DE102015115762B4 - Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät - Google Patents

Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät Download PDF

Info

Publication number
DE102015115762B4
DE102015115762B4 DE102015115762.4A DE102015115762A DE102015115762B4 DE 102015115762 B4 DE102015115762 B4 DE 102015115762B4 DE 102015115762 A DE102015115762 A DE 102015115762A DE 102015115762 B4 DE102015115762 B4 DE 102015115762B4
Authority
DE
Germany
Prior art keywords
mathematical model
medium
heat transfer
determined
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015115762.4A
Other languages
English (en)
Other versions
DE102015115762A1 (de
Inventor
Panagiotis Papathanasiou
Axel Pfau
Vivek Kumar
Tobias Baur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to DE102015115762.4A priority Critical patent/DE102015115762B4/de
Priority to PCT/EP2016/070174 priority patent/WO2017045896A1/de
Publication of DE102015115762A1 publication Critical patent/DE102015115762A1/de
Application granted granted Critical
Publication of DE102015115762B4 publication Critical patent/DE102015115762B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Abstract

Verfahren zur Ermittlung eines Durchflusses und/oder einer Durchflussgeschwindigkeit eines Messmediums mittels eines thermischen Durchflussmessgerätes, gekennzeichnet durch die folgenden Schritte:
I. Bereitstellen eines ersten mathematischen Modells für die Ermittlung einer Nusseltzahl, das zur Beschreibung eines internen Wärmeübergangs in dem thermischen Durchflussmessgerät dient;
II. Ermittlung eines Leistungskoeffizienten bei einer Messung des Messmediums;
III. Ermittlung einer Nusseltzahl anhand des Leistungskoeffizienten unter Zuhilfenahme des ersten mathematischen Modells;
IV. Ermittlung einer Reynoldszahl für das Messmedium anhand der Nusseltzahl unter Zuhilfenahne eines zweiten mathematischen Modells, das zur Beschreibung eines externen Wärmeübergangs vom thermischen Durchflussmessgerät in das Messmedium dient; wobei das zweite mathematische Modell durch eine Computersimulation erstellt wurde und
V. Ermittlung eines Durchflusses anhand der Reynoldszahl.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Ermittlung eines Durchflusses nach dem Oberbegriff des Anspruchs 1 und ein thermisches Durchflussmessgerät.
  • Öle weisen gegenüber Wasser andere thermische Stoffeigenschaften auf. Dadurch ergibt sich bei einer Durchflussmessung von Ölen innerhalb eines Durchfluss-Messbereichs und eines Temperaturmessbereichs mittels eines thermischen Durchflussmessgeräts u.a. andere Prandtl- und Reynoldszahlen als für Wasser bei vergleichbaren Messbereichen (siehe 2).
  • Viele Kalibrationsanlagen sind für die Kalibration mit Wasser als Kalibrationsmedium ausgelegt. Es ist im Bereich der thermischen Durchflussmessung von Flüssigkeiten bekannt, Messmedien mit Kalibrationsmedien zu vergleichen, welche gleiche Stoffeigenschaften besitzen bzw. welche von gleicher Art sind. Ein Wechsel von einem Kalibrationsmedium zu einem artverschiedenen Messmedium ist für Flüssigkeiten bislang nicht bekannt. Gerade im Bereich der Flüssigkeiten ändern sich die Stoffeigenschaften stärker mit der Temperatur als z.B. bei Gasen.
  • Die Nusseltzahl und die Beschreibung der Wärmeübertragung im Übergangsbereich von der festen Oberfläche des Sensors zum Messmedium konnte bislang nicht exakt erfasst oder ermittelt werden.
  • Ausgehend von der vorgenannten Vorbetrachtung ist es nunmehr Aufgabe der vorliegenden Erfindung einen Durchfluss eines Messmediums zu ermitteln auch wenn eine vorhergehende Kalibration z.B. in einem vom Messmedium verschiedenen Kalibrationsmedium erfolgt ist.
  • Die vorliegende Erfindung löst die vorliegende Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1.
  • Typischerweise umfasst ein thermisches Durchflussmessgerät einen Heizer, also ein erstes Sensorelement mit einer Heizvorrichtung, und ein Temperatursensor, also ein zweites Sensorelement zur Ermittlung der Mediumstemperatur bei bestimmungsgemäßem Betrieb des Durchflussmessgerätes. Der Leistungskoeffizient ist das Maß für eine aufgewandte Heizleistung.
  • Die Nusseltzahl für den Übergang an der Grenzfläche vom Sensor in das Messmedium wurde bei der Ermittlung des Durchflusses bislang nicht basierend auf mathematischen Modellen, welche mit Hilfe von Computersimulationen erstellt wurden, ermittelt.
  • Ein erfindungsgemäßes Verfahren zur Ermittlung eines Durchflusses und/oder einer Durchflussgeschwindigkeit eines Messmediums mittels eines thermischen Durchflussmessgerätes, erfolgt durch die folgenden Schritte:
    1. I. Bereitstellen eines ersten mathematischen Modells für die Ermittlung der Nusseltzahl das zur Beschreibung des internen Wärmeübergangs in dem thermischen Durchflussmessgerät dient;
    2. II. Ermittlung eines Leistungskoeffizienten bei einer Messung des Messmediums;
    3. III. Ermittlung einer Nusseltzahl anhand des Leistungskoeffizienten unter Zuhilfenahme des ersten mathematischen Modells;
    4. IV. Ermittlung einer Reynoldszahl für das Messmedium anhand der Nusseltzahl unter Zuhilfenahne eines zweiten mathematischen Modells das zur Beschreibung des externen Wärmeübergangs in vom thermischen Durchflussmessgerät in das Messmedium dient; wobei das zweite mathematische Modell durch eine Computersimulation erstellt wurde und
    5. V. Ermittlung eines Durchflusses anhand der Reynoldszahl.
  • Die Bereitstellung des ersten mathematischen Modells kann während einer Kalibration in einem vom Messmedium differenten Kalibrationsmedium erfolgen. Dies ist jedoch nicht zwingend notwendig. Das Kalibrationsmedium kann auch von gleicher Art wie das Messmedium sein.
  • Durch die Verwendung des vorgenannten mathematischen Modells kann eine reale Nusseltzahl ermittelt werden. Einer Schätzung bedarf es in diesem Fall nicht. Weiterhin ist das zweite mathematische Modell anhand einer Strömungssimulation ermittelbar.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Zur Ermittlung der Nusseltzahl kann ein Wärmeübergangskoeffizient aus dem Leistungskoeffizienten unter Zuhilfenahme des ersten mathematischen Modells zur Beschreibung des internen Wärmeübergangs ermittelt werden.
  • Vor der Ermittlung der Reynoldszahl kann vorteilhaft ein Bereitstellen eines zweiten mathematischen Modells zur Beschreibung des externen Wärmeübergangs erfolgen, wobei eine Auswerteeinheit mittels des mathematischen Modells und anhand von bereitgestellten Informationen zu den thermischen Eigenschaften des Messmediums und der ermittelten Nusseltzahl eine Funktion einer Prandtl- und Reynoldszahl ermittelt.
  • Aus der Funktion der Prandtl- und Reynoldszahl kann anhand der thermischen Eigenschaften des Messmediums eine Reynoldszahl vorteilhaft ermittelt werden.
  • Das erste mathematische Modell kann ebenfalls bevorzugt anhand einer Computersimulation ermittelt werden.
  • Zum Bereitstellen des ersten mathematischen Modells kann vorzugsweise eine Kalibration mit einem Kalibrationsmedium durchgeführt werden.
  • Es ist von Vorteil, wenn unterschiedlichen Koeffizienten für das erste mathematische Modell für verschiedene Prandtl-zahlbereiche hinterlegt sind.
  • Alternativ oder zusätzlich können auch unterschiedlichen Koeffizienten für das zweite mathematische Modell für verschiedene Prandtl-zahlbereiche vorteilhaft hinterlegt sein.
  • Das Messmedium kann bevorzugt ein Kohlenwasserstoff und besonders bevorzugt ein organisches Öl sein.
  • Es ist von Vorteil, wenn das Kalibrationsmedium Wasser ist.
  • Ein thermisches Durchflussmessgerät umfasst zumindest einen Messaufnehmer und eine Auswerteeinheit, wobei der Messaufnehmer zumindest ein Sensorelement mit einem Heizelement und ein Sensorelement mit einem Temperatursensor aufweist, wobei die Auswerteeinheit ausgestaltet ist zur Ausführung eines Verfahrens nach Anspruch 1. Hierfür kann beispielsweise auf einem Datenspeicher das erste und das zweite mathematische Modell hinterlegt sein, sowie ggf. thermische Eigenschaften des Messmediums. Weiterhin kann die Auswerteeinheit eine Recheneinheit, aufweisen, welche der Berechnung des Wärmeübertragungskoeffizienten und der Nusseltzahl, sowie der Prandtlzahl, der Reynoldszahl und des Durchflusses dient.
  • Nachfolgend wird die Erfindung anhand mehrerer Figuren näher erläutert. Es zeigen:
    • 1 schematische Darstellung eines thermischen Durchflussmessgeräts in einer Schnittansicht;
    • 2 Darstellung des Verhaltens verschiedener Medien;
    • 3 Darstellung eines inneren und äußeren Wärmeübergangs;
    • 4 schematische Darstellung der Schrittabfolge bei einer Variante eines erfindungsgemäßen Verfahrens; und
    • 5 schematische Darstellung mehrerer Prandtlzahlbereiche.
  • Herkömmliche thermische Durchflussmessgeräte verwenden üblicherweise zwei möglichst gleichartig ausgestaltete beheizbare Widerstandsthermometer, die in, meist stiftförmigen Metallhülsen, sog. Stingers oder in zylindrischen Metallhülsen angeordnet sind und die in thermischem Kontakt mit dem durch ein Messrohr oder durch die Rohrleitung strömenden Medium sind. Für die industrielle Anwendung sind beide Widerstandsthermometer üblicherweise in ein Messrohr eingebaut; die Widerstandsthermometer können aber auch direkt in der Rohrleitung montiert sein. Einer der beiden Widerstandsthermometer ist ein sogenanntes aktives Sensorelement, der mittels einer Heizeinheit beheizt wird. Als Heizeinheit ist entweder eine zusätzliche Widerstandsheizung vorgesehen, oder bei dem Widerstandsthermometer selbst handelt es sich um ein Widerstandselement, z. B. um einen RTD-(Resistance Temperature Device)Sensor, der durch Umsetzung einer elektrischen Leistung, z. B. durch eine entsprechende Variation des Messstroms erwärmt wird. Bei dem zweiten Widerstandsthermometer handelt es sich um ein sog. passives Sensorelement: Es misst die Temperatur des Mediums.
  • Üblicherweise wird in einem thermischen Durchflussmessgerät ein beheizbares Widerstandsthermometer so beheizt, dass sich eine feste Temperaturdifferenz zwischen den beiden Widerstandsthermometer einstellt. Alternativ ist es auch bekannt geworden, über eine Regel-/Steuereinheit eine konstante Heizleistung einzuspeisen.
  • Tritt in dem Messrohr kein Durchfluss auf, so wird eine zeitlich konstante Wärmemenge zur Aufrechterhaltung der vorgegebenen Temperaturdifferenz benötigt. Ist hingegen das zu messende Medium in Bewegung, ist die Abkühlung des beheizten Widerstandsthermometers wesentlich von dem Massedurchfluss des vorbeiströmenden Mediums abhängig. Da das Medium kälter ist als das beheizte Widerstandsthermometer, wird durch das vorbeiströmende Medium Wärme von dem beheizten Widerstandsthermometer abtransportiert. Um also bei einem strömenden Medium die feste Temperaturdifferenz zwischen den beiden Widerstandsthermometern aufrecht zu erhalten, ist eine erhöhte Heizleistung für den beheizten Widerstandsthermometer erforderlich. Die erhöhte Heizleistung ist ein Maß für den Massedurchfluss bzw. den Massestrom des Mediums durch die Rohrleitung. Die Heizleistung kann durch einen sogenannten Leistungskoeffizienten PC beschrieben werden.
  • Wird hingegen eine konstante Heizleistung eingespeist, so verringert sich infolge des Durchflusses des Mediums die Temperaturdifferenz zwischen den beiden Widerstandsthermometern. Die jeweilige Temperaturdifferenz ist dann ein Maß für den Massedurchfluss des Mediums durch die Rohrleitung bzw. durch das Messrohr.
  • Es besteht somit ein funktionaler Zusammenhang zwischen der zum Beheizen des Widerstandsthermometers notwendigen Heizenergie und dem Massedurchfluss durch eine Rohrleitung bzw. durch ein Messrohr. Die Abhängigkeit des Wärmeübertragungskoeffizienten von dem Massedurchfluss des Mediums durch das Messrohr bzw. durch die Rohrleitung wird in thermischen Durchflussmessgeräten zur Bestimmung des Massedurchflusses genutzt. Geräte, die auf diesem Prinzip beruhen, werden von der Anmelderin unter der Bezeichnung, ‚t-switch‘, ‚t-trend‘ oder ‚t-mass‘ angeboten und vertrieben.
  • Bei der Ermittlung des Massedurchflusses kann ein thermisches Durchflussmessgerät bei der Messung von Flüssigkeiten an eine Höchstleistungsgrenze gelangen. Da Flüssigkeiten gegenüber Gasen einen wesentlich höheren Wärmeleitkoeffizienten aufweisen, wird bei höherer Geschwindigkeit eine größere Wärmeenergie von der Oberfläche des aktiven Temperatursensors abtransportiert. Bei zunehmender Geschwindigkeit des Mediums ist dabei schnell eine Sättigung der Sensorkennlinie bzw. die Leistungsobergrenze der Messelektronik erreicht, so dass der Messbereich auf Flüssigkeiten mit geringen Strömungsgeschwindigkeiten begrenzt ist. Dieser Nachteil wird durch einen Sensor eines thermischen Durchflussmessgerätes, wie es in 1 abgebildet ist, behoben.
  • 1 zeigt in schematischer Weise den Aufbau eines thermischen Durchflussmessgerätes 1, wie er u.a. in der DE 10 2013 108 099 A1 im Detail beschrieben wird.
  • Dieses weist eine Sensorkappe 2 mit einer Längsachse X auf, welche Sensorkappe 2 teilweise oder vollständig in Kontakt mit einem Messmedium steht. Die Sensorkappe 2 weist einen Wandungsbereich 3 mit einer mediumsberührenden Stirnfläche auf. Diese Stirnfläche unterteilt sich in zumindest drei Teilsegmente, mit einem zentralen Teilsegment 3b, das anströmseitig und abströmseitig zwei gegenüber dem zentralen Teilsegment 3b angewinkelte Teilsegmente 3a und 3c aufweist. Diese Teilsegmente dienen der Ausbildung von Grenzschichten und Rezirkulationsbereichen auf der Oberfläche des Wandungsbereichs 3. Weiterhin weist der Wandungsbereich 3 zwei seitliche Schrägflächen 6 auf.
  • Auf der mediumsabgewandten Seite des Wandungsbereichs 3 ist an den Teilsegmenten 3a und 3c jeweils ein beheizbarer Temperatursensor 4 angeordnet. Einer der Temperatursenoren dient dabei als Heizer bzw. aktives Sensorelement und der zweite Temperatursensor misst die Mediumstemperatur und dient als passives Sensorelement. Von den Temperatursensoren gehen Signal- und/oder Energieversorgungskabel 5 ab, welche zu einer Auswerteeinheit 7 führen.
  • Das thermische Durchflussmessgerät, wie es in 1 beispielshaft dargestellt ist, soll nunmehr für ein unbekanntes, vorzugsweise flüssiges, Medium kalibriert werden. Die meisten Kalibrieranlagen sind allerdings auf ein spezielles Medium ausgelegt. Im Regelfall ist dies Wasser.
  • Ausgehend von dieser Vorbetrachtung erlaubt es die vorliegende Erfindung bei einer erfolgten Kalibration auf von einem Medium auf ein anderes Medium zu übertragen. Dies gilt insbesondere bei der Umrechnung von einer erfolgten Kalibration mit dem Kalibrationsmedium „Wasser“ auf das Messmedium „Öl“.
  • 2 zeigt in einer Gegenüberstellung unterschiedlicher Medien die zugrundeliegende Problemstellung auf, wenn man versucht eine Kalibration mit einem Kalibriermedium auf ein Messmedium zu übertragen, welches zum Kalibriermedium verschieden ist. In 2 sind Messbereiche für Prandtlzahlen (µ/k) dargestellt, welche über Reynoldszahlen aufgetragen wurden. Zudem ist der Übergang von laminarer Strömung zu turbulenter Strömung dargestellt. Die Messung in Wasser wird durch Messbereich mit dem Bezugszeichen I dargestellt. Die Messung in Ölen wird durch die Messbereiche mit den Bezugszeichen II und III dargestellt. Wie man erkennt, verhalten sich die Messbereiche nicht deckungsgleich.
  • Es hat sich gezeigt, dass zur Kompensation eines Mediumswechsels die Wärmeübergänge und -verteilungen zwischen dem Sensor, respektive der Sensoroberfläche, und der Sensorumgebung, respektive den jeweiligen Medien berücksichtigt werden müssen.
  • Im Rahmen der vorliegenden Erfindung wird zum besseren Verständnis daher zwischen einem internen Wärmeübergang und einem externen Wärmeübergang unterschieden. Dieser Wärmeübergang erfasst z.B. den Wärmeübergang des Temperatursensors, z.B. ein Pt100-sensor. Der Begriff des Wärmeübergangs erfasst z.B. auch den Wärmeübergang des Anbindungsmaterials an die Sensorkappe, dies kann z.B. eine Wärmebrücke, z.B. aus Kupfer, sein.
  • Der interne Wärmeübergang definiert die Gesamtheit der Wärmeübergänge zwischen dem beheizten Temperatursensor 4 bis zur Sensorkappe 2.
  • Der interne Wärmeübergang wird im Wesentlichen durch die thermische Wärmeleitfähigkeit und die Baugrösse der Materialien charakterisiert.
  • Der externe Wärmeübergang beschreibt die Gesamtheit der Wärmeübergänge und Wärmeverteilungen zwischen der mediumsberührenden Oberfläche und dem Messmedium.
  • Dabei sollte beachtet werden, dass die Eigenschaften einiger Messmedien, insbesondere von Ölen, stark von dem jeweiligen Temperaturbereich abhängig sind, in welchem die Messung durchgeführt wird. Dies muss auch bei der Übertragung einer Wasserkalibration auf andere Medien beachtet werden.
  • Diese Aufgabe kann durch ein Verfahren ermöglicht werden, welches u.a. Computersimulationen zur Ermittlung von mathematischen Modellen umfasst. Derartige Computersimulationen sind an sich bekannt und können durch Computersoftware, z.B. durch die kommerzielle Software Ansys, erstellt werden. Nachfolgend wird ein entsprechendes Verfahren beschrieben, wobei die einzelnen Verfahrensschritte nicht zwingend in der vorgegebenen Reihenfolge erfolgen müssen.
  • In einem ersten Schritt A des erfindungsgemäßen Verfahrens erfolgt das Bereitstellen eines ersten mathematischen Modells des Messaufnehmers des thermischen Durchflussmessgerätes zur Simulation des internen Wärmeübergangs. Dieses Bereitstellen umfasst u.a. das Erstellen des mathematischen Modells für den jeweiligen real-existierenden Messaufnehmer, respektive dessen Dimensionierung, dessen Aufbau und die dabei verwendeten Materialien. Dabei kommt es insbesondere auf die konstruktive Ausgestaltung im Bereich der Sensorkappe an. Aus den eingegebenen Daten kann sodann ein Polynom für die Abhängigkeit des Wärmeübertragungskoeffizienten h und des Leistungskoeffizienten PC (power coefficient) ermittelt werden.
  • Einer oder mehrere Kalibrationskoeffizienten des mathematischen Modells werden durch ein iteratives Verfahren bei der Kalibration des Durchflussmessgerätes erstellt. Die Kalibration kann dabei in einem vom Messmedium differenten Kalibrationsmedium erfolgen. Typisches und bevorzugtes Kalibrationsmedium ist Wasser. Typisches und bevorzugtes Messmedium ist ein Kohlenwasserstoff.
  • Der Wärmeübergangskoeffizient h (heat transfer coefficient) beschreibt die Intensität des Wärmeübergangs an der Grenzfläche des Messaufnehmers des thermischen Durchflussmessgeräts. Aufgrund der ungleichmäßigen Wärmeübertragung des Messaufnehmers ist der Wärmekoeffizient messtechnisch nur schwer erfassbar und muss daher anhand des ersten mathematischen Modells bestimmt werden.
  • Sodann wird der Leistungskoeffizient des Messaufnehmers in einem Verfahrensschritt B ermittelt. Dies kann beispielsweise durch Berechnung oder Messung des Messmediums, insbesondere Öl erfolgen.
  • Nachfolgend kann in einem Verfahrensschritt C der Wärmeübergangskoeffizient h des Messaufnehmers anhand des vorgenannten ersten mathematischen Modells, insbesondere des bereitgestellten Polynoms, mittels des ermittelten Leistungskoeffizienten ermittelt werden. 3 zeigt in der oberen Abbildung eine typische Abhängigkeit des Wärmeübergangskoeffizienten vom Leistungskoeffizienten, wie er durch das mathematische Modell für den speziellen Messaufnehmer der 1 ermittelt wurde.
  • 3 oben zeigt in den Kurven IV und V Korrelationen bei unterschiedlichen Temperaturen und entsprechend unterschiedlichen Prandtzahlen.
  • Kurve IV und VI entspricht den aus der Simulation gewonnen Daten und entsprechend V und VII sind die über diese gewonnen Daten erstellten ersten mathematischen Modelle.
  • Nachdem der Wärmeübertragungskoeffizient ermittelt wurde, kann in einem Verfahrensschritt D bei bekannter Dimensionierung des Messaufnehmers und bekannten thermischen Eigenschaften des Messmediums, insbesondere bei bekannter Wärmeleitfähigkeit, die Nusseltzahl in an sich bekannter Weise berechnet werden.
  • Die Nusseltzahl beschreibt den konvektiven Wärmeübergang an der Grenzfläche zwischen der mediumsberührenden Oberfläche des thermischen Durchflussmessgerätes und dem Messmedium.
  • Die Nusseltzahl kann als Funktion der Reynoldszahl und der Prandtlzahl beschrieben werden. Hierfür wird in einem Verfahrensschritt E ein entsprechendes zweites mathematisches Modell, welches über Computersimulation z.B. erstellt durch Computerprogramms Ansys, bestimmt wird, genutzt. Das mathematische Modell beschreibt den externen Wärmeübergang vom Messaufnehmer in das Messmedium.
  • In einem Verfahrensschritt F kann nunmehr die Ermittlung der Prandtl-Zahl für das Messmedium erfolgen. Zur Ermittlung der Prandtl-Zahl kann die Art des Messmediums und/oder die thermischen Eigenschaften des Messmediums Nutzer vorgegeben werden. Die thermischen Eigenschaften können bei Angabe des Messmediums einer Datenbank entnommen werden oder können durch eine vorangegangene Messung bestimmt werden. 3 unten zeigt eine typische Abhängigkeit der Reynoldszahl von der Nusseltzahl als Korrelationskurven VIII und IX für unterschiedliche Temeraturen und Prandtlzahlen. Kurve VIII und IX entspricht den aus der Simulation gewonnen Daten und entsprechend X und XI sind die über diese gewonnen Daten erstellten ersten mathematischen Modelle. Diese sind in 5 als Einzelkorrelationskurven für Teilbereiche der Prandtl-Reynoldszahlen nochmals dargestellt. Für das erste mathematische Modell können auch unterschiedliche Koeffizienten für verschiedene Prandtlzahlbereiche verwendet werden. Dies gilt alternativ oder zusätzlich auch für das zweite mathematische Modell. Diese können vorzugsweise durch Computersimulation bestimmt werden.
  • Es hat sich in diesem Zusammenhang aufgrund des breiten Prandtl-Reynoldszahl-Bereichs, welche das Durchflussmessgerät vorteilhaft abdecken sollte, als günstig erwiesen, unterschiedliche Koeffizienten für verschiedene Prandt-Reynoldszahl-Bereiche in einem Verfahrensschritt F zu verwenden.
  • 5 stellt mehrere Korrelationskurven für Nusseltzahlen in Abhängigkeit der Prandtl-Reynoldszahl dar. Je nach Änderung der Temperatur des Messmediums bzw. der Prandtl-zahl wird eine der Korrelationskurven bzw. die damit verknüpften Koeffizienten ausgewählt, mit welchen das zweite mathematische Modell die Reynoldszahl bestimmt. Die Koeffizienten sind feste Werte für über einen bestimmten Prandtl-Zahlbereich.
  • In einem Verfahrensschritt G erfolgt nunmehr die Ermittlung der Reynoldszahl für das jeweilige Messmedium durch Anwendung des vorgenannten zweiten mathematischen Modells.
  • Schließlich kann mittels der Formel: R e = ρ u l / μ
    Figure DE102015115762B4_0001
    , wobei der Ausdruck ρ*u proportional zum Massedurchfluss ist; und wobei;
    wobei
    • µ die dynamische Viskosität in Pa*s;
    • u die Durchflussgeschwindigkeit in m/s;
    • I die charakteristische Länge in m bzw. der Sensordurchmesser; p die Dichte des Mediums in kg/m3 ist;
    in Verfahrensschritt H nunmehr ein Durchfluss für das Messmedium ermittelt werden.
  • Dieser wird nunmehr an den Nutzer ausgegeben.

Claims (11)

  1. Verfahren zur Ermittlung eines Durchflusses und/oder einer Durchflussgeschwindigkeit eines Messmediums mittels eines thermischen Durchflussmessgerätes, gekennzeichnet durch die folgenden Schritte: I. Bereitstellen eines ersten mathematischen Modells für die Ermittlung einer Nusseltzahl, das zur Beschreibung eines internen Wärmeübergangs in dem thermischen Durchflussmessgerät dient; II. Ermittlung eines Leistungskoeffizienten bei einer Messung des Messmediums; III. Ermittlung einer Nusseltzahl anhand des Leistungskoeffizienten unter Zuhilfenahme des ersten mathematischen Modells; IV. Ermittlung einer Reynoldszahl für das Messmedium anhand der Nusseltzahl unter Zuhilfenahne eines zweiten mathematischen Modells, das zur Beschreibung eines externen Wärmeübergangs vom thermischen Durchflussmessgerät in das Messmedium dient; wobei das zweite mathematische Modell durch eine Computersimulation erstellt wurde und V. Ermittlung eines Durchflusses anhand der Reynoldszahl.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Ermittlung der Nusseltzahl ein Wärmeübergangskoeffizient aus dem Leistungskoeffizienten unter Zuhilfenahme des ersten mathematischen Modells zur Beschreibung des internen Wärmeübergangs erfolgt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass vor der Ermittlung der Reynoldszahl ein Bereitstellen eines zweiten mathematischen Modells zur Beschreibung des externen Wärmeübergangs erfolgt, wobei eine Auswerteeinheit mittels des zweiten mathematischen Modells und anhand von bereitgestellten Informationen zu thermischen Eigenschaften des Messmediums und der ermittelten Nusseltzahl eine Funktion einer Prandtl- und Reynoldszahl ermittelt.
  4. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass aus der Funktion der Prandtl- und Reynoldszahl anhand der thermischen Eigenschaften des Messmediums eine Reynoldszahl ermittelt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste und/oder das zweite mathematische Modell anhand einer Computersimulation ermittelt wurde.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Bereitstellen des ersten mathematischen Modells eine Kalibration mit einem Kalibrationsmedium durchgeführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unterschiedliche Koeffizienten für das erste mathematische Modell für verschiedene Prandtl-zahlbereiche hinterlegt sind, welche vorzugsweise mit Hilfe von Computersimulationen bestimmt wurden.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unterschiedliche Koeffizienten für das zweite mathematische Modell für verschiedene Prandtl-zahlbereiche hinterlegt sind, welche mit Hilfe von Computersimulationen bestimmt worden sind.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Messmedium eine gegenüber einem Kalibrationsmedium verschiedene Flüssigkeit, bevorzugt ein Kohlenwasserstoff, besonders bevorzugt ein Öl, ist.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass das Kalibrationsmedium eine Flüssigkeit, vorzugsweise Wasser, ist.
  11. Thermisches Durchflussmessgerät (1) umfassend zumindest einen Messaufnehmer und eine Auswerteeinheit (7), wobei der Messaufnehmer zumindest ein Sensorelement (4) mit einem Heizelement und ein Sensorelement (4) mit einem Temperatursensor aufweist, dadurch gekennzeichnet, dass die Auswerteeinheit (7) ausgestaltet ist zur Ausführung eines Verfahrens nach Anspruch 1.
DE102015115762.4A 2015-09-18 2015-09-18 Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät Active DE102015115762B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102015115762.4A DE102015115762B4 (de) 2015-09-18 2015-09-18 Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät
PCT/EP2016/070174 WO2017045896A1 (de) 2015-09-18 2016-08-26 Verfahren zur ermittlung eines durchflusses und thermisches durchflussmessgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015115762.4A DE102015115762B4 (de) 2015-09-18 2015-09-18 Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät

Publications (2)

Publication Number Publication Date
DE102015115762A1 DE102015115762A1 (de) 2017-03-23
DE102015115762B4 true DE102015115762B4 (de) 2022-08-04

Family

ID=56800301

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015115762.4A Active DE102015115762B4 (de) 2015-09-18 2015-09-18 Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät

Country Status (2)

Country Link
DE (1) DE102015115762B4 (de)
WO (1) WO2017045896A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916478A (zh) * 2019-03-26 2019-06-21 银川融神威自动化仪表厂(有限公司) 一种流量系数标定、流量计检定方法和标准流量装置
CN112380653B (zh) * 2020-11-17 2023-04-18 潍柴动力股份有限公司 换热器性能数据确定方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69229799T2 (de) 1992-01-28 2000-04-20 Endress & Hauser Ltd Flüssigkeitsmassendurchflussmesser
US6450024B1 (en) 2001-03-07 2002-09-17 Delta M Corporation Flow sensing device
DE102006057208A1 (de) 2006-12-01 2008-06-05 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Massedurchflusses
DE102013108099A1 (de) 2012-10-19 2014-04-24 Endress + Hauser Flowtec Ag Thermisches Durchflussmessgerät

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012106657A1 (de) * 2012-04-23 2013-10-24 Endress + Hauser Flowtec Ag Verfahren zum thermischen Bestimmen eines Massedurchflusses eines gasförmigen Mediums und thermischer Massedurchflussmesser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69229799T2 (de) 1992-01-28 2000-04-20 Endress & Hauser Ltd Flüssigkeitsmassendurchflussmesser
US6450024B1 (en) 2001-03-07 2002-09-17 Delta M Corporation Flow sensing device
DE102006057208A1 (de) 2006-12-01 2008-06-05 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Massedurchflusses
DE102013108099A1 (de) 2012-10-19 2014-04-24 Endress + Hauser Flowtec Ag Thermisches Durchflussmessgerät

Also Published As

Publication number Publication date
DE102015115762A1 (de) 2017-03-23
WO2017045896A1 (de) 2017-03-23

Similar Documents

Publication Publication Date Title
EP3537124B1 (de) Verfahren und system zur nicht-intrusiven ermittlung einer temperatur eines durch einen leitungsabschnitt strömenden fluids
EP3234515B1 (de) Thermisches durchflussmessgerät mit diagnosefunktion
DE102015115761A1 (de) Verfahren zur Vor-Ort Kalibration eines thermischen Durchflussmess-gerätes, Verfahren zur Durchführung einer temperaturkompensierten Durchflussmessung und thermisches Durchflussmessgerät
DE69816995T2 (de) Anordnung von mehreren resistiven messwertgebern für einen coriolis-massendurchflussmesser
EP1065475B1 (de) Verfahren zum Messen eines Gasflusses
CH669255A5 (de) Verfahren und vorrichtung zur thermischen durchflussmengenmessung.
EP2932205B1 (de) Thermische durchflussmessvorrichtung und verfahren zur bestimmung und/oder überwachung eines durchflusses eines mediums
EP2491353B1 (de) Verfahren zur erfassung der durchflussrate und strömungsrichtung eines fluids, und thermisches durchflussmessgerät
DE102008015359A1 (de) Temperatursensor und Verfahren zu dessen Herstellung
DE102017120941A1 (de) Thermisches Durchflussmessgerät
EP3446086B1 (de) Temperaturbestimmungseinrichtung und verfahren zu deren kalibrierung und zur bestimmung einer mediumstemperatur
DE102010040285A1 (de) Thermisches Durchflussmessgerät
DE102014114848A1 (de) Thermisches Durchflussmessgerät, Verfahren zur Driftüberwachung eines thermischen Durchflussmessgerätes und Verfahren zur Bestimmung der Strömungsrichtung
DE102014119556A1 (de) Thermisches Durchflussmessgerät
DE102015115762B4 (de) Verfahren zur Ermittlung eines Durchflusses und thermisches Durchflussmessgerät
DE102007023824A1 (de) Thermischer Massendurchflussmesser
DE102009045958A1 (de) Thermisches Durchflussmessgerät
DE102014211100B4 (de) Flusssensor und Steuersystem einer Verbrennungskraftmaschine
EP3818348B1 (de) Thermometer mit diagnosefunktion
DE102005053096B4 (de) Verfahren zur Kalibration eines kalorimetrischen Durchflussmessgerätes und entsprechende Vorrichtung
DE10392699B4 (de) Hochpräzise Messung und Steuerung von niedrigen Fluiddurchflussraten
EP3655730A1 (de) Thermisches durchflussmessgerät
DE4335332A1 (de) Verfahren und Vorrichtung zur insbesondere nicht invasiven Ermittlung mindestens eines interessierenden Parameters eines Fluid-Rohr-Systems
DE202018106976U1 (de) Feldgerät mit Temperatur-Distanz-Bestimmungseinheit
DE102004058553A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R018 Grant decision by examination section/examining division
R020 Patent grant now final