung in organischen optoelektronischen Vorrichtungen sind aus der DE 10 2016 108 334 B3 bekannt. Die WO 2016/181846 A1 offenbart π-konjugierte Verbindungen und lichtemittierende Materialien. Außerdem bekannt ist die Verbindung 9,9'-[3,3",5,5"-Tetrakis(1,2,4-thiadiazol-5-yl) [1,1':2',1"-terphenyl]-4',5'-diyl]bis-9H-carbazol (STN Registry N. 1826111-54-9).
  • Beschreibung
  • Der vorliegenden Erfindung lag die Aufgabe zu Grunde, Moleküle bereitzustellen, die sich zur Verwendung in optoelektronischen Vorrichtungen eignen.
  • Die Erfindung stellt eine neue Klasse von organischen Molekülen bereit, die sich zur Verwendung in organischen optoelektronischen Vorrichtungen eignen.
  • Die erfindungsgemäßen organischen Moleküle sind rein organische Moleküle, weisen also keine Metallionen auf und grenzen sich so von den zur Verwendung in organischen optoelektronischen Vorrichtungen bekannten Metallkomplexverbindungen ab.
  • Die erfindungsgemäßen organischen Moleküle zeichnen sich durch Emissionen im blauen, himmelblauen oder grünen Spektralbereich und hohe Photolumineszenzquantenausbeuten aus. Die erfindungsgemäßen Moleküle zeigen insbesondere thermisch aktivierte verzögerte Fluoreszenz (TADF). Die Verwendung der erfindungsgemäßen Moleküle in einer optoelektronischen Vorrichtung, beispielsweise einer organischen lichtemittierenden Diode (OLED), führt zu höheren Effizienzen der Vorrichtung. Entsprechende OLEDs weisen eine höhere Stabilität auf als OLEDs mit bekannten Emittermaterialien und vergleichbarer Farbe.
  • Unter dem blauen Spektralbereich wird hier der sichtbare Bereich von kleiner als 470 nm verstanden. Unter dem himmelblauen Spektralbereich wird hier der Bereich von 470 nm bis 499 nm verstanden. Unter dem grünen Spektralbereich wird hier der Bereich von 500 nm bis 599 nm verstanden. Dabei liegt das Emissionsmaximum im jeweiligen Bereich.
  • Die organischen Moleküle weisen eine Struktur der Formel I auf oder bestehen aus einer Struktur gemäß Formel I:
    Figure DE102016112377B4_0002
    Darin gilt:
    • Z ist eine direkte Bindung.
    • X ist N oder C-CN, wobei mindestens ein X in Formel I gleich N ist.
    • R1 und R2 ist bei jedem Auftreten gleich oder verschieden Deuterium, eine lineare Alkylgruppe mit 1 bis 5 C-Atomen, eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 8 C-Atomen, eine verzweigte oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 15 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann.
    • Ra ist bei jedem Auftreten gleich oder verschieden H, Deuterium, N(R5)2, OH, Si(R5)3, B(OR5)2, OSO2R5, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C≡C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann.
    • R5 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, N(R6)2, OH, Si(R6)3, B(OR6)2, OSO2R6, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R6 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R6C=CR6, C≡C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S oder CONR6 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R6 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R6 substituiert sein kann.
    • R6 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, OH, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 5 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 5 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 5 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen.
    Dabei kann jeder der Reste Ra oder R5 auch mit einem oder mehreren weiteren Resten Ra oder R5 ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden.
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel II auf oder bestehen aus einer Struktur gemäß Formel II, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0003
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel III auf oder bestehen aus einer Struktur gemäß Formel III, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0004
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel IV auf oder bestehen aus einer Struktur gemäß Formel IV, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0005
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel V auf oder bestehen aus einer Struktur gemäß Formel V:
    Figure DE102016112377B4_0006
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel VI auf oder bestehen aus einer Struktur gemäß Formel VI, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0007
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel VII auf oder bestehen aus einer Struktur gemäß Formel VII, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0008
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel VIII auf oder bestehen aus einer Struktur gemäß Formel VIII, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0009
  • In einer Ausführungsform weisen die organischen Moleküle eine Struktur der Formel IX auf oder bestehen aus einer Struktur gemäß Formel IX, wobei im Übrigen die bei Formel I angegebenen Definitionen gelten:
    Figure DE102016112377B4_0010
  • In einer Ausführungsform der Erfindung sind beide X gleich N und optional die Reste R1 und R2 bei jedem Auftreten gleich oder verschieden H oder Methyl.
  • In einer weiteren Ausführungsform sind jeweils ein R1 und ein R2 gleich Methyl und die übrigen R1 und ein R2 gleich H.
  • Die Teilstruktur
    Figure DE102016112377B4_0011
    aus Formel I wird nachfolgend auch als Gruppe D bezeichnet, wobei # den Anknüpfungspunkt der Gruppe D an den mit zwei jeweils eine Gruppe X enthaltenden 6-Ringen substituierten Phenylring aus Formel I kennzeichnet. Ra und Z sind wie bei Formel I definiert.
  • In einer weiteren Ausführungsform der organischen Moleküle weist die Gruppe D eine Struktur der Formel X auf bzw. besteht aus einer Struktur der Formel X:
    Figure DE102016112377B4_0012
    wobei für # und Ra die oben genannten Definitionen gelten.
  • In einer weiteren Ausführungsform der erfindungsgemäßen organischen Moleküle weist die Gruppe D eine der Formel Xa oder der Formel Xb auf oder besteht daraus:
    Figure DE102016112377B4_0013
    wobei für #, und Ra die oben genannten Definitionen gelten.
  • Im Folgenden sind beispielhaft Ausführungsformen der Gruppe D gezeigt, wobei nur solche mit Z = direkte Bindung erfindungsgemäß sind:
    Figure DE102016112377B4_0014
    Figure DE102016112377B4_0015
    Figure DE102016112377B4_0016
    Figure DE102016112377B4_0017
    Figure DE102016112377B4_0018
    Figure DE102016112377B4_0019
    Figure DE102016112377B4_0020
    Figure DE102016112377B4_0021
    Figure DE102016112377B4_0022
    wobei für #, Ra und R5 die oben genannten Definitionen gelten. In einer Ausführungsform ist der Rest R5 bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, Methyl, Ethyl, Phenyl und Mesityl.
  • In einer Ausführungsform ist Ra bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, Methyl (Me), i-Propyl (CH(CH3)2) (iPr), t-Butyl (tBu), Phenyl (Ph) und Diphenylamin (NPh2).
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel I-2 auf oder bestehen aus einer Struktur gemäß Formel I-2:
    Figure DE102016112377B4_0023
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel II-2 auf oder bestehen aus einer Struktur gemäß Formel II-2:
    Figure DE102016112377B4_0024
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel III-2 auf oder bestehen aus einer Struktur gemäß Formel III-2:
    Figure DE102016112377B4_0025
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel IV-2 auf oder bestehen aus einer Struktur gemäß Formel IV-2:
    Figure DE102016112377B4_0026
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel V-2 auf oder bestehen aus einer Struktur gemäß Formel V-2:
    Figure DE102016112377B4_0027
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel VI-2 auf oder bestehen aus einer Struktur gemäß Formel VI-2:
    Figure DE102016112377B4_0028
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel VII-2 auf oder bestehen aus einer Struktur gemäß Formel VII-2:
    Figure DE102016112377B4_0029
    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel VIII-2 auf oder bestehen aus einer Struktur gemäß Formel VIII-2:
    Figure DE102016112377B4_0030

    wobei die oben genannten Definitionen gelten.
  • In einer bevorzugten Ausführungsform weisen die organischen Moleküle eine Struktur der Formel IX-2 auf oder bestehen aus einer Struktur gemäß Formel IX-2:
    Figure DE102016112377B4_0031

    wobei die oben genannten Definitionen gelten.
  • Im Sinne dieser Erfindung enthält eine Arylgruppe 6 bis 60 aromatische Ringatome; eine Heteroarylgruppe enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind insbesondere N, O und/oder S. Werden in der Beschreibung bestimmter Ausführungsformen der Erfindung andere, von der genannten Definition abweichende Definitionen angegeben, beispielsweise bezüglich der Zahl der aromatischen Ringatome oder der enthaltenen Heteroatome, so gelten diese.
  • Unter einer Arylgruppe bzw. Heteroarylgruppe wird ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin oder Thiophen, oder ein heteroaromatischer Polycyclus, beispielsweise Phenanthren, Chinolin oder Carbazol verstanden. Ein kondensierter (annelierter) aromatischer bzw. heteroaromatischer Polycyclus besteht im Sinne der vorliegenden Anmeldung aus zwei oder mehr miteinander kondensierten einfachen aromatischen bzw. heteroaromatischen Cyclen.
  • Unter einer Aryl- oder Heteroarylgruppe, die jeweils mit den oben genannten Resten substituiert sein kann und die über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, welche abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Fluoranthen, Benzanthracen, Benzphenanthren, Tetracen, Pentacen, Benzpyren, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen; Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Isochinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Napthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, Pyrazin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benztriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,2,3,4-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Kombinationen der genannten Gruppen.
  • Unter einer cyclischen Alkyl-, Alkoxy- oder Thioalkoxygruppe wird hier eine monocyclische, eine bicyclische oder eine polycyclische Gruppe verstanden.
  • Im Rahmen der vorliegenden Erfindung werden unter einer C1- bis C40-Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, beispielsweise die Reste Methyl, Ethyl, n-Propyl, i-Propyl, Cyclopropyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, Cyclobutyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t-Pentyl, 2-Pentyl, neoPentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 1-Methylcyclopentyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1-Methylcyclohexyl, n-Octyl, 2-Ethylhexyl, Cyclooctyl, 1-Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]-octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Adamantyl, Trifluor-methyl, Pentafluorethyl, 2,2,2-Trifluorethyl, 1,1-Dimethyl-n-hex-1-yl-, 1,1-Dimethyl-n-hept-1-yl-, 1,1-Dimethyl-n-oct-1-yl-, 1,1-Dimethyl-n-dec-1-yl-, 1,1-Dimethyl-n-dodec-1-yl-, 1,1-Dimethyl-n-tetradec-1-yl-, 1,1-Dimethyl-n-hexadec-1-yl-, 1,1-Dimethyl-n-octadec-1-yl-, 1,1-Diethyl-n-hex-1-yl-, 1,1-Diethyl-n-hept-1-yl-, 1,1-Diethyl-n-oct-1-yl-, 1,1-Diethyl-n-dec-1-yl-, 1,1-Diethyl-n-dodec-1-yl-, 1,1-Diethyl-n-tetradec-1-yl-, 1,1-Diethyln-n-hexadec-1-yl-, 1,1-Diethyl-n-octadec-1-yl-, 1-(n-Propyl)-cyclohex-1-yl-, 1-(n-Butyl)-cyclohex-1-yl-, 1-(n-Hexyl)-cyclohex-1-yl-, 1-(n-Octyl)-cyclohex-1-yl- und 1-(n-Decyl)-cyclohex-1-yl- verstanden. Unter einer Alkenylgruppe werden beispielsweise Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl oder Cyclooctadienyl verstanden. Unter einer Alkinylgruppe werden beispielsweise Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer C1- bis C40-Alkoxygruppe werden beispielsweise Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2-Methylbutoxy verstanden.
  • Eine Ausführungsform der Erfindung betrifft organische Moleküle, welche einen ΔE(S1-T1)-Wert zwischen dem untersten angeregten Singulett (S1)- und dem darunter liegenden Triplett (T1)-Zustand von nicht höher als 5000cm-1, insbesondere nicht höher als 3000cm-1, oder nicht höher als 1500cm-1 oder 1000cm-1 aufweisen und/oder eine Emissionslebensdauer von höchstens 150 µs, insbesondere von höchstens 100 µs, von höchsten 50 µs, oder von höchstens 10 µs aufweisen und/oder eine Hauptemissionsbande mit einer Halbwertsbreite kleiner als 120 nm, insbesondere kleiner als 100 nm, kleiner als 80 nm, oder kleiner als 60 nm aufweisen.
  • In einem weiteren Aspekt betrifft die Beschreibung ein Verfahren zur Herstellung eines erfindungsgemäßen organischen Moleküls der hier beschriebenen Art (mit einer eventuellen Folgeumsetzung), wobei ein Dibromdifluorbenzol als Edukt eingesetzt wird. Dibromdifluorbenzole sind 1,2-Dibrom-4,5-difluorbenzol, 1,3-Dibrom-4,6-difluorbenzol, 1,5-Dibrom-2,4-difluorbenzol, 1,4-Dibrom-2,5-difluorbenzol, 1,3-Dibrom-2,5-difluorbenzol, 1,4-Dibrom-2,6-difluorbenzol, 1,3-Dibrom-2,4-difluorbenzol, 1,4-Dibrom-2,3-difluorbenzol oder 1,2-Dibrom-3,6-difluorbenzol.
    Figure DE102016112377B4_0032
  • In einer Ausführungsform wird das Dibromdifluorbenzol in einer nukleophilen Substitutionsreaktion zum Zwischenprodukt E1 umgesetzt. Das Produkt wird durch Deprotonierung des der Formel I-1 entsprechenden Amins und anschließender nukleophiler Substitution der Fluorgruppen erhalten. Typische Bedingungen beinhalten die Verwendung einer Base wie beispielweise tribasisches Kaliumphosphat oder Natriumhydrid in einem aprotischen polaren Lösungsmittel wie beispielweise Dimetylsulfoxid (DMSO) oder N,N-Dimethylformamid (DMF). Anschließend wird das Zwischenprodukt E1 mit einer Pyridinboronsäure (Pyridin-4-boronsäure, Pyridin-3-boronsäure oder Pyridin-2-boronsäure) in einer Palladium-katalysierten Kreuzkupplungsreaktion zum Produkt umgesetzt. Durch Wahl des Dibromdifluorbenzol und der relativen Position der Boronsäure- und des Restes R1 (bzw. R2) am Pyridinring können unterschiedliche Substitutionsmuster erhalten werden.
  • In einer weiteren Ausführungsform erfolgt die Synthese nach dem folgenden Schema:
    Figure DE102016112377B4_0033
  • In einem weiteren Aspekt betrifft die Erfindung die Verwendung der organischen Moleküle als lumineszierender Emitter oder als Hostmaterial in einer organischen optoelektronischen Vorrichtung, insbesondere wobei die organische optoelektronische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:
    • • organischen lichtemittierenden Dioden (OLEDs),
    • • lichtemittierenden elektrochemischen Zellen,
    • • OLED-Sensoren, insbesondere in nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren,
    • • organischen Dioden,
    • • organischen Solarzellen,
    • • organischen Transistoren,
    • • organischen Feldeffekttransistoren,
    • • organischen Lasern und
    • • Down-Konversions-Elementen.
  • In einem weiteren Aspekt betrifft die Erfindung eine Zusammensetzung aufweisend oder bestehend aus:
    1. (a) mindestens einem erfindungsgemäßen organischen Molekül, insbesondere als Emitter und/oder Host, und
    2. (b) mindestens ein, d. h. ein oder mehrere Emitter- und/oder Hostmaterialien, die von dem erfindungsgemäßen organischen Molekül verschiedenen ist bzw. sind und
    3. (c) optional eine oder mehreren Farbstoffen und/ oder einem oder mehreren organischen Lösungsmitteln.
  • In einer Ausführungsform besteht die erfindungsgemäße Zusammensetzung aus einem erfindungsgemäßen organischen Molekül und einem oder mehreren Hostmaterialien. Das oder die Hostmaterialen weisen insbesondere Triplett (T1)- und Singulett (S1)- Energieniveaus auf, die energetisch höher liegen als die Triplett (T1)- und Singulett (S1)- Energieniveaus des erfindungsgemäßen organischen Moleküls. In einer Ausführungsform weist die Zusammensetzung neben dem erfindungsgemäßen organischen Molekül ein elektronendominantes und ein lochdominantes Hostmaterial auf. Das höchste besetzte Orbital (HOMO) und das niedrigste unbesetzte Orbital (LUMO) des lochdominanten Hostmaterials liegen energetisch insbesondere höher als das des elektronendominanten Hostmaterials. Das HOMO des lochdominanten Hostmaterials liegt energetisch unter dem HOMO des erfindungsgemäßen organischen Moleküls, während das LUMO des elektronendominanten Hostmaterials energetisch über dem LUMO des erfindungsgemäßen organischen Moleküls liegt. Um Exciplex-Formation zwischen Emitter und Hostmaterial oder Hostmaterialien zu vermeiden, sollten die Materialien so gewählt sein, dass die Energieabstände zwischen den jeweiligen Orbitalen gering sind. Der Abstand zwischen dem LUMO des elektronendominanten Hostmaterials und dem LUMO des erfindungsgemäßen organischen Moleküls beträgt insbesondere weniger als 0,5 eV, bevorzugt weniger als 0,3 eV, noch bevorzugter weniger als 0,2 eV. Der Abstand zwischen dem HOMO des lochdominanten Hostmaterials und dem HOMO des erfindungsgemäßen organischen Moleküls beträgt insbesondere weniger als 0,5 eV, bevorzugt weniger als 0,3 eV, noch bevorzugter weniger als 0,2 eV.
  • In einem weiteren Aspekt betrifft die Erfindung eine organische optoelektronische Vorrichtung, die ein erfindungsgemäßes organisches Molekül oder eine erfindungsgemäße Zusammensetzung aufweist. Die organische optoelektronische Vorrichtung ist insbesondere ausgeformt als eine Vorrichtung ausgewählt aus der Gruppe bestehend aus organischer lichtemittierender Diode (OLED); lichtemittierender elektrochemischer Zelle; OLED-Sensor, insbesondere nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren; organischer Diode; organischer Solarzelle; organischem Transistor; organischem Feldeffekttransistor; organischem Laser und Down-Konversion-Element.
  • Eine organische optoelektronische Vorrichtung aufweisend
    • - ein Substrat,
    • - eine Anode und
    • - eine Kathode, wobei die Anode oder die Kathode auf das Substrat aufgebracht sind, und
    • - mindestens eine lichtemittierende Schicht, die zwischen Anode und Kathode angeordnet ist und die ein erfindungsgemäßes organisches Molekül aufweist, stellt einen weitere Ausführungsform der Erfindung dar.
  • In einer Ausführungsform handelt es sich bei der optoelektronischen Vorrichtung um eine OLED. Eine typische OLED weist beispielsweise folgenden Schichtaufbau auf:
    1. 1. Substrat (Trägermaterial)
    2. 2. Anode
    3. 3. Lochinjektionsschicht (hole injection layer, HIL)
    4. 4. Lochtransportschicht (hole transport layer, HTL)
    5. 5. Elektronenblockierschicht (electron blocking layer, EBL)
    6. 6. Emitterschicht (emitting layer, EML)
    7. 7. Lochblockierschicht (hole blocking layer, HBL)
    8. 8. Elektronenleitschicht (electron transport layer, ETL)
    9. 9. Elektroneninjektionsschicht (electron injection layer, EIL)
    10. 10. Kathode.
  • Dabei sind einzelne Schichten lediglich in optionaler Weise vorhanden. Weiterhin können mehrere dieser Schichten zusammenfallen. Und es können einzelne Schichten mehrfach im Bauteil vorhanden sein.
  • Gemäß einer Ausführungsform ist mindestens eine Elektrode des organischen Bauelements transluzent ausgebildet. Hier wird mit „transluzent“ eine Schicht bezeichnet, die durchlässig für sichtbares Licht ist. Dabei kann die transluzente Schicht klar durchscheinend, also transparent, oder zumindest teilweise Licht absorbierend und/oder teilweise Licht streuend sein, so dass die transluzente Schicht beispielsweise auch diffus oder milchig durchscheinend sein kann. Insbesondere ist eine hier als transluzent bezeichnete Schicht möglichst transparent ausgebildet, so dass insbesondere die Absorption von Licht so gering wie möglich ist.
  • Gemäß einer weiteren Ausführungsform weist das organische Bauelement, insbesondere eine OLED, einen invertierten Aufbau auf. Der invertierte Aufbau zeichnet sich dadurch aus, dass sich die Kathode auf dem Substrat befindet und die anderen Schichten entsprechend invertiert aufgebracht werden:
    1. 1. Substrat (Trägermaterial)
    2. 2. Kathode
    3. 3. Elektroneninjektionsschicht (electron injection layer, EIL)
    4. 4. Elektronenleitschicht (electron transport layer, ETL)
    5. 5. Lochblockierschicht (hole blocking layer, HBL)
    6. 6. Emissionsschicht bzw. Emitterschicht (emitting layer, EML)
    7. 7. Elektronenblockierschicht (electron blocking layer, EBL)
    8. 8. Lochtransportschicht (hole transport layer, HTL)
    9. 9. Lochinjektionsschicht (hole injection layer, HIL)
    10. 10. Anode.
  • Dabei sind einzelne Schichten lediglich in optionaler Weise vorhanden. Weiterhin können mehrere dieser Schichten zusammenfallen. Und es können einzelne Schichten mehrfach im Bauteil vorhanden sein.
  • In einer Ausführungsform wird bei der invertierten OLED die Anodenschicht des typischen Aufbaus, z.B. eine ITO-Schicht (Indium-Zinn-Oxid), als Kathode geschaltet.
  • Gemäß einer weiteren Ausführungsform weist das erfindungsgemäße organische Bauelement, insbesondere eine OLED, einen gestapelten Aufbau auf. Hierbei werden die einzelnen Bauelelemente, insbesondere OLEDs, übereinander und nicht wie üblich nebeneinander angeordnet. Durch einen gestapelten Aufbau kann die Erzeugung von Mischlicht ermöglicht werden. Beispielsweise kann dieser Aufbau bei der Erzeugung von weißem Licht eingesetzt werden, für dessen Erzeugung das gesamte sichtbare Spektrum typischerweise durch die Kombination des emittierten Lichts von blauen, grünen und roten Emittern abgebildet wird. Weiterhin können bei praktisch gleicher Effizienz und identischer Leuchtdichte signifikant längere Lebensdauern im Vergleich zu üblichen OLEDs erzielt werden. Für den gestapelten Aufbau wird optional eine sogenannte Ladungserzeugungsschicht (charge generation layer, CGL) zwischen zwei OLEDs eingesetzt. Diese besteht aus einer n-dotierten und einem p-dotierten Schicht, wobei die n-dotierte Schicht typischerweise näher an der Anode aufgebracht wird.
  • In einer Ausführungsform - einer sogenannten Tandem-OLED - treten zwei oder mehr Emissionsschichten zwischen Anode und Kathode auf. In einer Ausführungsform sind drei Emissionsschichten übereinander angeordnet, wobei eine Emissionsschicht rotes Licht emittiert, eine Emissionsschicht grünes Licht emittiert und eine Emissionsschicht blaues Licht emittiert und optional weitere Ladungserzeugungs-, Blockier- oder Transportschichten zwischen den einzelnen Emissionsschichten aufgebracht sind. In einer weiteren Ausführungsform werden die jeweiligen Emissionsschichten direkt angrenzend aufgebracht. In einer Ausführungsform befindet sich jeweils eine Ladungserzeugungsschicht zwischen den Emissionsschichten. Weiterhin können in einer OLED direkt angrenzende und durch Ladungserzeugungsschichten getrennte Emissionsschichten kombiniert werden.
  • Über den Elektroden und den organischen Schichten kann weiterhin noch eine Verkapselung angeordnet sein. Die Verkapselung kann beispielsweise in Form eines Glasdeckels oder in Form einer Dünnschichtverkapselung ausgeführt sein.
  • Als Trägermaterial der optoelektronischen Vorrichtung kann beispielsweise Glas, Quarz, Kunststoff, Metall, ein Siliziumwafer oder jedes andere geeignete feste oder flexible, optional durchsichtige Material dienen. Das Trägermaterial kann beispielsweise ein oder mehrere Materialien in Form einer Schicht, einer Folie, einer Platte oder einem Laminat aufweisen.
  • Als Anode der optoelektronischen Vorrichtung können beispielsweise transparente leitende Metalloxide wie beispielsweise ITO (Indium-Zinn-Oxid), Zinkoxid, Zinnoxid, Cadmiumoxid, Titanoxid, Indiumoxid oder Aluminiumzinkoxid (AZO), Zn2SnO4, CdSnO3, ZnSnO3, MgIn2O4, GaInO3, Zn2In2O5 oder In4Sn3O12 oder Mischungen unterschiedlicher transparenter leitender Oxide dienen.
  • Als Materialien einer HIL können beispielsweise PEDOT:PSS (Poly-3,4-ethylendioxythiophen:Polystyrolsulfonsäure), PEDOT (Poly-3,4-ethylendioxythiophen), m-MTDATA (4,4',4"-Tris[phenyl(m-tolyl)amino]triphenylamin), Spiro-TAD (2,2',7,7'-Tetrakis(N,N-diphenylamino)-9,9-spirobifluoren), DNTPD (4,4'-Bis[N-[4-{N,N-bis(3-methyl-phenyl)amino}phenyl]-N-phenylamino]biphenyl), NPB (N,N'-Bis-(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamin), NPNPB (N,N'-Diphenyl-N,N'-di-[4-(N,N-diphenyl-amino)phenyl]benzol), MeO-TPD (N,N,N',N'-Tetrakis(4-methoxyphenyl)benzol), HAT-CN (1,4,5,8,9,11-Hexaazatriphenylen-hexacarbonitril) oder Spiro-NPD (N,N'-diphenyl-N,N'-Bis-(1-naphthyl)-9,9'-spirobifluorene-2,7-diamin) dienen. Beispielhaft ist die Schichtdicke 10-80 nm. Desweiteren können kleine Moleküle können verwendet werden (z. B. Kupfer-Phthalocyanin (CuPc z. B. 10 nm dick)) oder Metalloxide wie beispielhaft MoO3, V2O5.
  • Als Materialien einer HTL können tertiäre Amine, Carbazolderivate, mit Polystyrolsulfonsäure dotiertes Polyethylendioxythiophen, mit Camphersulfonsäure dotiertes Polyanilin poly-TPD (Poly(4-butylphenyl-diphenyl-amin)), [alpha]-NPD (Poly(4-butylphenyl-diphenyl-amin)), TAPC (4,4'-Cyclohexyliden-bis[N,N-bis(4-methylphenyl)benzenamin]), TCTA (Tris(4-carbazoyl-9-ylphenyl)amin), 2-TNATA (4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamin), Spiro-TAD, DNTPD, NPB, NPNPB, MeO-TPD, HAT-CN oder TrisPcz (9,9'-Diphenyl-6-(9-phenyl-9H-carbazol-3-yl)-9H,9'H-3,3'-bicarbazol) dienen. Beispielhaft ist die Schichtdicke 10-100 nm.
  • Die HTL kann eine p-dotierte Schicht aufweisen, die einen anorganischen oder organischen Dotierstoff in einer organischen löcherleitenden Matrix aufweist. Als anorganischer Dotierstoff können beispielsweise Übergangsmetalloxide wie etwa Vanadiumoxid, Molybdänoxid oder Wolframoxid genutzt werden. Als organische Dotierstoffe können beispielsweise Tetrafluorotetracyanoquinodimethan (F4-TCNQ), Kupfer-Pentafluorobenzoat (Cu(I)pFBz) oder Übergangsmetallkomplexe verwendet werden. Beispielhaft ist die Schichtdicke 10 nm bis 100 nm.
  • Als Materialien einer Elektronenblockierschicht können beispielsweise mCP (1,3-Bis(carbazol-9-yl)benzol), TCTA, 2-TNATA, mCBP (3,3-Di(9H-carbazol-9-yl)biphenyl), tris-Pcz (9,9'-Diphenyl-6-(9-phenyl-9H-carbazol-3-yl)-9H,9'H-3,3'-bicarbazol), CzSi (9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazol) oder DCB (N,N'-Dicarbazolyl-1,4-dimethylbenzol) dienen. Beispielhaft ist die Schichtdicke 10nm bis 50 nm.
  • Die Emitter-Schicht EML oder Emissionsschicht besteht aus oder enthält Emittermaterial oder eine Mischung aufweisend mindestens zwei Emittermaterialien und optional ein oder mehreren Hostmaterialien. Geeignete Hostmaterialien sind beispielsweise mCP, TCTA, 2-TNATA, mCBP, CBP (4,4'-Bis-(N-carbazolyl)-biphenyl), Sif87 (Dibenzo[b,d]thiophen-2-yltriphenylsilan), Sif88 (Dibenzo[b,d]thiophen-2-yl)diphenylsilan) oder DPEPO (Bis[2-((oxo)diphenylphosphino)phenyl]ether). Für im Grünen oder im Roten emittierendes Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien eignen sich die gängigen Matrixmaterialien wie CBP. Für im Blauen emittierendes Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien können UHG-Matrixmaterialien (Ultra-High energy Gap Materialien) (siehe z. B. M.E. Thompson et al., Chem. Mater. 2004, 16, 4743) oder andere sogenannten Wide-Gap-Matrixmaterialien eingesetzt werden. Beispielhaft ist die Schichtdicke 10 nm bis 250 nm.
  • Die Lochblockierschicht HBL kann beispielsweise BCP (2,9-Dimethyl-4,7-diphenyl-1,10-phenanthrolin = Bathocuproin), Bis-(2-methyl-8-hydroxychinolinato)-(4-phenylphenolato)-aluminium(III) (BAlq), Nbphen (2,9-Bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthrolin), Alq3 (Aluminium-tris(8-hydroxychinolin)), TSPO1 (Diphenyl-4-triphenylsilylphenyl-phosphinoxid) oder TCB/TCP (1,3,5-Tris(N-carbazolyl)benzol/ 1,3,5-tris(carbazol)-9-yl) benzol) aufweisen. Beispielhaft ist die Schichtdicke 10 nm bis 50 nm.
  • Die Elektronentransportschicht ETL kann beispielsweise Materialien auf Basis von AlQ3, TSPO1, BPyTP2 (2,7-Di(2,2'-bipyridin-5-yl)triphenyl)), Sif87, Sif88, BmPyPhB (1,3-Bis[3,5-di(pyridin-3-yl)phenyl]benzol) oder BTB (4,4'-Bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,1'-biphenyl) aufweisen. Beispielhaft ist die Schichtdicke 10 nm bis 200 nm.
  • Als Materialien einer dünnen Elektroneninjektionsschicht EIL können beispielsweise CsF, LiF, 8-Hydroxyquinolinolatolithium (Liq), Li2O, BaF2, MgO oder NaF verwendet werden.
  • Als Materialien der Kathodenschicht können Metalle oder Legierungen dienen, beispielsweise Al, Al > AlF, Ag, Pt, Au, Mg, Ag:Mg. Typische Schichtdicken betragen 100 nm bis 200 nm. Insbesondere werden ein oder mehrere Metalle verwendet, die stabil an der Luft sind und/oder die selbstpassivierend, beispielsweise durch Ausbildung einer dünnen schützenden Oxidschicht, sind.
  • Als Materialien zu Verkapselung sind beispielsweise Aluminiumoxid, Vanadiumoxid, Zinkoxid, Zirkoniumoxid, Titanoxid, Hafniumoxid, Lanthanoxid und/oder Tantaloxid geeignet.
  • In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung ist das erfindungsgemäße organische Molekül als Emissionsmaterial in einer lichtemittierenden Schicht EML eingesetzt, wobei es entweder als Reinschicht oder in Kombination mit einem oder mehreren Hostmaterialien eingesetzt ist.
  • Der Massenanteil des erfindungsgemäßen organischen Moleküls an der Emitter-Schicht EML beträgt in einer weiteren Ausführungsform in einer lichtemittierenden Schicht in optischen Licht emittierenden Vorrichtungen, insbesondere in OLEDs, zwischen 1 % und 80 %. In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung ist die lichtemittierende Schicht auf ein Substrat aufgebracht, wobei bevorzugt eine Anode und eine Kathode auf das Substrat aufgebracht sind und die lichtemittierende Schicht zwischen Anode und Kathode aufgebracht ist.
  • Die lichtemittierende Schicht kann ausschließlich ein erfindungsgemäßes organisches Molekül in 100 % Konzentration aufweisen, wobei die Anode und die Kathode auf das Substrat aufgebracht sind, und die lichtemittierende Schicht zwischen Anode und Kathode aufgebracht ist.
  • In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung sind eine löcher- und elektroneninjizierende Schicht zwischen Anode und Kathode, und eine löcher- und elektronentransportierende Schicht zwischen löcher- und elektroneninjizierende Schicht, und die lichtemittierende Schicht zwischen löcher- und elektronentransportierender Schicht aufgebracht.
  • Die organische optoelektronische Vorrichtung weist in einer weiteren Ausführungsform der Erfindung auf: ein Substrat, eine Anode, eine Kathode und mindestens je eine löcher- und elektroneninjizierende Schicht, und mindestens je eine löcher- und elektronentransportierende Schicht, und mindestens eine lichtemittierende Schicht, die erfindungsgemäßes organisches Molekül und ein oder mehrere Hostmaterialen aufweist, deren Triplett (T1)- und Singulett (S1)-Energieniveaus energetisch höher liegen als die Triplett (T1)- und Singulett (S1)-Energieniveaus des organischen Moleküls, wobei die Anode und die Kathode auf das Substrat aufgebracht ist, und die löcher- und elektroneninjizierende Schicht zwischen Anode und Kathode aufgebracht ist, und die löcher- und elektronentransportierende Schicht zwischen löcher- und elektroneninjizierende Schicht aufgebracht ist, und die lichtemittierende Schicht zwischen löcher- und elektronentransportierende Schicht aufgebracht ist.
  • In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines optoelektronischen Bauelements. Dabei wird ein erfindungsgemäßes organisches Molekül verwendet.
  • In einer Ausführungsform umfasst das Herstellungsverfahren die Verarbeitung des erfindungsgemäßen organischen Moleküls mittels eines Vakuumverdampfungsverfahrens oder aus einer Lösung.
  • Erfindungsgemäß ist auch ein Verfahren zur Herstellung einer erfindungsgemäßen optoelektronischen Vorrichtung, bei dem mindestens eine Schicht der optoelektronischen Vorrichtung
    • - mit einem Sublimationsverfahren beschichtet wird,
    • - mit einem OVPD (Organic Vapor Phase Deposition) Verfahren beschichtet wird,
    • - mit einer Trägergassublimation beschichtet wird, und/oder
    • - aus Lösung oder mit einem Druckverfahren hergestellt wird.
  • Beispiele
  • Figure DE102016112377B4_0034
    Figure DE102016112377B4_0035
  • Die allgemeinen Synthesevorschriften AAV1 und AAV2 gehören zum oben gezeigten allgemeinen Syntheseschema 1; die allgemeinen Synthesevorschriften AAV3, AAV4 und AAV5 gehören zum oben gezeigten allgemeinen Syntheseschema 2.
    Figure DE102016112377B4_0036
  • Das entsprechende Difluor-dibrom-benzol (1,00 Aquiv.), ein entsprechendes Carbazolderivat (2,00 Aquiv.) und tribasisches Kaliumphosphat (4,00 Aquiv.) werden unter Stickstoff in DMSO suspendiert und bei 120°C für 12 bis 24 h gerührt. Anschließend wird die Reaktionsmischung auf gesättigte NaCI-Lösung gegeben und mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet über MgSO4 und das Lösemittel im Vakuum entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie oder durch Umkristallisation gereinigt.
    Figure DE102016112377B4_0037
  • Das Zwischenprodukt E1 (1,00 Aquiv.), ein Pyridin-4-boronsäurederivat (3,6 Äquiv.), Tris(dibenzylideneacetone)dipalladium (0,04 Äquiv.), Tricyclohexylphosphin (0,16 Äquiv.) und tribasisches Kaliumphosphat (5 Äquiv.) werden unter Stickstoff in Dioxan und Wasser (5:1) für 12 - 24 h bei 100 °C gerührt. Anschließend wird die Reaktionsmischung auf gesättigte NaCl-Lösung gegeben und mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet über MgSO4 und das Lösemittel im Vakuum entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie oder durch Umkristallisation gereinigt.
    Figure DE102016112377B4_0038
  • Das entsprechende Difluor-dibrom-benzol (1,00 Aquiv.), ein 4-Cyanophenylboronsäure-Derivat (1,1 Äquiv.), Tris(dibenzylideneacetone)dipalladium (0,02 Äquiv.), 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0,8 Äquiv.) und tribasisches Kaliumphosphat (2,5 Äquiv.) werden unter Stickstoff in Toluol und Wasser (5:1) für 12 - 24 h bei 100 °C gerührt. Anschließend wird die Reaktionsmischung auf gesättigte NaCI-Lösung gegeben und mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet über MgSO4 und das Lösemittel im Vakuum entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie oder durch Umkristallisation gereinigt.
    Figure DE102016112377B4_0039
  • Zwischenprodukt E2 (1,00 Aquiv.), ein entsprechendes Carbazolderivat (2,00 Aquiv.) und tribasisches Kaliumphosphat (4,00 Aquiv.) werden unter Stickstoff in DMSO suspendiert und bei 120°C für 12 bis 24 h gerührt. Anschließend wird die Reaktionsmischung auf gesättigte NaCI-Lösung gegeben und mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet über MgSO4 und das Lösemittel im Vakuum entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie oder durch Umkristallisation gereinigt.
    Figure DE102016112377B4_0040
    Figure DE102016112377B4_0041
  • Das Zwischenprodukt E3 (1,00 Aquiv.), das entsprechende Pyridin-4-boronsäurederivat (1,8 Äquiv.), Tris(dibenzylideneacetone)dipalladium (0,04 Äquiv.), Tricyclohexylphosphin (0,16 Äquiv.) und tribasisches Kaliumphosphat (2,5 Äquiv.) werden unter Stickstoff in Dioxan und Wasser (5:1) für 12 - 24 h bei 100 °C gerührt. Anschließend wird die Reaktionsmischung auf gesättigte NaCI-Lösung gegeben und mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet über MgSO4 und das Lösemittel im Vakuum entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie oder durch Umkristallisation gereinigt.
  • Photophysikalische Messungen
  • Vorbehandlung von optischen Gläsern
  • Alle Gläser (Küvetten und Substrate aus Quarzglas, Durchmesser: 1 cm) wurden nach jeder Benutzung gereinigt: Je dreimaliges Spülen mit Dichlormethan, Aceton, Ethanol, demineralisiertem Wasser, Einlegen in 5 % Hellmanex-Lösung für 24 h, gründliches Ausspülen mit demineralisiertem Wasser. Zum Trocknen wurden die optischen Gläser mit Stickstoff abgeblasen.
  • Probenvorbereitung, Film: Spin-Coating
  • Gerät: Spin150, SPS euro.
  • Die Probenkonzentration entsprach 10 mg/ml, angesetzt in Toluol oder Chlorbenzol. Programm: 1) 3 s bei 400 U/min; 2) 20 s bei 1000 U/min bei 1000 Upm/ s. 3) 10 s bei 4000 U/min bei 1000 Upm/s. Die Filme wurden nach dem Beschichten für 1 min bei 70 °C an Luft auf einer Präzisionsheizplatte von LHG getrocknet.
  • Photolumineszenzspektroskopie und TCSPC
  • Steady-state Emissionsspektroskopie wurde mit einem Fluoreszenzspektrometer der Horiba Scientific, Modell FluoroMax-4 durchgeführt, ausgestattet mit einer 150 W Xenon-Arc Lampe, Anregungs- und Emissionsmonochromatoren und einer Hamamatsu R928 Photomultiplier-Röhre, sowie einer „zeit-korrelierten Einphotonzähl“ (Time-correlated single-photon counting, TCSPC)-Option. Emissions- und Anregungsspektren wurden korrigiert durch Standardkorrekturkurven.
  • Die Emissionsabklingzeiten wurden ebenfalls auf diesem System gemessen unter Verwendung der TCSPC-Methode mit dem FM-2013 Zubehör und einem TCSPC-Hub von Horiba Yvon Jobin. Anregungsquellen:
    • NanoLED 370 (Wellenlänge: 371 nm, Pulsdauer: 1,1 ns)
    • NanoLED 290 (Wellenlänge: 294 nm, Pulsdauer: <1 ns)
    • SpectraLED 310 (Wellenlänge: 314 nm)
    • SpectraLED 355 (Wellenlänge: 355 nm).
  • Die Auswertung (exponentielles Fitten) erfolgte mit dem Softwarepaket DataStation und der DAS 6 Auswertungssoftware. Der Fit wurde über die Chi-Quadrat-Methode angegeben c 2 = k = 1 i ( e i o i ) 2 e i
    Figure DE102016112377B4_0042
    mit ei: Durch den Fit vorhergesagte Größe und oi: gemessenen Größe.
  • Quanteneffizienzbestimmung
  • Die Messung der Photolumineszenzquantenausbeute (PLQY) erfolgte mittels eines Absolute PL Quantum Yield Measurement C9920-03G-Systems der Hamamatsu Photonics. Dieses besteht aus einer 150 W Xenon-Gasentladungslampe, automatisch justierbaren Czerny-Turner Monochromatoren (250 - 950 nm) und einer Ulbricht-Kugel mit hochreflektierender Spektralon-Beschichtung (einem Teflon-Derivat), die über ein Glasfaserkabel mit einem PMA-12 Vielkanaldetektor mit BT- (back thinned-) CCD-Chip mit 1024 x 122 Pixeln (Größe 24 x 24 µm) verbunden ist. Die Auswertung der Quanteneffizienz und der CIE-Koordinaten erfolgte mit Hilfe der Software U6039-05 Version 3.6.0. Das Emissionsmaximum wird in nm, die Quantenausbeute Φ in % und die CIE-Farbkoordinaten als x,y-Werte angegeben.
  • Die Photolumineszenzquantenausbeute wurde nach folgendem Protokoll bestimmt:
    1. 1) Durchführung der Qualitätssicherung: Als Referenzmaterial dient Anthracene in Ethanol mit bekannter Konzentration.
    2. 2) Ermitteln der Anregungswellenlänge: Es wurde zuerst das Absorbtionsmaximum des organischen Moleküls bestimmt und mit diesem angeregt.
    3. 3) Durchführung der Probenmessung:
      • Es wurde von entgasten Lösungen und Filmen unter Stickstoff-Atmosphäre die absolute Quantenausbeute bestimmt.
    Die Berechnung erfolgte systemintern nach folgender Gleichung: Φ P L = n p h o t o n , e m i t t i e r t n p h o t o n , a b s o r b i e r t = λ h c [ I n t e m i t t i e r t P r o b e ( λ ) I n t a b s o r b i e r t P r o b e ( λ ) ] d λ λ h c [ I n t e m i t t i e r t R e f e r e n z ( λ ) I n t a b s o r b i e r t R e f e r e n z ( λ ) ] d λ
    Figure DE102016112377B4_0043
    mit der Photonenzahl nphoton und der Intensität Int.
  • Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen aus der Gasphase
  • Mit den erfindungsgemäßen organischen Molekülen können OLED-Devices mittels Vakuum-Sublimationstechnik erstellt werden.
    Diese noch nicht optimierten OLEDs können standardmäßig charakterisiert werden; hierfür werden die Elektrolumineszenzspektren, die externe Quanteneffizienz (gemessen in %) in Abhängigkeit von der Helligkeit, berechnet aus dem von der Fotodiode detektiertem Licht, den Elektrolumineszenzspektren und dem Strom aufgenommen.
  • Beispiel 1
  • Figure DE102016112377B4_0044
  • Beispiel 1 wurde nach AAV1 (Ausbeute 60 %) und AAV2 (Ausbeute 65 %) hergestellt. Dünnschichtchromatografie: Rf = 0,36 (Cyclohexan/Ethylacetat 1:1)
  • 1 zeigt das Emissionsspektrum von Beispiel 1 (10 % in PMMA). Das Emissionsmaximum liegt bei 430 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 41 % und die Halbwertsbreite beträgt 86 nm.
  • Beispiel 2
  • Figure DE102016112377B4_0045
  • Beispiel 2 wurde nach AAV1 (Ausbeute 44 %) und AAV2 (Ausbeute 46 %) hergestellt.
    2 zeigt das Emissionsspektrum von Beispiel 2 (10 % in PMMA). Das Emissionsmaximum liegt bei 462 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 39 % und die Halbwertsbreite beträgt 90 nm.
  • Beispiel 3
  • Figure DE102016112377B4_0046
  • Beispiel 3 wurde nach AAV 1 (Ausbeute 72 %) und AAV2 (Ausbeute 1 %) hergestellt. Dünnschichtchromatografie: Rf = 0,05 (Cyclohexan/Ethylacetat 5:1)
    3 zeigt das Emissionsspektrum von Beispiel 3 (10 % in PMMA). Das Emissionsmaximum liegt bei 449 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 40 % und die Halbwertsbreite beträgt 99 nm.
  • Beispiel 4
  • Figure DE102016112377B4_0047
  • Beispiel 4 wurde nach AAV 3 (Ausbeute 37 %), AAV4 (Ausbeute 83 %) und AAV5 (Ausbeute 90 %) hergestellt.
    Dünnschichtchromatografie: Rf = 0,8 (Ethylacetat)
    4 zeigt das Emissionsspektrum von Beispiel 4 (10 % in PMMA). Das Emissionsmaximum liegt bei 502 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 47 % und die Halbwertsbreite beträgt 113 nm.
  • Weitere Beispiele organischer Moleküle mit einer Struktur gemäß Formel I:
    Figure DE102016112377B4_0048
    Figure DE102016112377B4_0049
    Figure DE102016112377B4_0050
    Figure DE102016112377B4_0051
    Figure DE102016112377B4_0052
    Figure DE102016112377B4_0053
    Figure DE102016112377B4_0054
    Figure DE102016112377B4_0055
    Figure DE102016112377B4_0056
    Figure DE102016112377B4_0057
    Figure DE102016112377B4_0058
    Figure DE102016112377B4_0059
    Figure DE102016112377B4_0060
    Figure DE102016112377B4_0061
    Figure DE102016112377B4_0062
    Figure DE102016112377B4_0063
    Figure DE102016112377B4_0064
    Figure DE102016112377B4_0065
    Figure DE102016112377B4_0066
    Figure DE102016112377B4_0067
    Figure DE102016112377B4_0068
    Figure DE102016112377B4_0069
    Figure DE102016112377B4_0070
    Figure DE102016112377B4_0071
    Figure DE102016112377B4_0072
    Figure DE102016112377B4_0073
  • Figurenliste
  • Es zeigen:
    • 1 Emissionsspektrum von Beispiel 1 in 10 % PMMA.
    • 2 Emissionsspektrum von Beispiel 2 in 10 % PMMA.
    • 3 Emissionsspektrum von Beispiel 3 in 10 % PMMA.
    • 4 Emissionsspektrum von Beispiel 4 in 10 % PMMA.

Claims (13)

  1. Organisches Molekül, aufweisend eine Struktur der Formel I
    Figure DE102016112377B4_0074
    mit X = N oder C-CN, wobei mindestens ein X gleich N ist; Z ist eine direkte Bindung; R1 und R2 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, eine lineare Alkylgruppe mit 1 bis 5 C-Atomen, eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 8 C-Atomen, eine verzweigte oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 15 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann; Ra ist bei jedem Auftreten gleich oder verschieden H, Deuterium, N(R5)2, OH, Si(R5)3, B(OR5)2, OSO2R5, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R5C=CR5, C≡C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S oder CONR5 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann; R5 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, N(R6)2, OH, Si(R6)3, B(OR6)2, OSO2R6, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R6 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R6C=CR6, C≡C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S oder CONR6 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R6 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R6 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R6 substituiert sein kann; R6 ist bei jedem Auftreten gleich oder verschieden H, Deuterium, OH, CF3, CN, F, Br, I, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 5 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 5 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 5 C-Atomen, wobei ein oder mehrere H-Atome durch Deuterium, CN, CF3 oder NO2 ersetzt sein können; oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen; wobei jeder der Reste Ra oder R5 auch mit einem oder mehreren weiteren Resten Ra oder R5 ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden kann.
  2. Organisches Molekül nach Anspruch 1, wobei beide X gleich N sind und optional die Reste R1 und R2 bei jedem Auftreten gleich oder verschieden H oder Methyl sind.
  3. Organisches Molekül nach Anspruch 1, wobei jeweils ein R1 und ein R2 gleich Methyl und die übrigen R1 und ein R2 gleich H sind.
  4. Verwendung eines organischen Moleküls nach Anspruch 1 bis 3 als lumineszierender Emitter und/oder als Hostmaterial und/oder als Elektronentransportmaterial und/oder als Lochinjektionsmaterial und/oder als Lochblockiermaterial in einer organischen optoelektronischen Vorrichtung.
  5. Verwendung nach Anspruch 4, wobei die organische optoelektronische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus: • organischen lichtemittierenden Dioden (OLEDs), • lichtemittierenden elektrochemischen Zellen, • OLED-Sensoren, • organischen Dioden, • organischen Solarzellen, • organischen Transistoren, • organischen Feldeffekttransistoren, • organischen Lasern und • Down-Konversions-Elementen.
  6. Verwendung nach Anspruch 5, wobei die organische optoelektronische Vorrichtung ein nicht hermetisch nach außen abgeschirmter Gas- oder Dampf-Sensor ist.
  7. Zusammensetzung aufweisend oder bestehend aus: (a) mindestens einem organischen Molekül nach einem der Ansprüche 1 bis 3, und (b) ein oder mehrere von dem Molekül nach einem der Ansprüche 1 bis 3 verschiedenen Emitter- und/oder Hostmaterialien und (c) optional einem oder mehreren Farbstoffen und/oder einem oder mehreren Lösungsmitteln.
  8. Zusammensetzung nach Anspruch 7, wobei das mindestens eine organische Molekül nach einem der Ansprüche 1 bis 3 die Form eines Emitters und/oder Hosts hat.
  9. Organische optoelektronische Vorrichtung, aufweisend ein organisches Molekül nach Anspruch 1 bis 3 oder eine Zusammensetzung nach Anspruch 7 oder 8.
  10. Organische optoelektronische Vorrichtung nach Anspruch 9, ausgeformt als eine Vorrichtung ausgewählt aus der Gruppe bestehend ausorganischer lichtemittierender Diode (OLED), lichtemittierender elektrochemischer Zelle, OLED-Sensor, insbesondere nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren, organischer Diode, organischer Solarzelle, organischem Transistor, organischem Feldeffekttransistor, organischem Laser und Down-Konversion-Element.
  11. Organische optoelektronische Vorrichtung nach Anspruch 9 oder 10, aufweisend - ein Substrat, - eine Anode und - eine Kathode, wobei die Anode oder die Kathode auf das Substrat aufgebracht sind, und - mindestens eine lichtemittierende Schicht, die zwischen Anode und Kathode angeordnet ist und die das organische Molekül nach Anspruch 1 bis 3 oder die Zusammensetzung nach Anspruch 8 oder 9 aufweist.
  12. Verfahren zur Herstellung eines optoelektronischen Bauelements, wobei ein organisches Molekül nach Anspruch 1 bis 3 verwendet wird.
  13. Verfahren nach Anspruch 12, umfassend die Verarbeitung des organischen Moleküls mittels eines Vakuumverdampfungsverfahrens oder aus einer Lösung.
DE102016112377.3A 2016-07-06 2016-07-06 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen Active DE102016112377B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102016112377.3A DE102016112377B4 (de) 2016-07-06 2016-07-06 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016112377.3A DE102016112377B4 (de) 2016-07-06 2016-07-06 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Publications (2)

Publication Number Publication Date
DE102016112377A1 DE102016112377A1 (de) 2018-01-11
DE102016112377B4 true DE102016112377B4 (de) 2020-06-04

Family

ID=60676291

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016112377.3A Active DE102016112377B4 (de) 2016-07-06 2016-07-06 Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Country Status (1)

Country Link
DE (1) DE102016112377B4 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165943B2 (ja) * 2017-11-01 2022-11-07 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
KR102331904B1 (ko) * 2018-11-27 2021-11-26 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020111602A1 (ko) 2018-11-27 2020-06-04 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
CN109535131B (zh) * 2018-12-25 2022-02-22 西安瑞联新材料股份有限公司 一种以氰基吡啶为受体的化合物及其应用
CN110003179B (zh) * 2019-04-08 2021-01-08 山东师范大学 一种具有十字交叉结构特征的材料及其制备方法和应用
WO2021040467A1 (ko) * 2019-08-28 2021-03-04 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN113454078B (zh) * 2019-08-28 2023-12-01 株式会社Lg化学 新型杂环化合物及包含其的有机发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086994A (ko) 2014-01-21 2015-07-29 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015175678A1 (en) 2014-05-14 2015-11-19 President And Fellows Of Harvard College Organic light-emitting diode materials
WO2016181846A1 (ja) 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE102016108334B3 (de) 2016-05-04 2016-12-22 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086994A (ko) 2014-01-21 2015-07-29 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015175678A1 (en) 2014-05-14 2015-11-19 President And Fellows Of Harvard College Organic light-emitting diode materials
WO2016181846A1 (ja) 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE102016108334B3 (de) 2016-05-04 2016-12-22 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Datenbank Registry (abgerufen über STN). Registry [online]. Registry No. 1826111-54-9 *
M.E. Thompson et al., Chem. Mater. 2004, 16, 4743

Also Published As

Publication number Publication date
DE102016112377A1 (de) 2018-01-11

Similar Documents

Publication Publication Date Title
EP3452471B1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
DE102016112377B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016110004B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3507285A1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016108332B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016108334B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016120373B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3478657B1 (de) Dicarbazolbiphenylderivate zur verwendung in optoelektronischen vorrichtungen
EP3478656B1 (de) Dicarbazolbiphenylderivate zur verwendung in optoelektronischen vorrichtungen
DE102017102662B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016112082B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016108327B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016108335B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3266772B1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
DE102016115853B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016115851B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3581632B1 (de) Organische moleküle für optoelektronische vorrichtungen
EP3494112B1 (de) Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
EP3290411B1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016123105B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016121562B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3645523A1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
WO2018077492A1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016115728B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016115854B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: SAMSUNG DISPLAY CO., LTD., YONGIN-SI, KR

Free format text: FORMER OWNER: CYNORA GMBH, 76646 BRUCHSAL, DE

R082 Change of representative

Representative=s name: DR. WEITZEL & PARTNER PATENT- UND RECHTSANWAEL, DE