DE102015104314A1 - Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht - Google Patents

Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht Download PDF

Info

Publication number
DE102015104314A1
DE102015104314A1 DE102015104314.9A DE102015104314A DE102015104314A1 DE 102015104314 A1 DE102015104314 A1 DE 102015104314A1 DE 102015104314 A DE102015104314 A DE 102015104314A DE 102015104314 A1 DE102015104314 A1 DE 102015104314A1
Authority
DE
Germany
Prior art keywords
organic
layer
organic layer
light
carrier generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015104314.9A
Other languages
English (en)
Inventor
Daniel Riedel
Carola Diez
Dominik Pentlehner
Andreas Rausch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Oled GmbH
Original Assignee
Osram Oled GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Oled GmbH filed Critical Osram Oled GmbH
Priority to DE102015104314.9A priority Critical patent/DE102015104314A1/de
Priority to PCT/EP2016/054786 priority patent/WO2016150687A1/de
Publication of DE102015104314A1 publication Critical patent/DE102015104314A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Es wird ein Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht (10) angegeben mit den Schritten: A) Ausbilden einer ersten organischen Schicht (1), die überwiegend leitend für einen ersten Ladungsträgertyp ist, B) Ausbilden einer Zwischenschicht (2) an einer Oberfläche der ersten organischen Schicht (1) durch Modifikation (9) von Material der ersten organischen Schicht (1) und C) Aufbringen einer zweiten organischen Schicht (3), die überwiegend leitend für einen vom ersten Ladungsträgertyp verschiedenen zweiten Ladungsträgertyp ist, auf der Zwischenschicht (2). Weiterhin wird ein Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht angegeben.

Description

  • Es werden ein Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und ein Verfahren zur Herstellung eines organischen elektronischen Bauelements mit einer organischen Ladungsträgererzeugungsschicht angegeben.
  • Eine organische Licht emittierende Diode (OLED) kann in eine organische Emitterschicht injizierte Ladungsträgerpaare, die jeweils aus einem Elektron und einem Loch gebildet werden, in Photonen konvertieren. Bei einer OLED mit nur einer Emitterschicht kann pro injiziertem Ladungsträgerpaar maximal ein Photon erzeugt werden. Um eine höhere Effizienz zu erreichen, ist es bekannt, mehrere Emitterschichten übereinander zu stapeln, wobei zwischen benachbarten Emitterschichten jeweils eine Ladungsträgererzeugungsschicht (CGL: „charge generation layer“) angeordnet ist. Dadurch kann es möglich sein, pro Ladungsträgerpaar, das in einen solchen Stapel injiziert wird, mehrere Photonen zu erzeugen, da die Ladungsträgererzeugungsschichten wie interne Anoden und Kathoden wirken.
  • Voraussetzungen für den effektiven Einsatz von CGLs in einer OLED sind ein möglichst einfacher Aufbau, also möglichst wenige Schichten, die leicht prozessierbar sind, ein möglichst geringer Spannungsabfall über eine CGL, eine möglichst geringe Änderung des Spannungsabfalls über eine CGL während des Betriebs der OLED bei den angestrebten Betriebsbedingungen und eine möglichst hohe Transmission im von der OLED emittierten Spektralbereich, damit Absorptionsverluste des emittierten Lichts vermieden werden können.
  • Eine CGL weist üblicherweise einen p-dotierten Bereich und einen n-dotierten Bereich auf, die einen pn-Übergang bilden und wie eine Art Tunnelübergang wirken. Für die vorab genannten Voraussetzungen spielt neben den p- und n-dotierten Bereichen oftmals eine zusätzliche Zwischenschicht eine entscheidende Rolle, da diese die reaktiven p- und n-Schichten voneinander trennt und eine Diffusion beispielsweise von Dotierstoffen zwischen den Schichten verhindern soll. Bekannte Zwischenschichtmaterialien weisen jedoch oftmals eine Effizienz mindernde Transmission im sichtbaren Spektralbereich auf und/oder sind aufgrund ihrer Molekülstruktur und -größe nur unter extremen Bedingungen prozessierbar.
  • CGLs werden bisher durch verschiedene Ansätze realisiert. In der Druckschrift Y. Chen et al., Appl. Phys. Lett. 98, 243309 (2011) beispielsweise wird eine hybride CGL aus einer Mischung aus Zinkphthalocyanin (ZnPC) und C60-Fullerenen beschrieben, die zwischen MoO3- und LiF-Schichten liegt. In der Druckschrift Q. Y. Bao et al., Appl. Phys. Lett. 97, 063303 (2010) ist eine hybride CGL aus N,N′-Bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamin (NPB), MoO3 und Mg dotiertem 4,7-Diphenyl-1,10-phenanthrolin (Mg:Bphen) beschrieben. Weiterhin können CGLs auch aus einer Kombination aus dotierten und undotierten organischen Schichten bestehen. Für eine p-Dotierung können anorganische Materialien wie beispielsweise V2O5, MoO3 und WO3 oder organische Materialien beispielsweise 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethan (F4-TCNQ), Cu(I)pFBz, B(III)pFBz (pFBz: Pentafluorobenzoat) verwendet werden. Für die n-Dotierung finden organische Verbindungen wie Hexaazatriphenylenhexacarbonitril (HAT-CN), wie in der Druckschrift L. S. Liao et al., Adv. Mat. 20, 324–329, 2008 beschrieben ist, oder Metalle mit niedriger Austrittsarbeit wie beispielsweise Cs, Li und Mg beziehungsweise Verbindungen daraus wie etwa Cs2CO3 und Cs3PO4 Verwendung. Als Zwischenschichtmaterialien sind beispielsweise monomere und anellierte Phthalocyanine und Naphthalocyanine mit vergrößertem chromophorem System sowie auch Metalle und Metallverbindungen bekannt.
  • Zumindest eine Aufgabe von bestimmten Ausführungsformen ist es, ein Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht anzugeben. Zumindest eine weitere Aufgabe von bestimmten Ausführungsformen ist es, ein Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht anzugeben.
  • Diese Aufgaben werden durch Verfahren gemäß den unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen des Gegenstands und des Verfahrens sind in den abhängigen Ansprüchen gekennzeichnet und gehen weiterhin aus der nachfolgenden Beschreibung und den Zeichnungen hervor.
  • Gemäß zumindest einer Ausführungsform wird bei einem Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht eine erste organische Schicht ausgebildet, die überwiegend für einen ersten Ladungsträgertyp leitend ist und hierzu beispielsweise mit dem ersten Ladungsträgertyp dotiert ist. Darauf wird eine Zwischenschicht ausgebildet. Auf der Zwischenschicht wird eine zweite organische Schicht aufgebracht, die überwiegend für einen vom ersten Ladungsträgertyp verschiedenen zweiten Ladungsträgertyp leitend ist und hierzu beispielsweise mit einem zweiten Ladungsträgertyp dotiert ist. Insbesondere kann mit dem hier beschriebenen Verfahren eine organische Ladungsträgererzeugungsschicht für ein organisches Licht emittierendes Bauelement hergestellt werden. Darüber hinaus kann die organische Ladungsträgererzeugungsschicht auch in Verbindung mit anderen organischen elektronischen Bauelementen verwendet werden. Dass eine organische Schicht überwiegend für einen bestimmten Ladungsträgertyp leitend ist, kann insbesondere bedeuten, dass diese organische Schicht Elektronen und Löcher nicht gleich gut leitet, sondern eher p-leitend oder eher n-leitend ist und somit eine höhere Leitfähigkeit für Löcher als für Elektronen oder umgekehrt aufweist. Insbesondere kann eine überwiegend für einen bestimmten Ladungsträgertyp leitende organische Schicht auch vereinfacht als organische Schicht bezeichnet werden, die für diesen Ladungsträgertyp leitend ist. Hierbei kann es auch sein, dass diese organische Schicht für nur den bestimmten Ladungsträgertyp leitend ist.
  • Gemäß einer weiteren Ausführungsform wird bei einem Verfahren zur Herstellung eines organischen elektronischen Bauelements mit einer organischen Ladungsträgererzeugungsschicht auf einem Substrat eine erste Elektrode aufgebracht. Darüber wird ein erster organischer funktioneller Schichtenstapel aufgebracht. Auf dem ersten organischen funktionellen Schichtenstapel wird eine Ladungsträgererzeugungsschicht gemäß dem vorher beschriebenen Verfahren ausgebildet. Darüber werden ein zweiter organischer funktioneller Schichtenstapel und auf diesem eine zweite Elektrode angeordnet.
  • Die Ladungsträgererzeugungsschicht kann insbesondere jeweils unmittelbar an den ersten organischen funktionellen Schichtenstapel und an den zweiten organischen funktionellen Schichtenstapel angrenzen. Weiterhin kann es auch möglich sein, ein organisches Licht emittierendes Bauelement herzustellen, das mehr als zwei organische funktionelle Schichtenstapel aufweist, wobei jeweils zwischen zwei benachbarten organischen funktionellen Schichtenstapel eine organische Ladungsträgererzeugungsschicht angeordnet wird, die mit einem Verfahren hergestellt wird, das hier beschriebene Merkmale aufweisen kann.
  • Die vorab und im Folgenden beschriebenen Merkmale und Ausführungsformen gelten gleichermaßen für das Verfahren zur Herstellung der organischen Ladungsträgererzeugungsschicht als auch für das Verfahren zur Herstellung des organischen Licht emittierenden Bauelements mit der organischen Ladungsträgererzeugungsschicht.
  • Mit einer „Ladungsträgererzeugungsschicht“ wird hier und im Folgenden eine Schichtenfolge beschrieben, die im Allgemeinen durch einen rückwärts betriebenen pn-Übergang gebildet wird. Die Ladungsträgererzeugungsschicht, der auch als „charge generation layer“ (CGL) bezeichnet werden kann, ist insbesondere als Tunnelübergang ausgebildet, der zu einer effektiven Ladungstrennung und damit zur „Erzeugung“ von Ladungsträgern für an die Ladungsträgererzeugungsschicht angrenzende Schichten eingesetzt werden kann.
  • Gemäß einer weiteren Ausführungsform wird die erste organische Schicht der Ladungsträgererzeugungsschicht n-leitend ausgebildet, beispielsweise n-leitend dotiert. Das bedeutet mit anderen Worten, dass die erste organische Schicht Elektronen leitend ist und beispielsweise eine Elektronentransportschicht sein kann. Die darauf aufgebrachte zweite organische Schicht wird dann entsprechend p-leitend hergestellt, beispielsweise p-leitend dotiert, so dass die zweite organische Schicht Löcher leitend ist und beispielsweise eine Lochtransportschicht sein kann. Alternativ hierzu ist es auch möglich, die erste organische Schicht p-leitend und die zweite organische Schicht n-leitend herzustellen. Die Wahl der Ladungsträgertypen für die erste und zweite organische Schicht der organischen Ladungsträgererzeugungsschicht hängen von der Polarität des organischen Bauelements ab, in das die organische Ladungsträgererzeugungsschicht integriert wird. Wird die Ladungsträgererzeugungsschicht auf einem organischen funktionellen Schichtenstapel über einer ersten Elektrode aufgebracht, die als Anode ausgebildet ist, wird die erste organische Schicht n-leitend hergestellt, während die zweite organische Schicht p-leitend ausgebildet wird. Wird die organische Ladungsträgererzeugungsschicht auf einer als Kathode ausgebildeten ersten Elektrode aufgebracht, werden die erste und zweite organische Schicht der organischen Ladungsträgererzeugungsschicht entsprechend mit umgekehrten Ladungsträgertypenleitfähigkeiten ausgebildet und beispielsweise mit umgekehrten Ladungsträgertypen dotiert.
  • Gemäß einer weiteren Ausführungsform wird die Zwischenschicht der organischen Ladungsträgererzeugungsschicht durch Modifikation von Material der ersten organischen Schicht ausgebildet, insbesondere von Material an einer Oberfläche nach dem Ausbilden der ersten organischen Schicht freiliegenden, in Anordnungsrichtung oberen Oberfläche der ersten organischen Schicht oder in einem Bereich, der diese Oberfläche der ersten organischen Schicht enthält. Die Zwischenschicht enthält somit nach ihrer Fertigstellung Material, das durch eine Modifikation von Material der ersten organischen Schicht hergestellt wird. Insbesondere kann die Zwischenschicht aus einem solchen modifizierten Material der ersten organischen Schicht bestehen. Eine Modifikation von Material der ersten organischen Schicht kann einen oder mehrere der folgenden Schritte aufweisen: eine Reaktion und/oder Vernetzung ausschließlich von Molekülen des Materials der ersten organischen Schicht miteinander; eine Reaktion und/oder Vernetzung von Molekülen des Materials der ersten organischen Schicht mit anderen Molekülen des Materials der ersten organischen Schicht und/oder mit Molekülen eines während der Modifikation von außen zugeführten weiteren Materials; eine Aufspaltung und/oder Zersetzung von Molekülen des Materials der ersten organischen Schicht; eine Umstrukturierung von Molekülen des Materials der ersten organischen Schicht; eine Entfernung von Molekülen des Materials der ersten organischen Schicht.
  • Die Modifikation von Material der ersten organischen Schicht kann durch eine direkte Beeinflussung des Materials der ersten organischen Schicht erreicht werden, ohne dass zur Ausbildung der Zwischenschicht weiteres Material zugesetzt wird. Weiterhin kann es auch möglich sein, dass die Modifikation von Material der ersten organischen Schicht durch Zusetzen eines weiteren Materials erreicht wird. Wird jedoch während der Modifikation Material zugeführt, so wird dieses nicht nur einfach auf der ersten organischen Schicht unter Bildung einer neuen Schicht abgeschieden, sondern führt zu einer Modifikation von Material der ersten organischen Schicht. Insbesondere wird zur Ausbildung der Zwischenschicht Material der ersten organischen Schicht in ein davon verschiedenes Material umgewandelt, das dann die Zwischenschicht bildet. Mit anderen Worten kann somit beim hier beschriebenen Verfahren anstelle einer zusätzlich abgeschiedenen Zwischenschicht die bereits vorliegende erste organische Schicht, die p- oder n-leitend sein kann, durch ein gezieltes chemisches oder physikalisches Verfahren so verändert werden, dass die modifizierte Oberfläche der ersten organischen Schicht die Funktion einer zusätzlichen Zwischenschicht übernehmen kann. Innerhalb der ersten organischen Schicht kann somit eine Grenzfläche ausgebildet werden, die das unmodifizierte Material der ersten organischen Schicht und das modifizierte Material, das dann die Zwischenschicht bildet, trennt. Die Zwischenschicht wird somit „in situ“ unter Verwendung von Material der ersten organischen Schicht gebildet, die jedoch zum Teil erhalten bleibt, da nur ein Oberflächenbereich der ersten organischen Schicht zur Bildung der Zwischenschicht modifiziert wird. Um chemische und/oder physikalische Verfahren anwenden zu können, um das Material der ersten organischen Schicht entsprechend zu modifizieren, enthält die erste organische Schicht insbesondere ein oder mehrere Materialien, die durch Aktivierung oder chemische Reaktion in das Material der Zwischenschicht, also in ein anderes Material, umgewandelt werden. Das Material der Zwischenschicht kann dabei auch derart ausgebildet sein, dass es nicht mit Aufbringverfahren aufbringbar ist, mittels derer die erste organische Schicht aufgebracht wird, also beispielsweise mittels Aufdampfen. Somit kann das Material der Zwischenschicht beispielsweise nicht verdampfbar sein.
  • Gemäß einer weiteren Ausführungsform wird zur Ausbildung der Zwischenschicht auf die Oberfläche der ersten organischen Schicht Licht eingestrahlt. Insbesondere kann es sich hierbei um ultraviolettes Licht handeln. Das Licht kann kontinuierlich oder auch gepulst auf die Oberfläche gestrahlt werden, wobei im zweiten Fall auch von so genannten „photonic pulses“ gesprochen werden kann. Für ein derartiges Verfahren zur Ausbildung der Zwischenschicht kann das Material der ersten organischen Schicht insbesondere Moleküle enthalten oder daraus bestehen, die nach dem Aufbringen wie beispielsweise Aufdampfen durch Bestrahlung der Oberfläche der ersten organischen Schicht eine fotokatalytisch aktivierte Reaktion eingehen, durch die eine stabile Zwischenschicht an der Oberfläche der ersten organischen Schicht gebildet wird.
  • Gemäß einer weiteren Ausführungsform beinhaltet das Verfahren zum Ausbilden der Zwischenschicht eine chemische Behandlung der Oberfläche der ersten organischen Schicht. Die chemische Behandlung kann insbesondere ein Verfahren beinhalten, bei dem durch Zusatz eines oder mehrerer Materialien das Material der ersten organischen Schicht modifiziert wird. Dies kann durch Veränderung der Moleküle des Materials der ersten organischen Schicht erfolgen. So kann beispielsweise ein Material zugeführt werden, das durch chemische Reaktion zu einer Modifikation des Materials der ersten organischen Schicht führt. Beispielsweise beinhaltet die Modifikation von Material der ersten organischen Schicht eine Oxidation mit Sauerstoff.
  • Gemäß einer weiteren Ausführungsform wird zur Ausbildung der Zwischenschicht ein Atomlagenätzverfahren (ALE: „atomic layer etching“) durchgeführt. Hierbei handelt es sich um ein Verfahren, bei dem in einem ersten Verfahrensschritt der Oberfläche der ersten organischen Schicht ein Material zugeführt wird, das sich an das Material der ersten organischen Schicht anlagert und/oder mit diesem eine chemische Verbindung eingeht. Durch Zuführung eines weiteren Materials kann erreicht werden, dass ein Teil des Materials der ersten organischen Schicht, beispielsweise Molekülteile des Materials der ersten organischen Schicht, entfernt werden, so dass das an der Oberfläche der ersten organischen Schicht zurückbleibende Material im Vergleich zum ursprünglichen Material der ersten organischen Schicht modifiziert ist und die Zwischenschicht bildet.
  • Gemäß einer weiteren Ausführungsform wird im Rahmen des Verfahrens zur Ausbildung der Zwischenschicht eine Atomlagenabscheidung durchgeführt. Insbesondere kann eine Atomlagenabscheidung von reaktivem Material durchgeführt werden, das mit Molekülen des ursprünglich aufgebrachten Materials der ersten organischen Schicht reagiert und ein davon verschiedenes Material bildet, durch das dann die Zwischenschicht gebildet wird.
  • Gemäß einer weiteren Ausführungsform wird im Rahmen der Ausbildung der Zwischenschicht eine Plasmabehandlung der Oberfläche der ersten organischen Schicht durchgeführt. Insbesondere kann beispielsweise ein Ozon-Plasma verwendet werden, durch das Moleküle des Materials der ersten organischen Schicht modifiziert werden.
  • Je nach verwendetem Verfahren und je nach Kombination der verwendeten Verfahren kann die Dicke der gebildeten Zwischenschicht durch die Dauer oder Intensität der gewählten Behandlungsmethode zur Modifikation von Material der ersten organischen Schicht gesteuert werden. Durch die hier beschriebene In-situ-Bildung einer intrinsischen Zwischenschicht können Vorteile beim Aufbringen des Materials der ersten organischen Schicht, beispielsweise eine einfache Verdampfbarkeit von kleinen Molekülen, die als Reaktanden für das Modifikationsverfahren zur Ausbildung der Zwischenschicht bereitstehen, mit Vorteilen der beispielsweise als große Moleküle an der Grenzfläche vorliegenden Reaktionsprodukte kombiniert werden, beispielsweise eine gute Trennung der ersten und zweiten organischen Schicht, insbesondere für den Fall, dass die verwendeten Materialien der ersten und zweiten organischen Schicht miteinander reagieren können, sowie eine hohe Stabilität und ein vergrößertes chromophores System zur Vermeidung von Absorptionen im sichtbaren Spektralbereich.
  • Insbesondere kann mit der hier beschriebenen organischen Ladungsträgererzeugungsschicht, bei der die Zwischenschicht durch eine Modifikation von Material der ersten organischen Schicht ausgebildet wird, die Lebensdauer und/oder die Spannungsstabilität dieser Verbindungsstruktur erhöht werden, da sie chemisch und physikalisch stabil ausgebildet werden kann. Es können weiterhin unter moderaten Bedingungen verdampfbare Materialien verwendet werden, da die Zwischenschicht erst nach dem Aufdampfen in situ gebildet wird. Insbesondere kann durch das hier beschriebene Verfahren eine Zwischenschicht herstellbar sein, deren Performance und Lebensdauer im Vergleich zu im Stand der Technik bekannten CGLs erhöht ist.
  • Gemäß einer weiteren Ausführungsform weist die erste und/oder zweite organische Schicht eine Dicke von größer oder gleich 1 nm und bevorzugt von größer oder gleich 10 nm auf. Weiterhin kann die erste und/oder zweite organische Schicht eine Dicke von kleiner oder gleich 400 nm und bevorzugt von kleiner oder gleich 100 nm aufweisen. Insbesondere kann die erste und/oder zweite organische Schicht eine Dicke von größer oder gleich 1 nm und kleiner oder gleich 400 nm oder größer oder gleich 10 nm und kleiner oder gleich 100 nm aufweisen.
  • Gemäß einer weiteren Ausführungsform weist die Zwischenschicht eine Dicke auf, die größer oder gleich 1 nm ist. Weiterhin kann die Zwischenschicht eine Dicke aufwiesne, die kleiner oder gleich 50 nm und bevorzugt kleiner oder gleich 15 nm ist. Insbesondere kann die Zwischenschicht somit eine Dicke aufweisen, die größer oder gleich 1 nm und kleiner oder gleich 50 nm und bevorzugt größer oder gleich 1 nm und kleiner oder gleich 15 nm ist.
  • Gemäß einer weiteren Ausführungsform weisen der erste und zweite organische funktionelle Schichtstapel jeweils Schichten mit organischen Polymeren, organischen Oligomeren, organischen Monomeren, organischen kleinen, nicht-polymeren Molekülen („small molecules“) oder Kombinationen daraus auf. Der erste und zweite organische funktionelle Schichtenstapel können gleich oder verschieden ausgebildet sein, also gleiche oder unterschiedliche Materialien und/oder Schichtkombinationen aufweisen. Insbesondere kann jeder der organischen funktionellen Schichtenstapel zumindest eine organische Licht emittierende Schicht aufweisen, die dazu eingerichtet ist, bei Ladungsträgerinjektion aufgrund von Elektrolumineszenz Licht zu erzeugen. Als Materialien für die organischen Licht emittierenden Schichten eignen sich somit Materialien, die eine Strahlungsemission aufgrund von Fluoreszenz oder Phosphoreszenz aufweisen, beispielsweise Polyfluoren, Polythiophen oder Polyphenylen oder Derivate, Verbindungen, Mischungen oder Copolymere davon. Das organische Licht emittierende Bauelement kann somit insbesondere als gestapelte organische Licht emittierende Diode (OLED) ausgebildet sein.
  • Die organischen funktionellen Schichtenstapel können weiterhin jeweils zumindest eine funktionelle Schicht aufweisen, die als Lochtransportschicht ausgeführt ist, um eine effektive Löcherinjektion in die jeweilige zumindest eine Licht emittierende Schicht zu ermöglichen. Als Materialien für eine Lochtransportschicht können sich beispielsweise tertiäre Amine, Carbazolderivate, mit Camphersulfonsäure dotiertes Polyanilin oder mit Polystyrolsulfonsäure dotiertes Polyethylendioxythiophen als vorteilhaft erweisen. Die organischen funktionellen Schichtenstapel können weiterhin jeweils eine funktionelle Schicht aufweisen, die als Elektronentransportschicht ausgebildet ist. Darüber hinaus können die Schichtenstapel auch jeweils beispielsweise auch Elektronen- und/oder Löcherblockierschichten aufweisen.
  • Das Substrat kann beispielsweise eines oder mehrere Materialien in Form einer Schicht, einer Platte, einer Folie oder einem Laminat aufweisen, die ausgewählt sind aus Glas, Quarz, Kunststoff, Metall, Siliziumwafer. Besonders bevorzugt weist das Substrat Glas, beispielsweise in Form einer Glasschicht, Glasfolie oder Glasplatte, auf oder ist daraus.
  • Im Hinblick auf den prinzipiellen Aufbau eines organischen Licht emittierenden Bauelements, dabei insbesondere im Hinblick auf den Aufbau, die Schichtzusammensetzung und die Materialien der organischen funktionellen Schichtenstapel, wird auf die Druckschrift WO 2010/066245 A1 verwiesen, die diesbezüglich hiermit ausdrücklich durch Rückbezug aufgenommen wird.
  • Die zwei Elektroden, zwischen denen die organischen funktionellen Schichtenstapel und die organische Ladungsträgererzeugungsschicht angeordnet sind, können beispielsweise beide transparent ausgebildet sein, sodass das in den organischen Licht emittierenden Schichten der organischen funktionellen Schichtenstapeln zwischen den beiden Elektroden erzeugte Licht in beide Richtungen, also in Richtung des Substrats als auch in die vom Substrat abgewandte Richtung, abgestrahlt werden können. Weiterhin können beispielsweise alle Schichten des organischen Licht emittierenden Bauelements transparent ausgebildet sein, sodass das organische Licht emittierende Bauelement eine transparente OLED bilden kann. Darüber hinaus kann es auch möglich sein, dass eine der beiden Elektroden, zwischen denen die organischen funktionellen Schichtenstapel und die organische Ladungsträgererzeugungsschicht angeordnet sind, nicht-transparent und vorzugsweise reflektierend ausgebildet ist, sodass das in den Licht emittierenden Schichten der organischen funktionellen Schichtenstapel zwischen den beiden Elektroden im Betrieb des organischen Licht emittierenden Bauelements erzeugte Licht nur in eine Richtung durch die transparente Elektrode abgestrahlt werden kann. Ist die auf dem Substrat angeordnete erste Elektrode transparent und ist auch das Substrat transparent ausgebildet, so spricht man auch von einem so genannten „bottom emitter“, während man im Fall, dass die dem Substrat abgewandt angeordnete zweite Elektrode transparent ausgebildet ist, von einem so genannten „top emitter“ spricht.
  • Mit „transparent“ wird hier und im Folgenden eine Schicht bezeichnet, die durchlässig für sichtbares Licht ist. Dabei kann die transparente Schicht klar durchscheinend oder zumindest teilweise Licht streuend und/oder teilweise Licht absorbierend sein, so dass die transparente Schicht beispielsweise auch diffus oder milchig durchscheinend sein kann. Besonders bevorzugt ist eine hier als transparent bezeichnete Schicht möglichst durchlässig insbesondere für in den organischen funktionellen Schichtenstapeln erzeugtes Licht ausgebildet, so dass insbesondere die Absorption von abzustrahlendem Licht so gering wie möglich ist.
  • Weitere Vorteile, vorteilhafte Ausführungsformen und Weiterbildungen ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
  • Es zeigen:
  • 1A bis 1C schematische Darstellungen von Verfahrensschritten eines Verfahrens zur Herstellung einer organischen Ladungsträgererzeugungsschicht und
  • 2A bis 2D schematische Darstellungen von Verfahrensschritten eines Verfahrens zur Herstellung eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht.
  • In den Ausführungsbeispielen und Figuren können gleiche, gleichartige oder gleich wirkende Elemente jeweils mit denselben Bezugszeichen versehen sein. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente, wie zum Beispiel Schichten, Bauteile, Bauelemente und Bereiche, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.
  • In den 1A bis 1C sind Verfahrensschritte eines Ausführungsbeispiels eines Verfahrens zur Herstellung einer organischen Ladungsträgererzeugungsschicht 10, insbesondere einer organischen Ladungsträgererzeugungsschicht für ein organisches Licht emittierendes Bauelement, dargestellt.
  • In einem ersten Verfahrensschritt wird, wie in 1A gezeigt ist, eine erste organische Schicht 1 ausgebildet, die überwiegend leitend in Bezug auf einen ersten Ladungsträgertyp ist. Die erste organische Schicht 1 kann beispielsweise auf einem organischen funktionellen Schichtenstapel aufgebracht werden, wie weiter unten in Verbindung mit den 2A bis 2D beschrieben ist. Besonders bevorzugt kann die erste organische Schicht 1 mit dem ersten Ladungsträgertyp dotiert sein. Insbesondere kann die erste organische Schicht 1 ein Matrixmaterial aufweisen, das einen Dotierstoff für den ersten Ladungsträgertyp enthält. Beispielsweise kann die erste organische Schicht 1 p-leitend dotiert und damit Löcher leitend sein.
  • Für eine lochleitende Schicht kann eines oder mehrere Materialien in Frage kommen, die aus einer Gruppe ausgewählt sind, die HAT-CN (Hexaazatriphenylenhexacarbonitril), F16CuPc (Kupfer-Hexadecafluorophthalocyanin), α-NPD, NPB (N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidin), beta-NPB (N,N'-Bis(naphthalen-2-yl)-N,N'-bis(phenyl)-benzidin), TPD (N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidin), Spiro-TPD (N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidin), Spiro-NPB (N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-spiro), DMFL-TPD (N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-9,9-dimethyl-fluoren), DMFL-NPB (N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-9,9-dimethyl-fluoren), DPFL-TPD (N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-9,9-diphenyl-fluoren), DPFL-NPB (N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-9,9-diphenyl-fluoren), Spiro-TAD (2,2',7,7'-Tetrakis(N,N-diphenylamino)-9,9'-spirobifluoren), 9,9-Bis[4-(N,N-bis-biphenyl-4-yl-amino)phenyl]-9H-fluoren, 9,9-Bis[4-(N,N-bis-naphthalen-2-yl-amino)phenyl]-9H-fluoren, 9,9-Bis[4-(N,N'-bis-naphthalen-2-yl-N,N'-bis-phenyl-amino)-phenyl]-9H-fluor, N,N'-bis(phenanthren-9-yl)-N,N'-bis(phenyl)-benzidin, 2,7-Bis[N,N-bis(9,9-spiro-bifluorene-2-yl)-amino]-9,9-spiro-bifluoren, 2,2'-Bis[N,N-bis(biphenyl-4-yl)amino]9,9-spiro-bifluoren, 2,2'-Bis(N,N-di-phenyl-amino)9,9-spiro-bifluoren, Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexan, 2,2',7,7'-tetra(N,N-ditolyl)amino-spiro-bifluoren, N,N,N',N'-tetra-naphthalen-2-yl-benzidin sowie Gemische dieser Verbindungen umfasst. Als p-Dotierstoff können eines oder mehrere Materialien in Frage kommen, die einer Gruppe ausgewählt sind, die MoOx, WOx, VOx, Cu(I)pFBz (pFBz: Pentafluorobenzoat), Bi(III)pFBz, F4-TCNQ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethan), NDP-2, und NDP-9 umfasst.
  • Alternativ zu einer p-dotierten ersten organischen Schicht 1 kann die erste organische Schicht 1 auch n-leitend und damit Elektronen leitend sein. Beispielsweise kann die erste organische Schicht 1 in diesem Fall n-dotiert sein.
  • Für eine Elektronen leitende Schicht kann eines oder mehrere Materialien in Frage kommen, die aus einer Gruppe ausgewählt sind, die 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazol), 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazol, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthrolin (BCP), 8-Hydroxyquinolinolato-lithium, 4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazol, 1,3-Bis[2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazo-5-yl]benzen, 4,7-Diphenyl-1,10-phenanthrolin (BPhen), 3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazol, Bis(2-methyl-8-quinolinolat)-4-(phenylphenolato)aluminium, 6,6'-Bis[5-(biphenyl-4-yl)-1,3,4-oxadiazo-2-yl]-2,2'-bipyridyl, 2-phenyl-9,10-di(naphthalen-2-yl)-anthracen, 2,7-Bis[2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazo-5-yl]-9,9-dimethylfluoren, 1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzen, 2-(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthrolin, 2,9-Bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthrolin, Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)boran, 1-methyl-2-(4-(naphthalen-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthrolin, Phenyldipyrenylphosphinoxid, Naphthalintetracarbonsäuredianhydrid und dessen Imide, Perylentetracarbonsäuredianhydrid und dessen Imide, Materialien basierend auf Silolen mit einer Silacyclopentadieneinheit sowie Gemische der vorgenannten Stoffe umfasst. Als n-Dotierstoff können eines oder mehrere Materialien in Frage kommen, die einer Gruppe ausgewählt sind, die NDN-1, NDN-26, Na, Ca, MgAg, Cs, Li, Mg, Cs2CO3, und Cs3PO4 umfasst.
  • In einem weiteren Verfahrensschritt wird, wie in 1B gezeigt ist, eine Zwischenschicht 2 an einer Oberfläche der ersten organischen Schicht 1 ausgebildet. Insbesondere wird hierbei eine Behandlung durchgeführt, die durch die Pfeile 9 angedeutet ist, und die zu einer Modifikation von Material der ersten organischen Schicht 1 im Bereich der oberen Oberfläche führt. Hierzu kann die erste organische Schicht 1 ein Material aufweisen, das durch Aktivierung oder chemische Reaktion in ein neues Material umgewandelt werden kann, das verschieden vom ursprünglichen Material der ersten organischen Schicht 1 ist und das eine Zwischenschicht 2 mit den gewünschten Eigenschaften bildet und beispielsweise eine Diffusion von Dotierstoffen zwischen den Schichten der organischen Ladungsträgererzeugungsschicht 10 verhindert.
  • Beispielsweise kann die Modifikation von Material der ersten organischen Schicht 1 fotokatalytisch erfolgen, also durch eine Bestrahlung mittels Licht wie beispielsweise ultraviolettem Licht. Durch eine entsprechende Bestrahlung der Oberfläche der ersten organischen Schicht 1, beispielsweise in Form von Lichtpulsen, kann an der Oberfläche eine fotokatalytisch aktivierte Reaktion von Material der ersten organischen Schicht 1 bewirkt werden, wodurch Material der Zwischenschicht 2 gebildet wird. Beispielsweise kann es sich hierbei um Vernetzungsreaktionen handeln, so dass als Material der ersten organischen Schicht 1 beispielsweise kleine Moleküle, die eine einfach Verdampfbarkeit aufweisen, leicht aufgebracht werden können, während die Zwischenschicht 2 dann aus großen Molekülen gebildet wird, die durch eine Vernetzung der kleineren Moleküle gebildet werden und die nur schwer oder gar nicht verdampfbar sind. Bei der Durchführung einer Lichtbestrahlung wie auch bei den im Folgenden beschriebenen Verfahren zur Modifikation von Material der ersten organischen Schicht 1 kann die Dicke der Zwischenschicht 2 durch die Dauer und/oder Intensität der gewählten Behandlungsmethode steuerbar sein.
  • Alternativ zu einer Bestrahlung mit Licht kann die Modifikation des Materials der ersten organischen Schicht 1 beispielsweise auch mittels einer chemischen Behandlung der Oberfläche der ersten organischen Schicht 1 erfolgen, so etwa mittels einer Oxidation mit Sauerstoff. Darüber hinaus kann beispielsweise auch eine Plasmabehandlung der Oberfläche der ersten organischen Schicht 1 erfolgen, etwa mittels eines Ozon-Plasmas. Weiterhin kann eine Modifikation von Material der ersten organischen Schicht 1 beispielsweise auch mittels eines Atomlagenätzverfahrens oder mittels einer Atomlagenabscheidung von reaktivem Material erfolgen, wie oben im allgemeinen Teil beschrieben ist.
  • In einem weiteren Verfahrensschritt wird, wie in 1C gezeigt ist, auf der so in situ gebildeten Zwischenschicht 2 eine zweite organische Schicht 3 aufgebracht, die überwiegend leitend in Bezug auf einen vom ersten Ladungsträgertyp der ersten organischen Schicht 1 verschiedenen zweiten Ladungsträgertyp ist. Ist die erste organische Schicht 1 p-leitend und dabei beispielsweise p-dotiert, so wird die zweite organische Schicht 3 n-leitend ausgebildet und dabei beispielsweise n-dotiert und umgekehrt. Für die zweite organische Schicht 3 kommen entsprechend die oben genannten Materialien in Frage.
  • Das Material der Zwischenschicht 2 kann insbesondere eine gute Trennung der leitenden organischen Schichten 1, 3 der organischen Ladungsträgererzeugungsschicht 10 bewirken, eine hohe Stabilität sowie eine geeignete Transmission für Licht, insbesondere im sichtbaren Spektralbereich.
  • In Verbindung mit den 2A bis 2D ist ein Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements 100 gezeigt, dass eine organische Ladungsträgererzeugungsschicht 10 aufweist. Hierzu wird in einem ersten Verfahrensschritt, wie in 2A gezeigt ist, ein Substrat 11 bereitgestellt, auf dem eine erste Elektrode 12 und ein erster organischer funktioneller Schichtenstapel 13 aufgebracht werden. Im gezeigten Ausführungsbeispiel sind das Substrat 11 und die erste Elektrode 12 insbesondere transparent ausgebildet
  • Das Substrat 11 kann als Trägerelement für die darauf aufgebrachten Schichten dienen und beispielsweise aus Glas, Quarz und/oder einem Halbleitermaterial gebildet sein. Alternativ kann das Substrat 11 auch durch eine Kunststofffolie oder durch ein Laminat aus mehreren Kunststofffolien und/oder Glasfolien gebildet sein.
  • Die erste Elektrode 12 kann ein transparentes leitendes Oxid aufweisen oder daraus bestehen. Transparente leitende Oxide (TCO: „transparent conductive oxide“) sind transparente, leitende Materialien, in der Regel Metalloxide, wie beispielsweise Zinkoxid, Zinnoxid, Cadmiumoxid, Titanoxid, Indiumoxid, Indiumzinnoxid (ITO) oder Aluminiumzinkoxid (AZO). Neben binären Metallsauerstoffverbindungen wie beispielsweise ZnO, SnO2 oder In2O3 gehören auch ternäre Metallsauerstoffverbindungen wie beispielsweise Zn2SnO4, CdSnO3, ZnSnO3, MgIn2O4, GaInO3, Zn2In2O5 oder In4Sn3O12 oder Mischungen unterschiedlicher transparenter leitender Oxide zu der Gruppe der TCOs. Weiterhin entsprechen die TCOs nicht zwingend einer stöchiometrischen Zusammensetzung und können auch p- oder n-dotiert sein.
  • Weiterhin kann die erste Elektrode 12 eine Metallschicht mit einem Metall oder einer Legierung aufweisen, beispielsweise mit einem oder mehreren der folgenden Materialien: Ag, Pt, Au, Mg, Ag:Mg. Weiterhin sind auch andere Metalle möglich. Die Metallschicht weist zur Ausbildung einer transparenten Elektrode dabei eine derart geringe Dicke auf, dass sie zumindest teilweise durchlässig für Licht ist, beispielsweise eine Dicke von kleiner oder gleich 50 nm.
  • Die transparente erste Elektrode 12 kann auch eine Kombination aus zumindest einer oder mehreren TCO-Schichten und zumindest einer transparenten Metallschicht aufweisen.
  • Der erste organische funktionelle Schichtenstapel 13 weist eine organische Licht emittierende Schicht auf, die dazu ausgebildet ist, im Betrieb des organischen Licht emittierenden Bauelements 100 Licht abzustrahlen. Der erste organische funktionelle Schichtenstapel 13 kann insbesondere wie oben im allgemeinen Teil ausgebildet sein und zusätzlich zur organischen Licht emittierenden Schicht weitere organische funktionelle Schichten aufweisen, beispielsweise Lochtransportschichten, Elektronentransportschichten, Lochblockierschichten und/oder Elektronenblockierschichten.
  • In einem weiteren Verfahrensschritt wird, wie in 2B gezeigt ist, auf dem ersten organischen funktionellen Schichtenstapel 13 eine organische Ladungsträgererzeugungsschicht 10 gemäß dem vorab in Verbindung mit den 1A bis 1C beschriebenen Verfahren ausgebildet, die zwischen einer ersten organischen Schicht 1, die überwiegend leitend für einen ersten Ladungsträgertyp ausgebildet ist, und einer zweiten organischen Schicht 2, die überwiegend leitend für einen davon verschiedenen zweiten Ladungsträgertyp ausgebildet ist, eine Zwischenschicht 2 aufweist, die durch Modifikation von Material der ersten organischen Schicht 1 hergestellt ist.
  • Wie in 2C gezeigt ist, wird in einem weiteren Verfahrensschritt ein zweiter organischer funktioneller Schichtenstapel 14 auf der organischen Ladungsträgererzeugungsschicht 10 aufgebracht. Der zweite organische funktionelle Schichtenstapel 14 kann dabei ähnlich oder gleich dem ersten organischen funktionellen Schichtenstapel 13 ausgebildet sein und weist insbesondere ebenfalls eine organische Licht emittierende Schicht auf. Insbesondere können die organischen funktionellen Schichtenstapel 13, 14 dazu ausgebildet sein, unterschiedlich farbiges Licht zu emittieren, so dass das organische Licht emittierende Bauelement 100 mischfarbiges Licht abstrahlen kann.
  • In einem weiteren Verfahrensschritt wird, wie in 2D gezeigt wird, auf dem zweiten organischen funktionellen Schichtenstapel 14 eine zweite Elektrode 15 aufgebracht. Die zweite Elektrode 15 kann im gezeigten Ausführungsbeispiel insbesondere reflektierend ausgebildet sein und ein Metall aufweisen, das ausgewählt ist aus Aluminium, Barium, Indium, Silber, Gold, Magnesium, Calcium und Lithium sowie Verbindungen, Kombinationen und Legierungen daraus. Insbesondere kann die reflektierende zweite Elektrode 15 Ag, Al oder Legierungen mit diesen aufweisen, beispielsweise Ag:Mg, Ag:Ca, Mg:Al.
  • Durch eine transparente erste Elektrode 12 und eine reflektierende zweite Elektrode 15 ist das gezeigte organische Licht emittierende Bauelement 100 insbesondere als Bottom-Emitter ausgebildet. Alternativ hierzu können auch beide Elektroden 12, 15 transparent sein, so dass das organische Licht emittierende Bauelement 100 als transparente organische Licht emittierende Diode ausgebildet sein kann. Weiterhin ist es auch möglich, dass die erste Elektrode 12 reflektierend und die zweite Elektrode 15 transparent ausgebildet sind, so dass das organische Licht emittierende Bauelement 100 in diesem Fall als Top-Emitter ausgebildet sein kann.
  • Beispielsweise kann die erste Elektrode 12 als Anode und die zweite Elektrode 15 als Kathode ausgeführt sein. In diesem Fall ist die erste organische Schicht 1 der organischen Ladungsträgererzeugungsschicht 10 n-leitend ausgebildet, während die zweite organische Schicht 3 p-leitend ausgebildet ist. Alternativ hierzu kann die Polarität des organischen Licht emittierenden Bauelements 100 auch umgekehrt sein, wobei sich in diesem Fall auch die Leitungstypen der ersten und zweiten organischen Schicht 1, 3 umkehren.
  • Die Elektroden 12, 15 können jeweils großflächig ausgebildet sein. Dadurch kann eine großflächige Abstrahlung des in den organischen funktionellen Schichtenstapeln 13, 14 erzeugten Lichts ermöglicht werden. „Großflächig“ kann dabei bedeuten, dass das organische Licht emittierende Bauelement 100 eine Fläche von größer oder gleich einigen Quadratmillimetern, bevorzugt größer oder gleich einem Quadratzentimeter und besonders bevorzugt größer oder gleich einem Quadratdezimeter aufweist.
  • Zusätzlich zu den zwei organischen funktionellen Schichtenstapel 13, 14 mit der dazwischen angeordneten organischen Ladungsträgererzeugungsschicht 10 kann das organische Licht emittierende Bauelement 100 noch weitere organische funktionelle Schichtenstapel mit jeweils einer organischen Licht emittierenden Schicht aufweisen. Zwischen jeweils benachbarten organischen funktionellen Schichtenstapel ist dann jeweils eine organische Ladungsträgerzeugungsschicht angeordnet, die mit dem hier beschriebenen Verfahren herstellbar sein kann.
  • Weiterhin kann über den Elektroden 12, 15 und den dazwischen angeordneten organischen Schichten eine Verkapselungsanordnung, bevorzugt in Form einer Dünnschichtverkapselung, aufgebracht sein (nicht gezeigt), um das organische Licht emittierende Bauelement 100 und insbesondere die Elektroden 12, 15 und die dazwischen angeordneten Schichten vor schädigenden Materialien aus der Umgebung wie beispielsweise Feuchtigkeit und/oder Sauerstoff und/oder anderen korrosiven Substanzen wie etwa Schwefelwasserstoff zu schützen. Die Verkapselungsanordnung kann hierzu eine oder mehrere dünne Schichten aufweisen, die beispielsweise mittels eines Atomlagenabscheideverfahrens aufgebracht sind und die beispielsweise eines oder mehrere der Materialien Aluminiumoxid, Zinkoxid, Zirkoniumoxid, Titanoxid, Hafniumoxid, Lanthanoxid und Tantaloxid aufweisen. Die Verkapselungsanordnung kann weiterhin beispielsweise auf einer Dünnschichtverkapselung einen mechanischen Schutz in Form einer Kunststoffschicht und/oder einer auflaminierten Glasschicht aufweisen, wodurch beispielsweise ein Kratzschutz erreicht werden kann. Alternativ sind auch andere Verkapselungsanordnungen möglich, beispielsweise in Form eines aufgeklebten Glasdeckels.
  • Die in Verbindung mit den Figuren beschriebenen Ausführungsbeispiele können zusätzlich oder alternativ weitere oben im allgemeinen Teil beschriebene Merkmale aufweisen.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2010/066245 A1 [0028]
  • Zitierte Nicht-Patentliteratur
    • Y. Chen et al., Appl. Phys. Lett. 98, 243309 (2011) [0005]
    • Q. Y. Bao et al., Appl. Phys. Lett. 97, 063303 (2010) [0005]
    • L. S. Liao et al., Adv. Mat. 20, 324–329, 2008 [0005]

Claims (15)

  1. Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht (10) mit den Schritten: A) Ausbilden einer ersten organischen Schicht (1), die überwiegend leitend für einen ersten Ladungsträgertyp ist, B) Ausbilden einer Zwischenschicht (2) an einer Oberfläche der ersten organischen Schicht (1) durch Modifikation (9) von Material der ersten organischen Schicht (1) und C) Aufbringen einer zweiten organischen Schicht (3), die überwiegend leitend für einen vom ersten Ladungsträgertyp verschiedenen zweiten Ladungsträgertyp ist, auf der Zwischenschicht (2).
  2. Verfahren nach Anspruch 1, bei dem die erste organische Schicht (1) mit dem ersten Ladungsträgertyp dotiert ist und/oder die zweite organische Schicht (3) mit dem zweiten Ladungsträgertyp dotiert ist.
  3. Verfahren nach Anspruch 1 oder 2, bei dem im Verfahrensschritt B) Licht auf die Oberfläche der ersten organischen Schicht (1) eingestrahlt wird.
  4. Verfahren nach Anspruch 3, bei dem das Licht ultraviolettes Licht aufweist.
  5. Verfahren nach Anspruch 3 oder 4, bei dem das Licht gepulst auf die Oberfläche gestrahlt wird.
  6. Verfahren nach einem der vorherigen Ansprüche, bei dem im Verfahrensschritt B) eine chemische Behandlung der Oberfläche der ersten organischen Schicht (1) durchgeführt wird.
  7. Verfahren nach Anspruch 5, bei dem eine Oxidation mit Sauerstoff durchgeführt wird.
  8. Verfahren nach einem der vorherigen Ansprüche, bei dem im Verfahrensschritt B) ein Atomlagenätzverfahren durchgeführt wird.
  9. Verfahren nach einem der vorherigen Ansprüche, bei dem im Verfahrensschritt B) eine Atomlagenabscheidung von reaktivem Material durchgeführt wird.
  10. Verfahren nach einem der vorherigen Ansprüche, bei dem im Verfahrensschritt B) eine Plasmabehandlung der Oberfläche der ersten organischen Schicht (1) durchgeführt wird.
  11. Verfahren nach Anspruch 10, bei dem ein Ozon-Plasma verwendet wird.
  12. Verfahren nach einem der vorherigen Ansprüche, bei dem im Verfahrensschritt B) Material der ersten organischen Schicht in ein davon verschiedenes Material umgewandelt wird, das die Zwischenschicht (2) bildet.
  13. Verfahren nach Anspruch 12, bei dem das Material der Zwischenschicht (2) nicht verdampfbar ist.
  14. Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements (100) mit einer organischen Ladungsträgererzeugungsschicht (10) mit den Schritten: A) Ausbilden eines ersten organischen funktionellen Schichtenstapels (13) auf einer ersten auf einem Substrat (11) angeordneten Elektrode (12), B) Ausbilden einer Ladungsträgererzeugungsschicht (10) auf dem ersten organischen funktionellen Schichtenstapel (13) mit einem Verfahren gemäß einem der Ansprüche 1 bis 13, C) Ausbilden eines zweiten organischen funktionellen Schichtenstapels (14) auf der Ladungsträgererzeugungsschicht (10), D) Anordnen einer zweiten Elektrode (15) auf dem zweiten organischen funktionellen Schichtenstapel (14).
  15. Verfahren nach Anspruch 14, bei dem der erste und zweite organische funktionelle Schichtenstapel (13, 14) jeweils eine organische Licht emittierende Schicht aufweisen, die dazu eingerichtet sind, im Betrieb des organischen Licht emittierenden Bauelements (100) Licht abzustrahlen.
DE102015104314.9A 2015-03-23 2015-03-23 Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht Withdrawn DE102015104314A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102015104314.9A DE102015104314A1 (de) 2015-03-23 2015-03-23 Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht
PCT/EP2016/054786 WO2016150687A1 (de) 2015-03-23 2016-03-07 Verfahren zur herstellung einer organischen ladungsträgererzeugungsschicht und eines organischen licht emittierenden bauelements mit einer organischen ladungsträgererzeugungsschicht

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015104314.9A DE102015104314A1 (de) 2015-03-23 2015-03-23 Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht

Publications (1)

Publication Number Publication Date
DE102015104314A1 true DE102015104314A1 (de) 2016-09-29

Family

ID=55456824

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015104314.9A Withdrawn DE102015104314A1 (de) 2015-03-23 2015-03-23 Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht

Country Status (2)

Country Link
DE (1) DE102015104314A1 (de)
WO (1) WO2016150687A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066245A1 (de) 2008-12-11 2010-06-17 Osram Opto Semiconductors Gmbh Organische leuchtdiode und beleuchtungsmittel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954861B2 (ja) * 2007-12-19 2012-06-20 パナソニック株式会社 有機エレクトロルミネッセンス素子および製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066245A1 (de) 2008-12-11 2010-06-17 Osram Opto Semiconductors Gmbh Organische leuchtdiode und beleuchtungsmittel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. S. Liao et al., Adv. Mat. 20, 324–329, 2008
Q. Y. Bao et al., Appl. Phys. Lett. 97, 063303 (2010)

Also Published As

Publication number Publication date
WO2016150687A1 (de) 2016-09-29

Similar Documents

Publication Publication Date Title
DE102013017361B4 (de) Organisches Licht emittierendes Bauelement und Verfahren zur Herstellung eines organischen Licht ermittierenden Bauelements
DE102012214021B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
DE112013001553B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102013109451B9 (de) Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102011086277B4 (de) Organisches Licht-emittierendes Bauelement
DE102013107113A1 (de) Organisches Licht emittierendes Bauelement und Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements
WO2008077615A1 (de) Elektronisches bauelement mit mindestens einer organischen schichtanordnung
WO2014005766A1 (de) Organisches licht emittierendes bauelement
DE102014102346B4 (de) Organisches optoelektronisches Bauelement und Verfahren zum Herstellen eines organischen optoelektronischen Bauelements
DE102012208235B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE112014007311B9 (de) Organisches lichtemittierendes Bauelement
DE102014117011B4 (de) Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements
DE102014112130B4 (de) Organisches Licht emittierendes Bauelement und Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements
DE102015102371B4 (de) Organisches Licht emittierendes Bauelement
DE102015104314A1 (de) Verfahren zur Herstellung einer organischen Ladungsträgererzeugungsschicht und eines organischen Licht emittierenden Bauelements mit einer organischen Ladungsträgererzeugungsschicht
DE102012025879B3 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102013106800A1 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
WO2017085204A1 (de) Verfahren zur herstellung einer schicht, verwendung der schicht, verfahren zur herstellung eines organischen licht emittierenden bauelements und organisches licht emittierendes bauelement
WO2016180815A1 (de) Verfahren zur herstellung einer ladungsträgererzeugungsschicht, verfahren zur herstellung eines organischen licht emittierenden bauelements mit einer ladungsträgererzeugungsschicht und organisches licht emittierendes bauelement mit einer ladungsträgererzeugungsschicht
WO2017085068A1 (de) Organische leuchtdiode und verfahren zur herstellung einer organischen leuchtdiode
DE102015111733A1 (de) Organisches optoelektronisches Bauelement und Verfahren zum Herstellen eines organischen optoelektronischen Bauelements

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee