DE102014225254A1 - Hybrides kapazitives Berührungssystem - Google Patents

Hybrides kapazitives Berührungssystem Download PDF

Info

Publication number
DE102014225254A1
DE102014225254A1 DE102014225254.7A DE102014225254A DE102014225254A1 DE 102014225254 A1 DE102014225254 A1 DE 102014225254A1 DE 102014225254 A DE102014225254 A DE 102014225254A DE 102014225254 A1 DE102014225254 A1 DE 102014225254A1
Authority
DE
Germany
Prior art keywords
touch sensor
conductive material
touch
self
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014225254.7A
Other languages
English (en)
Inventor
Igor Polishchuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neodron Ltd
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of DE102014225254A1 publication Critical patent/DE102014225254A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041662Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using alternate mutual and self-capacitive scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices

Abstract

In einer Ausführungsform enthält ein System einen Berührungssensor mit ersten und zweiten Leitungen aus leitfähigem Material innerhalb und außerhalb des Berührungssensors und dritten Leitungen aus leitfähigem Material außerhalb des Berührungssensors, die zwischen den ersten Leitungen aus leitfähigem Material außerhalb des Berührungssensors und den zweiten Leitungen aus leitfähigem Material außerhalb des Berührungssensors angeordnet sind. Das System enthält des Weiteren eine Logik, die dazu konfiguriert ist, bei ihrer Ausführung ein Massesignal an den dritten Satz von Leitungen aus leitfähigem Material anzulegen, und Berührungseingaben an dem Berührungssensor unter Verwendung einer Gegenkapazitätsberührungserfassung zu detektieren, als Reaktion auf die Entscheidung, in einer Gegenkapazitätsbetriebsart zu arbeiten, und ein Spannungssignal an den dritten Satz von Leitungen aus leitfähigem Material anzulegen, und Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung zu erfassen, als Reaktion auf die Entscheidung, in einer Eigenkapazitätsbetriebsart zu arbeiten.

Description

  • Technischer Bereich
  • Diese Offenbarung bezieht sich allgemein auf Berührungssensoren und insbesondere auf ein Sensordesign für hybride kapazitive Berührungssensoren.
  • Hintergrund
  • In aktuellen Entwürfen, die eine Gegenkapazitätserfassung beinhalten, muss die Sensorleitungsführung eine Massebahn zwischen jedem Paar von angrenzenden Sensorleitungen beinhalten, die sich in dem Berührungssensor überlappen (z. B. Sensorleitungen, die in der X- und der Y-Richtung verlaufen). Zusätzlich muss bei Entwürfen mit einer Eigenkapazitätserfassung der Sensorleitungsverlauf auf einem Gerät eine Ansteuerschutzleitung zwischen den Ansteuersensorleitungen (z. B. den in der X-Richtung verlaufenden Leitungen) und einer angrenzenden geerdeten Ausleseleitung (z. B. den in der Y-Richtung verlaufenden Leitungen) enthalten. Demzufolge kann ein hybrider kapazitiver Sensorentwurf, der sowohl Gegen- als auch Eigenkapazitätsmoden der Erfassung von Berührungseingaben verwirklicht, eine exzessive Menge von Masseleitungen und Schutzleitungen erfordern, um die ordnungsgemäße Funktionalität des Berührungssensors sicherzustellen. Diese zahlreichen Masse- und Schutzleitungen erfordern wiederum übermäßig viel Platz am Rand oder der Einfassung eines Geräts, wo die Leitungen verlaufen, was zu einem wenig ansprechenden Design, sowohl hinsichtlich der Funktionalität als auch der Ästhetik führen kann.
  • Kurze Beschreibung der Zeichnungen
  • 1 zeigt einen beispielhaften hybriden kapazitiven Berührungssensor mit einer beispielhaften Berührungssensorsteuereinheit gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung;
  • 2 zeigt ein beispielhaftes Diagramm für eine Leiterbahnführung für hybride kapazitive Berührungssensoren gemäß bestimmten Ausführungsformen der vorliegenden Offenbarung;
  • 3 zeigt ein alternatives Beispieldiagramm einer Leiterbahnführung für hybride kapazitive Berührungssensoren gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung;
  • 4 zeigt ein Beispielverfahren zur Erfassung von Berührungseingaben unter Verwendung eines hybriden kapazitiven Berührungssensors gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung; und
  • 5 zeigt ein beispielhaftes Computersystem zur Verwendung mit dem hybriden kapazitiven Berührungssensor der 13 gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung.
  • Beschreibung der beispielhaften Ausführungsformen
  • 1 zeigt einen beispielhaften hybriden kapazitiven Berührungssensor 110 mit einer beispielhaften Berührungssensorsteuereinheit 112 gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung. Der Berührungssensor 110 und die Berührungssensorsteuereinheit 112 können die Gegenwart und den Ort einer Berührung oder der Annäherung durch ein Objekt innerhalb eines berührungsempfindlichen Bereichs des Berührungssensors 110 detektieren. Eine Bezugnahme auf einen Berührungssensor kann hier gegebenenfalls sowohl den Berührungssensor als auch seine Berührungssensorsteuereinheit umfassen. In ähnlicher Weise kann eine Bezugnahme auf eine Berührungssensorsteuereinheit sowohl die Berührungssensorsteuereinheit als auch ihren Berührungssensor umfassen. Der Berührungssensor 110 kann gegebenenfalls einen oder mehrere berührungsempfindliche Bereiche umfassen. Der Berührungssensor 110 kann ein Feld von Ansteuer- und Ausleseelektroden (oder ein Feld von Elektroden nur einer einzigen Art) beinhalten, die auf einem oder auf mehreren Substraten angeordnet sind, welches aus einem dielektrischen Material bestehen kann. Eine Bezugnahme auf einen Berührungssensor kann hier gegebenenfalls sowohl die Elektroden des Berührungssensors als auch das Substrat oder die Substrate umfassen, auf denen sie angebracht sind. Alternativ dazu kann eine Bezugnahme auf einen Berührungssensor gegebenenfalls die Elektroden des Berührungssensors umfassen, aber nicht das Substrat oder die Substrate, auf denen sie angebracht sind.
  • Eine Elektrode (entweder eine Masseelektrode, eine Schutzelektrode, eine Ansteuerelektrode oder eine Ausleseelektrode) kann ein Bereich aus leitfähigem Material sein, das eine bestimmte Form hat, wie z. B. eine Kreisscheibe, ein Quadrat, ein Rechteck, eine dünne Linie, oder eine andere geeignete Form oder geeignete Kombinationen derselben. Ein oder mehrere Schnitte in einer oder in mehreren Schichten aus leitfähigem Material können (zumindest zum Teil) die Form einer Elektrode bilden, und die Fläche der Form kann (zumindest zum Teil) durch diese Schnitte begrenzt sein. In bestimmten Ausführungsformen kann das leitfähige Material einer Elektrode ungefähr 100% der Fläche ihrer Form bedecken. In einem nicht einschränkenden Beispiel kann eine Elektrode aus Indiumzinnoxid (ITO) bestehen, und das ITO der Elektrode kann ungefähr 100% der Fläche ihrer Form (manchmal als 100%ige Füllung bezeichnet) bedecken. In bestimmten Ausführungsformen kann das leitfähige Material eine Elektrode wesentlich weniger als 100% der Fläche ihrer Form bedecken. In einem nicht einschränkenden Beispiel kann eine Elektrode aus feinen Leitungen aus Metall oder einem anderen leitfähigen Material (FLM) bestehen, wie z. B. aus Kupfer, Silber, oder einem kupfer- oder silberhaltigen Material, und die feinen Leitungen aus leitfähigem Material können ungefähr 5% der Fläche ihrer Form in einem schraffierten, netzförmigen oder einem anderen geeigneten Muster bedecken. Eine Bezugnahme auf FLM kann hier gegebenenfalls derartige Materialien umfassen. Obwohl diese Offenbarung bestimmte Elektroden beschreibt oder illustriert, die aus bestimmten leitfähigen Materialien bestehen, das bestimmte Formen mit bestimmten Füllprozentsätzen mit bestimmten Mustern bildet, umfasst diese Offenbarung alle geeigneten Elektroden bestehend aus jedem geeigneten leitfähigen Material, das jede geeignete Form mit jedem geeigneten Füllprozentsatz mit jedem geeigneten Muster bildet.
  • Die Formen der Elektroden (oder anderer Elemente) eines Berührungssensors können gegebenenfalls ein oder mehrere Makromerkmale des Berührungssensors ganz oder zum Teil bestimmen. Ein oder mehrere Eigenschaften der Implementierung dieser Formen (wie z. B. das leitfähige Material, die Füllungen oder die Muster innerhalb der Formen) können ein oder mehrere Mikromerkmale des Berührungssensors ganz oder zum Teil bestimmen. Ein oder mehrere Makromerkmale eines Berührungssensors können eine oder mehrere Eigenschaften seiner Funktionalität bestimmen, und ein oder mehrere Mikromerkmale des Berührungssensors können ein oder mehrere optische Merkmale des Berührungssensors bestimmen, wie z. B. die Durchsichtigkeit, Brechung, oder Reflexion.
  • Eine mechanischer Stapel kann das Substrat (oder mehrere Substrate) und das leitfähige Material enthalten, das die Ansteuer- oder Ausleseelektroden des Berührungssensors 110 bildet. In einem nicht einschränkenden Beispiel kann der mechanische Stapel eine erste Schicht aus optisch klarem Klebstoff (OCA) unterhalb eines Abdeckpaneels enthalten. Das Abdeckpaneel kann durchsichtig sein und aus einem widerstandsfähigen Material bestehen, das für eine wiederholte Berührung geeignet ist, wie z. B. aus Glas, Polycarbonat, oder Poly(methylmethacrylat) (PMMA). Diese Offenbarung umfasst alle geeigneten Abdeckpaneele bestehend aus jedem geeigneten Material. Die erste Schicht aus OCA kann zwischen dem Abdeckpaneel und dem Substrat mit dem leitfähigen Material, das die Ansteuer- oder Ausleseelektroden bildet, vorgesehen sein. Der mechanische Stapel kann auch eine zweite Schicht aus OCA und eine dielektrische Schicht (die aus PET oder einem anderen geeigneten Material bestehen kann, ähnlich dem Substrat mit dem leitfähigen Material, das die Ansteuer- oder Ausleseelektroden bilde) enthalten. Alternativ dazu kann gegebenenfalls eine dünne Beschichtung aus einem dielektrischen Material anstelle der zweiten Schicht aus OCA und der dielektrischen Schicht aufgebracht sein. Die zweite Schicht aus OCA kann zwischen dem Substrat mit dem leitfähigen Material, das die Ansteuer- oder Ausleseelektroden bildet, und der dielektrischen Schicht vorgesehen sein, und die dielektrische Schicht kann zwischen der zweiten Schicht aus OCA und einem Luftspalt zur Anzeige eines Geräts, das den Berührungssensor 110 und die Berührungssensorsteuereinheit 112 enthält, vorgesehen sein. In einem nicht einschränkenden Beispiel kann das Abdeckpaneel eine Dicke von ungefähr 1 mm haben; die erste Schicht aus OCA kann eine Dicke von ungefähr 0,05 mm haben; das Substrat mit dem leitfähigen Material, das die Ansteuer- oder Ausleseelektroden bildet, kann eine Dicke von ungefähr 0,05 mm haben; die zweite Schicht aus OCA kann eine Dicke von ungefähr 0,05 mm haben; und die dielektrische Schicht kann eine Dicke von ungefähr 0,05 mm haben. Obwohl diese Offenbarung einen bestimmten mechanischen Stapel mit einer bestimmten Anzahl von bestimmten Schichten bestehend aus bestimmten Materialien mit bestimmten Dicken beschreibt, umfasst diese Offenbarung alle geeigneten mechanischen Stapel mit jeder geeigneten Zahl geeigneter Schichten bestehend aus geeigneten Materialien mit jeder geeigneten Dicke. In einem nicht einschränkenden Beispiel kann in bestimmten Ausführungsformen eine Schicht aus Klebstoff oder Dielektrikum die dielektrische Schicht, die zweite Schicht aus OCA und dem oben beschriebenen Luftspalt ersetzen, so dass es keinen Luftspalt zur Anzeige hin gibt. In einem anderen Beispiel kann der mechanische Stapel die in den 2A2B dargestellten und weiter unten beschriebenen Schichten enthalten.
  • Ein oder mehrere Abschnitte des Substrats des Berührungssensors 110 können aus Polyethylenterephthalat (PET), Glas oder einem anderen geeigneten Material bestehen. Diese Offenbarung umfasst alle geeigneten Substrate, bei denen geeignete Abschnitte aus geeigneten Materialien bestehen. In bestimmten Ausführungsformen können die Ansteuer- oder Ausleseelektroden in dem Berührungssensor 110 ganz oder zum Teil aus ITO bestehen. In bestimmten Ausführungsformen können die Ansteuer- oder Ausleseelektroden des Berührungssensors 110 aus feinen Leitungen aus Metall oder einem anderen leitfähigen Material bestehen. In einem nicht einschränkenden Beispiel können ein oder mehrere Teile des leitfähigen Materials Kupfer oder kupferhaltig sein und eine Dicke von ungefähr 5 μm oder weniger und eine Breite von ungefähr 10 μm oder weniger haben. In einem anderen Beispiel können ein oder mehrere Teile des leitfähigen Materials Silber oder silberhaltig sein und gleichermaßen eine Dicke von ungefähr 5 μm oder weniger und eine Breite von ungefähr 10 μm oder weniger haben. Diese Offenbarung umfasst alle geeigneten Elektroden bestehend aus jedem geeigneten Material.
  • Der Berührungssensor 110 kann eine hybride kapazitive Form der Berührungserfassung implementieren, die sowohl Gegen- als auch Eigenkapazitätserfassungsbetriebsarten in einem kapazitiven Sensor enthalten kann. In einer Gegenkapazitätsimplementierung oder Betriebsart kann der Berührungssensor 110 ein Feld von Ansteuer- und Ausleseelektroden enthalten, die ein Feld aus kapazitivem Knoten bilden. Ein überlappender Bereich einer Ansteuerelektrode und einer Ausleseelektrode kann einen kapazitiven Knoten bilden. Die Ansteuer- und Ausleseelektroden, die den kapazitiven Knoten bilden, können einander nahekommen, gehen aber keinen elektrischen Kontakt miteinander ein. Stattdessen können die Ansteuer- und Ausleseelektroden kapazitiv miteinander über einen Zwischenraum zwischen ihnen gekoppelt sein. Eine gepulste oder alternierende Spannung, die an die Ansteuerelektrode (durch die Berührungssensorsteuereinheit 112) angelegt wird, kann eine Ladung auf der Ausleseelektrode induzieren, und die induzierte Ladungsmenge kann durch externe Einflüsse (wie z. B. eine Berührung oder die Nähe eines Objekts) beeinflusst werden. Wenn ein Objekt den kapazitiven Knoten berührt oder in dessen Nähe kommt, kann eine Kapazitätsänderung an dem kapazitiven Knoten auftreten, und die Berührungssensorsteuereinheit 112 kann die Kapazitätsänderung messen. Durch Messen der Kapazitätsänderungen über das Feld hinweg, kann die Berührungssensorsteuereinheit 112 die Position der Berührung oder Annäherung innerhalb des berührungsempfindlichen Bereichs oder der berührungsempfindlichen Bereiche des Berührungssensors 110 ermitteln.
  • In einer Eigenkapazitätsimplementierung oder Betriebsart kann der Berührungssensor 110 ein Feld von Elektroden nur einer einzigen Art enthalten, die jeweils einen kapazitiven Knoten bilden können. In manchen Ausführungsformen kann der Berührungssensor 110 ein Feld von angesteuerten und geerdeten Elektroden enthalten, wobei jeder Überlappungsbereich zwischen der angesteuerten und der geerdeten Elektrode einen kapazitiven Knoten bildet. Wenn ein Objekt den kapazitiven Knoten berührt oder in dessen Nähe kommt, kann eine Eigenkapazitätsänderung an dem kapazitiven Knoten auftreten, und die Berührungssensorsteuereinheit 112 kann die Kapazitätsänderung beispielsweise als eine Änderung der Ladungsmenge messen, die erforderlich ist, um die Spannung an dem kapazitiven Knoten um einen vorbestimmten Betrag zu erhöhen. Wie bei der Gegenkapazitätsimplementierung kann durch Messen der Kapazitätsänderungen über das Feld hinweg die Berührungssensorsteuereinheit 112 die Position der Berührung oder der Annäherung innerhalb des berührungsempfindlichen Bereichs oder der berührungsempfindlichen Bereiche des Berührungssensors 110 ermitteln. Diese Offenbarung umfasst gegebenenfalls alle geeigneten Formen der kapazitiven Berührungserfassung.
  • In bestimmten Ausführungsformen können ein oder mehrere Ansteuerelektroden zusammen eine Ansteuerleitung bilden, die horizontal oder vertikal oder in einer anderen geeigneten Orientierung verläuft. In ähnlicher Weise können ein oder mehrere Ausleseelektroden zusammen eine Ausleseleitung bilden, die horizontal oder vertikal oder in einer anderen geeigneten Orientierung verläuft. In bestimmten Ausführungsformen können die Ansteuerleitungen im Wesentlichen senkrecht zu den Ausleseleitungen verlaufen. Eine Bezugnahme auf eine Ansteuerleitung kann hier gegebenenfalls eine oder mehrere Ansteuerelektroden umfassen, die die Ansteuerleitung bilden, und umgekehrt. In ähnlicher Weise kann eine Bezugnahme auf eine Ausleseleitung gegebenenfalls eine oder mehrere Ausleseelektroden umfassen, die die Ausleseleitung bilden und umgekehrt.
  • Obwohl diese Offenbarung bestimmte Konfigurationen bestimmter Elektroden, die bestimmte Knoten bilden, beschreibt, umfasst diese Offenbarung alle geeigneten Konfigurationen geeigneter Elektroden, die geeignete Knoten bilden. Darüber hinaus umfasst diese Offenbarung alle geeigneten Elektroden, die auf jeder geeigneten Zahl geeigneter Substrate in jedem geeigneten Muster angeordnet sind.
  • Wie obenstehend beschrieben wurde, kann eine Kapazitätsänderung an einem kapazitiven Knoten des Berührungssensors 110 eine Berührungs- oder Annäherungseingabe an der Position des kapazitiven Knotens anzeigen. Die Berührungssensorsteuereinheit 112 kann die Kapazitätsänderung detektieren und verarbeiten, um die Gegenwart und den Ort der Berührungs- oder Annäherungseingabe zu ermitteln. Berührungssensorsteuereinheit 112 kann dann Informationen über die Berührungs- oder Annäherungseingabe an eine oder mehrere andere Komponenten (wie z. B. eine oder mehrere Zentralverarbeitungseinheiten (CPUs)) eines Gerätes übermitteln, das den Berührungssensor 110 und die Berührungssensorsteuereinheit 112 enthält, welches wiederum auf die Berührungs- oder Annäherungseingabe durch Initiierung einer Funktion des Gerätes (oder einer auf dem Gerät laufenden Anwendung) reagieren kann. Obwohl diese Offenbarung eine bestimmte Berührungssensorsteuereinheit mit einer bestimmten Funktionalität hinsichtlich eines bestimmten Gerätes und eines bestimmten Berührungssensors beschreibt, umfasst diese Offenbarung alle geeigneten Berührungssensorsteuereinheiten mit jeder geeigneten Funktionalität hinsichtlich jedes geeigneten Gerätes und jedes geeigneten Berührungssensors.
  • Die Berührungssensorsteuereinheit 112 kann eine oder mehrere integrierte Schaltungen (ICs) umfassen, wie z. B. Universalmikroprozessoren, Mikrocontroller, programmierbare logische Geräte oder Arrays, anwendungsspezifische ICs (ASICs). In bestimmten Ausführungsformen umfasst die Berührungssensorsteuereinheit 112 analoge Schaltungen, digitale Logiken, und digitale nichtflüchtige Speicher. In bestimmten Ausführungsformen ist die Berührungssensorsteuereinheit 112 auf einer flexiblen gedruckten Schaltungen (FPC) angebracht, die mit dem Substrat des Berührungssensors 110, wie untenstehend beschrieben wird, verbunden ist. Die FPC kann gegebenenfalls aktiv oder passiv sein. In bestimmten Ausführungsformen können mehrere Berührungssensorsteuereinheiten 112 auf der FPC angeordnet sein. Die Berührungssensorsteuereinheit 112 kann eine Verarbeitungseinheit, eine Ansteuereinheit, eine Ausleseeinheit und eine Speichereinheit enthalten. Die Ansteuereinheit kann Ansteuersignale an die Ansteuerelektroden des Berührungssensors 110 anlegen. Die Ausleseeinheit kann Ladungen an den kapazitiven Knoten des Berührungssensors 110 erfassen und Messsignale an die Verarbeitungseinheit liefern, die die Kapazitäten an den kapazitiven Knoten repräsentieren. Die Verarbeitungseinheit kann das Anlegen der Ansteuersignale an die Ansteuerelektroden durch die Ansteuereinheit steuern und die Messsignale von der Ausleseeinheit verarbeiten, um die Gegenwart und den Ort einer Berührungs- oder Annäherungseingabe innerhalb des berührungsempfindlichen Bereichs oder der berührungsempfindlichen Bereiche des Berührungssensors 110 zu detektieren und zu verarbeiten. Die Verarbeitungseinheit kann auch Änderungen in der Position einer Berührungs- oder Annäherungseingabe innerhalb des berührungsempfindlichen Bereichs oder der berührungsempfindlichen Bereiche des Berührungssensors 110 verfolgen. Die Speichereinheit kann Programme zur Ausführung durch die Verarbeitungseinheit speichern, inklusive Programme zur Steuerung der Ansteuereinheit zum Anlegen der Ansteuersignale an die Ansteuerelektroden, Programme zur Verarbeitung der Messsignale von der Ausleseeinheit und gegebenenfalls andere geeignete Programme. Obwohl diese Offenbarung eine bestimmte Berührungssensorsteuereinheit mit einer bestimmten Implementierung mit bestimmten Komponenten beschreibt, umfasst diese Offenbarung alle geeigneten Berührungssensorsteuereinheiten mit jeder geeigneten Implementierung mit geeigneten Komponenten.
  • Die Leiterbahnen 114 aus leitfähigem Material, die auf dem Substrat des Berührungssensors 110 angebracht sind, können die Ansteuer- oder Ausleseelektroden des Berührungssensors 110 mit Verbindungsflächen 116 koppeln, die ebenfalls auf dem Substrat des Berührungssensors 110 angebracht sind. Wie untenstehend beschrieben wird, ermöglichen die Verbindungsflächen 116 die Kopplung der Leiterbahnen 114 mit der Berührungssensorsteuereinheit 112. Die Leiterbahnen 114 können sich in oder um (z. B. an den Rändern) der berührungsempfindlichen Bereiche des Berührungssensors 110 erstrecken. Bestimmte Leiterbahnen 114 können Ansteuerverbindungen zur Kopplung der Berührungssensorsteuereinheit 112 mit den Ansteuerelektroden des Berührungssensors 110 zur Verfügung stellen, über die die Ansteuereinheit der Berührungssensorsteuereinheit 112 Ansteuersignale an die Ansteuerelektroden anlegen kann. Andere Leiterbahnen 114 können Ausleseverbindungen zur Kopplung der Berührungssensorsteuereinheit 112 mit den Ausleseelektroden des Berührungssensors 110 zur Verfügung stellen, über die die Ausleseeinheit der Berührungssensorsteuereinheit 112 Ladungen an den kapazitiven Knoten des Berührungssensors 110 erfassen kann. Die Leiterbahnen 114 können aus feinen Leitungen aus Metall oder einem anderen leitfähigen Material bestehen. In einem nicht einschränkenden Beispiel kann das leitfähige Material der Leiterbahnen 114 Kupfer oder kupferhaltig sein und eine Breite von ungefähr 100 μm oder weniger haben. In einem anderen Beispiel kann das leitfähige Material der Leiterbahnen 114 Silber oder silberhaltig sein und eine Breite von ungefähr 100 μm oder weniger haben. In bestimmten Ausführungsformen können die Leiterbahnen 114 ganz oder zum Teil aus ITO bestehen, zusätzlich oder alternativ zu den feinen Leitungen aus Metall oder dem anderen leitfähigen Material. Obwohl diese Offenbarung bestimmte Leiterbahnen bestehend aus bestimmten Materialien mit bestimmten Breiten beschreibt, umfasst diese Offenbarung alle geeigneten Leiterbahnen bestehend aus jedem geeigneten Material mit jeder geeigneten Breite. Zusätzlich zu den Leiterbahnen 114 kann der Berührungssensor 110 eine oder mehrere Masseleitungen enthalten, die an einem Masseverbinder (welcher eine Verbindungsfläche 116 sein kann) an einem Rand des Substrats des Berührungssensors 110 (ähnlich den Leiterbahnen 114) enden.
  • Die Verbinderflächen 116 können längs eines oder mehrerer Ränder des Substrats außerhalb der berührungsempfindlichen Flächen des Berührungssensors 110 angeordnet sein. Wie obenstehend beschrieben wurde, kann die Berührungssensorsteuereinheit 112 auf einer FPC liegen. Die Verbindungsflächen 116 können aus dem gleichen Material bestehen, wie die Leiterbahnen 114 und können unter Verwendung eines anisotopen leitfähigen Films (ACF) mit der FPC verbunden sein. Die Verbindung 118 kann Leiterbahnen auf der FPC enthalten, die die Berührungssensorsteuereinheit 112 mit den Verbindungsflächen 116 koppeln, die wiederum die Berührungssensorsteuereinheit 112 mit den Leiterbahnen 114 und den Ansteuer- oder Ausleseelektroden des Berührungssensors 110 koppelt. In anderen Ausführungsformen können die Verbindungsflächen 116 mit einem elektromechanischen Verbinder (wie z. B. einem einsetzkraftfreien Kabel-Leiterplattenverbinder) verbunden sein; in dieser Ausführungsform muss die Verbindung 118 keine FPC enthalten. Diese Offenbarung umfasst alle geeigneten Verbindungen 118 zwischen der Berührungssensorsteuereinheit 112 und dem Berührungssensor 110.
  • 2 zeigt ein Beispieldiagramm für eine Leiterbahnführung für hybride kapazitive Berührungssensoren 110 gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung. In aktuellen Entwürfen, die eine Gegenkapazitätserfassung beinhalten, muss die Führung der Sensorleitungen auf einem Gerät eine Masseleiterbahn zwischen jedem Paar von angrenzenden Sensorleitungen enthalten, die sich in dem Berührungssensor überlappen (z. B. Sensorleitungen, die in der X- und der Y-Richtung verlaufen). Bei Entwürfen mit einer Eigenkapazitätserfassung muss die Führung der Sensorleitungen auf einem Gerät zusätzlich eine angesteuerte Schutzleitung zwischen jeder angesteuerten Sensorleitung (z. B. den in X-Richtung verlaufenden Leitungen) und einer angrenzenden geerdeten Ausleseleitung (z. B. den in Y-Richtung verlaufenden Leitungen) enthalten. Entwürfe für hybride kapazitive Sensoren, die sowohl Gegen- als auch Eigenkapazitätsbetriebsarten zur Erfassung von Berührungseingaben umfassen, können daher eine exzessive Menge von Masseleitungen und Schutzleitungen erfordern, um eine ordnungsgemäße Funktion des Berührungssensors sicherzustellen. Diese zahlreichen Masse- und Schutzleitungen erfordern wiederum übermäßig viel Platz am Rand oder an der Einfassung eines Geräts, wo die Leitungen geführt werden, was wiederum zu einem wenig ansprechenden Design führen kann, sowohl funktionell als auch ästhetisch.
  • Wie in 2 dargestellt ist, hat ein hybrider kapazitiver Berührungssensor 110 z. B. Sensorleitungen 114x und 114y (die Leiterbahnen repräsentieren, die auf dem Sensor 110 in der X- bzw. Y-Richtung verlaufen), die den Sensor 110 verlassen und zu der Verbindung 118 um den Sensor 110 herumgeführt werden, um mit der Steuereinheit 112 verbunden zu werden. Obwohl in 2 nur vier Sensorleitungen 114x und zwei Sensorleitungen 114y dargestellt sind, versteht sich, dass in 2 zu Darstellungszwecken nur in orthogonalen Richtungen auf dem Sensor verlaufende Sensorleitungen dargestellt sind, die auch aneinander angrenzen würden, wenn sie längs des Randes des Berührungssensors 110 geführt würden. Es versteht sich daher, dass jede geeignete Zahl von Sensorleitungen 114x und 114y in dem Berührungssensor 110 enthalten sein können, ohne von der vorliegenden Offenbarung abzuweichen.
  • Da der Sensor 110 als hybrider kapazitiver Berührungssensor konfiguriert ist, müssen Masseleitungen (z. B. Masseleitungen 212) zwischen den angrenzenden X- und Y-Leiterbahnen (z. B. den Sensorleitungen 114x und 114y) angeordnet werden, um eine Gegenkapazitätsbetriebsart in dem Berührungssensor 110 zu ermöglichen. Dies ermöglicht eine bessere Isolierung zwischen den Signalen auf den Sensorleitungen 114x und 114y in einer Gegenkapazitätsbetriebsart. Zusätzlich müssen Ansteuerschutzleitungen (z. B. Schutzleitung 214) zwischen jeder Ansteuerleitung (z. B. Sensorleitungen 114x oder 114y) und einer angrenzenden Masseleitung (z. B. Masseleitung 212b) angeordnet werden, um Eigenkapazitätsbetriebsarten in dem Berührungssensor 110 zu ermöglichen. Dies ermöglicht eine bessere Signaldetektion in Eigenkapazitätsbetriebsarten. Wie dargestellt, können jedoch bis zu sechzehn Masseleitung 212 und Schutzleitung 214 erforderlich sein, um jede Erfassungsbetriebsart in einem hybriden kapazitiven Berührungssensor zu ermöglichen. Dies kann viel Platz an dem Rand oder der Einfassung eines Berührungsbildschirmgeräts erfordern, was nicht wünschenswert sein kann.
  • Bestimmten Ausführungsformen der vorliegenden Offenbarung können demnach hybride Masse/Schutzleitungen anstelle der separaten Masseleitungen 212 und der Schutzleitungen 214, die in 2 dargestellt sind, beinhalten (wie dies weiter unten im Zusammenhang mit 3 beschrieben wird). Diese hybriden Leitungen können geerdet werden, während der hybride kapazitive Berührungssensor 110 in einer Gegenkapazitätsbetriebsart arbeitet, aber ähnlich den Schutzleitungen 214 angesteuert werden, während der Sensor 110 in einer Eigenkapazitätsbetriebsart arbeitet. Zusätzlich können die hybriden Leitungen weniger Platz erfordern als die separaten Masseleitung 212 und die Schutzleitungen 214, die in 2 dargestellt sind. Die hybriden Leitungen gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung können daher eine ordnungsgemäße, genaue Berührungserfassung in beiden Betriebsarten eines hybriden kapazitiven Berührungssensors ermöglichen (d. h. in Eigen- und Gegenkapazitätsbetriebsarten), während gleichzeitig eine schmalere Einfassung des Gerätes ermöglicht wird, das den Berührungssensor enthält, und geringere Kosten für die Herstellung des Gerätes anfallen. Darüber hinaus kann die Verwendung der hybriden Leitungen gemäß der Ausführungsformen der vorliegenden Offenbarung zu einem kleineren Bondingbereich bei Berührungssensorentwürfen führen, die FPCs beinhalten, was in derartigen Produkten wünschenswert sein kann.
  • 3 zeigt ein alternatives Beispieldiagramm für eine Leiterbahnführung für hybride kapazitive Berührungssensoren 110 gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung. Ähnlich zu 2 hat der hybride kapazitive Berührungssensor 110 Sensorleitungen 114x und 114y (die Leiterbahnen repräsentieren, die über den Sensor 110 in der X- bzw. Y-Richtung verlaufen), die den Sensor 110 verlassen und um den Sensor 110 herum zu der Verbindung 118 geführt werden, um mit der Steuereinheit 112 verbunden zu werden. Obwohl in 3 (wie auch in 2) nur vier Sensorleitungen 114x und zwei Sensorleitungen 114y dargestellt sind, versteht sich, dass zu Darstellungszwecken in 2 nur Sensorleitungen gezeigt sind, die orthogonalen Richtungen auf dem Sensor verlaufen, die auch zueinander angrenzend wären, wenn sie entlang der Ränder des Berührungssensors 110 geführt würden. Es versteht sich daher, dass jede geeignete Zahl von Sensorleitungen 114x und 114y in dem Berührungssensor 110 enthalten sein kann, ohne von der vorliegenden Offenbarung abzuweichen.
  • Genau wie oben beschrieben wurde, kann es bei dem Sensor 110 erforderlich sein, Masseleitungen zwischen angrenzenden X- und Y-Leiterbahnen (z. B. Sensorleitungen 114x und 114y) anzuordnen, um Gegenkapazitätsbetriebsarten des Berührungssensors 110 zu ermöglichen, und es kann auch erforderlich sein, angesteuerte Schutzleitungen zwischen jeder angesteuerten Leitung (z. B. Sensorleitungen 114x und 114y) und einer angrenzenden Masseleitung (z. B. Masseleitung 212b) anzuordnen, um Eigenkapazitätsbetriebsarten in dem Berührungssensor 110 zu ermöglichen. Anstatt separate Masseleitungen und Schutzleitungen (z. B. Masseleitungen 212 und Schutzleitungen 214 in 2) zu verwenden, können stattdessen hybride Leitungen 312 verwendet werden. In bestimmten Ausführungsformen können die hybriden Leitungen 312 geerdet werden, während der Berührungssensor 110 in einer Gegenkapazitätsbetriebsart arbeitet, aber angesteuert werden (ähnlich wie die Schutzleitungen 214 in 2), während der Berührungssensor 110 in einer Eigenkapazitätsbetriebsart arbeitet. In bestimmten Ausführungsformen können die hybriden Leitungen 312 weniger Platz auf einem Gerät beanspruchen, das den Berührungssensor 110 enthält, als die in 2 dargestellten Masseleitungen 212 und Schutzleitungen 214. Eine hybride Leitung 312 kann in manchen Ausführungsformen z. B. 150 μm breit sein, wohingegen eine Kombination aus Masseleitungen 212 und Schutzleitungen 214, die durch eine hybride Leitung ersetzt werden, z. B. zwei Schutzleitungen 214 und eine Masseleitung 212) insgesamt 250 μm breit sein kann.
  • Die Steuereinheit 112 kann festlegen, in welcher Betriebsart der hybride kapazitive Berührungssensor 110 arbeiten soll. In anderen Worten, die Steuereinheit 112 kann festlegen, wann der Berührungssensor 110 in einer Gegenkapazitätsbetriebsart arbeiten soll, und wann der Berührungssensor 110 in einer Eigenkapazitätsbetriebsart arbeiten soll. Da Gegenkapazitätsbetriebsarten für die gleichzeitige Erfassung von mehreren Berührungseingaben (z. B. Mehrfachberührungsgesten) bevorzugt werden, kann die Steuereinheit 112 den Berührungssensor 110 in einer Gegenkapazitätsbetriebsart betreiben, wenn mehrere Berührungen auf dem Berührungssensor 110 erfasst werden. Da Eigenkapazitätsbetriebsarten für die Erfassung einzelner Berührungseingaben (z. B. unter Verwendung nur eines Fingers oder eines Stifts) bevorzugt werden, kann die Steuereinheit 112 den Berührungssensor 110 in einer Eigenkapazitätsbetriebsart betreiben, wenn eine einzige Berührungseingabe auf dem Berührungssensor 110 erfasst wird. In Eigenkapazitätsbetriebsarten kann die Steuereinheit 112 die hybriden Leitungen 312 mit jedem geeigneten Signal ansteuern, um eine Eigenkapazitätsberührungserfassung auf dem Berührungssensor 110 zu ermöglichen. In manchen Ausführungsformen kann das Signal auf den hybriden Leitungen 312 z. B. das gleiche Ansteuersignal wie auf den angesteuerten Leitungen des Berührungssensors 110 sein. In anderen Ausführungsformen kann das Signal auf den hybriden Leitungen 312 sich von dem Ansteuersignal auf den Ansteuerleitungen des Berührungssensors 110 unterscheiden. In bestimmten Ausführungsformen kann das Ansteuersignal auf den hybriden Leitungen 312 eine Signalform sein, wie z. B. ein Rechtecksignal oder ein Dreiecksignal.
  • Da die hybriden Leitungen 312 außerhalb des Berührungssensorbereichs liegen, kann die Steuereinheit 112 in manchen Ausführungsformen hybride Leitungen 312 während der Eigenkapazitätsbetriebsarten ansteuern und auslesen, um festzustellen, ob ein Benutzer eine Berührungseingabe an dem Rand oder der Einfassungen eines Gerätes vornimmt, das den Berührungssensor 110 enthält. Zusätzlich kann in manchen Ausführungsformen eine Masseleitung in den Entwurf eines hybriden kapazitiven Berührungssensors aufgenommen werden, wie in den in 3 gezeigten, ohne vom Umfang der vorliegenden Offenbarung abzuweichen. Eine Masseleitung kann z. B. längs der Außenseite des Führungsbereichs geführt werden, um elektrostatische Entladungen zu berücksichtigen.
  • 4 zeigt ein Beispielverfahren 400 zur Erfassung von Berührungseingaben unter Verwendung eines hybriden kapazitiven Berührungssensors gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung. Das Verfahren 400 kann in bestimmten Ausführungsformen durch einen oder mehrere Prozessoren ausgeführt werden, die eine oder mehrere Anweisungen ausführen, die in einem computerlesbaren Medium gespeichert sind. Das Verfahren 400 kann z. B. durch eine Berührungssensorsteuereinheit ausgeführt werden, die in einem Computersystem, wie z. B. dem weiter unten im Zusammenhang mit 5 beschriebenen Computersystem 500 enthalten sein kann.
  • Das Verfahren beginnt im Schritt 410, in dem eine Berührungssensorsteuereinheit feststellt, ob sie einen zugehörigen hybriden kapazitiven Berührungssensor in einer Gegenkapazitäts- oder einer Eigenkapazitätserfassungsbetriebsart betreiben wird. In 3 kann die Berührungssensorsteuereinheit 112 z. B. beschließen, den Berührungssensor 110 in einer Gegenkapazitätsbetriebsart zu betreiben, wenn mehrere Berührungseingaben erfasst werden, aber sie kann auch beschließen, den Berührungssensor 110 in einer Eigenkapazitätsbetriebsart zu betreiben, wenn eine einzige Berührungseingabe erfasst wird.
  • Wenn die Steuereinheit beschließt, dass ihr zugeordneter Berührungssensor in einer Eigenkapazitätsbetriebsart betrieben werden soll, wird das Verfahren im Schritt 412 fortgesetzt, in dem ein Ansteuersignal an hybride Masse/Schutzleitungen gesendet wird, die um den Berührungssensor herum geführt sind. In 3 kann die Steuereinheit 112 z. B. ein Ansteuersignal an die hybriden Leitungen 312 senden. In manchen Ausführungsformen kann das Signal auch auf den hybriden Leitungen 312 das gleiche Ansteuersignal sein, wie auf den Ansteuerleitungen des Berührungssensors 110 in der Eigenkapazitätsbetriebsart. In anderen Ausführungsformen kann das Signal auf den hybriden Leitungen 312 sich von dem Ansteuersignal auf den Ansteuerleitungen des Berührungssensors 110 unterscheiden. In bestimmten Ausführungsformen kann das Ansteuersignal auf den hybriden Leitungen 312 eine Signalform sein, wie z. B. ein Rechtecksignal oder ein Dreiecksignal. Wenn die Steuereinheit jedoch feststellt, dass ihr zugeordneter Berührungssensor in einer Gegenkapazitätsbetriebsart betrieben werden soll, wird das Verfahren im Schritt 414 fortgesetzt, in dem ein Massesignal an hybride Masse/Schutzleitungen gesendet wird, die um den Berührungssensor herum geführt sind.
  • Sobald eine Betriebsart durch die Berührungssensorsteuereinheit ausgewählt wurde und die geeigneten Signale an die hybriden Masse/Schutzleitungen gesendet wurden, die um den Berührungssensor herum geführt sind, wird das Verfahren im Schritt 416 fortgesetzt, in dem die Steuereinheit Berührungseingaben auf dem zugehörigen Berührungssensor unter Verwendung der ausgewählten Betriebsart detektieren kann. Berührungseingaben können unter Verwendung der ausgewählten Betriebsart erfasst werden, bis die Steuereinheit beschließt (z. B. als Reaktion auf ein Ereignis), dass die andere Betriebsart ausgewählt werden sollte. Wenn die Steuereinheit den Berührungssensor z. B. in einer Eigenkapazitätsbetriebsart betreibt (z. B. indem sie die hybriden Masse/Schutzleitungen mit einer Signalform ansteuert), da einzelne Berührungen auf dem Berührungssensor erfasst werden, kann sie damit fortfahren, bis sie eine zweite, gleichzeitige Berührungseingabe auf dem Berührungssensor detektiert (z. B. eine Mehrfachberührungsgeste), die besser erfasst werden könnte, wenn die Steuereinheit eine Gegenkapazitätsbetriebsart verwendet. Als Reaktion auf diese Detektion kann die Steuereinheit beschließen, zu einer Gegenkapazitätsbetriebsart zu wechseln, und ein Massesignal an die hybriden Masse/Schutzleitungen senden, die um den Berührungssensor herum geführt sind, und die Berührungserfassung unter Verwendung der Gegenkapazitätsbetriebsart beginnen.
  • Bestimmte Ausführungsformen können die Schritte des Verfahrens 400 aus 4 gegebenenfalls wiederholen. Obwohl darüber hinaus diese Offenbarung bestimmte Schritte des Verfahrens aus 4 als in einer bestimmten Reihenfolge auftretend beschreibt und illustriert, umfasst diese Offenbarung alle geeigneten Schritte des Verfahrens aus 4 in jeder geeigneten Reihenfolge. Obwohl darüber hinaus diese Offenbarung bestimmte Komponente, Geräte oder Systeme beschreibt und illustriert, die bestimmte Schritte des Verfahrens aus 4 ausführen, umfasst diese Offenbarung alle geeigneten Kombinationen von geeigneten Komponenten, Geräten oder Systemen, die geeignete Schritte des Verfahrens aus 4 ausführen.
  • 5 zeigt ein Beispielcomputersystem 500 zur Verwendung mit dem hybriden kapazitiven Berührungssensor aus dem 1 bis 3 gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung. In bestimmten Ausführungsformen führen ein oder mehrere Computersysteme 500 einen oder mehrere Schritte von einem oder von mehreren der hier beschriebenen oder illustrierten Verfahren aus. In bestimmten Ausführungsformen stellen ein oder mehrere Computersysteme 500 die hier beschriebene oder illustrierte Funktionalität zur Verfügung. In bestimmten Ausführungsformen führt eine auf einem oder mehreren Computersystemen 500 laufende Software einen oder mehrere Schritte von einem oder von mehreren der hier beschriebenen oder illustrierten Verfahren aus, oder stellt die hier beschriebene oder illustrierte Funktionalität zur Verfügung. In bestimmten Ausführungsformen kann die auf einem oder auf mehreren Computersystemen laufende Software eine auf einem computerlesbaren Medium codierte Logik sein. Bestimmten Ausführungsformen enthalten einen oder mehrere Teile von einem oder mehreren Computersystemen 500. Eine Bezugnahme auf ein Computersystem kann hier gegebenenfalls eine Datenverarbeitungsvorrichtung umfassen, oder umgekehrt. Eine Bezugnahme auf ein Computersystem kann hier gegebenenfalls darüber hinaus ein oder mehrere Computersysteme umfassen.
  • Diese Offenbarung umfasst jede geeignete Anzahl von Computersystemen 500. Diese Offenbarung umfasst Computersysteme 500 in jeder geeigneten physikalischen Form. In einem nicht einschränkenden Beispiel kann ein Computersystem 500 ein eingebettetes Computersystem, ein System auf einem Chip (SOC), ein Einplatinencomputersystem (SBC) (wie z. B. ein Computer auf einem Modul (COM), oder ein System auf einem Modul (SOM)), ein Desktopcomputersystem, ein Laptop oder Notebookcomputersystem, ein interaktiver Kiosk, ein Großrechner, ein Netz von Computersystemen, ein Mobiltelefon, ein persönlicher digitaler Assistent (PDA), ein Server, ein Tabletcomputersystem, oder eine Kombination von zweien oder mehreren derselben sein. Gegebenenfalls kann das Computersystem 500 ein oder mehrere Computersysteme 500 enthalten; unitär oder verteilt sein; mehrere Lokalitäten überspannen; mehrere Maschinen überspannen; mehrere Datenzentren überspannen; oder sich in einer Wolke befinden, die eine oder mehrere Wolkenkomponenten in einem oder mehreren Netzwerken enthalten kann. Ein oder mehrere Computersysteme 500 können gegebenenfalls einen oder mehrere Schritte von einem oder von mehreren der hier beschriebenen oder illustrierten Verfahren ohne substantielle räumliche oder zeitliche Einschränkungen ausführen. In einem nicht einschränkenden Beispiel können ein oder mehrere Computersysteme 500 einen oder mehrere Schritte von einem oder mehreren der hier beschriebenen oder illustrierten Verfahren in Echtzeit oder in einem Stapelbetrieb abarbeiten. Ein oder mehrere Computersysteme 500 können einen oder mehrere Schritte von einem oder von mehreren der hier beschriebenen oder illustrierten Verfahren gegebenenfalls zu unterschiedlichen Zeiten oder an unterschiedlichen Orten ausführen.
  • In bestimmten Ausführungsformen enthält das Computersystem 500 einen Prozessor 502, einen Hauptspeicher 504, einen Massespeicher 506, eine Ein/Ausgabeschnittstelle (I/O) 508, eine Kommunikationsschnittstelle 510 und einen Bus 512. Obwohl diese Offenbarung ein bestimmtes Computersystem mit einer bestimmten Zahl von bestimmten Komponenten in einer bestimmten Anordnung beschreibt und illustriert, umfasst diese Offenbarung alle geeigneten Computersysteme mit jeder geeigneten Anzahl geeigneter Komponenten in jeder geeigneten Anordnung.
  • In bestimmten Ausführungsformen enthält der Prozessor 502 Hardware zur Ausführung von Anweisungen, wie z. B. solcher, die ein Computerprogramm bilden. In einem nichteinschränkenden Beispiel kann der Prozessor 502 zur Ausführung von Anweisungen diese Anweisungen von einem internen Register, einem internen Cache, dem Hauptspeicher 504 oder dem Massenspeicher 506 abrufen (oder auslesen); diese Instruktionen decodieren und ausführen; und dann ein oder mehrere Ergebnisse in ein internes Register, einen internen Cache, den Hauptspeicher 504 oder den Massenspeicher 506 schreiben. In bestimmten Ausführungsformen kann der Prozessor 502 ein oder mehrere interne Cache/s für Daten, Anweisungen oder Adressen enthalten. Diese Offenbarung umfasst Prozessoren 502, die jede geeignete Anzahl von geeigneten internen Caches enthalten. In einem nichteinschränkenden Beispiel kann der Prozessor 502 einen oder mehrere Anweisungs-Caches, einen oder mehrere Daten-Caches und einen oder mehrere TLBs-Caches (translation lookaside buffers) enthalten. Anweisungen in den Anweisungs-Caches können Kopien der Anweisungen im Hauptspeicher 504 oder dem Massenspeicher 506 sein, und die Anweisungs-Caches können das Abrufen dieser Anweisungen durch den Prozessor 502 beschleunigen. Daten in den Daten-Caches können Kopien von Daten in dem Hauptspeicher 504 oder in dem Massenspeicher 506 für die Anweisungen sein, die am Prozessor 502 ausgeführt werden; die Resultate von zuvor am Prozessor 502 ausgeführten Anweisungen für den Zugriff durch nachfolgende am Prozessor 502 ausgeführte Anweisungen, oder zum Schreiben in den Hauptspeicher 504 oder den Massenspeicher 506; oder andere geeignete Daten sein. Die Daten-Caches können Lese- oder Schreiboperationen durch den Prozessor 502 beschleunigen. Die TLBs können die virtuelle Adressübersetzung für den Prozessor 502 beschleunigen. In bestimmten Ausführungsformen kann der Prozessor 502 ein oder mehrere interne Register für Daten, Anweisungen oder Adressen enthalten. Diese Offenbarung umfasst alle Prozessoren 502 mit jeder geeigneten Anzahl geeigneter interner Register. Der Prozessor 502 kann gegebenenfalls eine oder mehrere Arithmetik-Logikeinheiten (ALUs) enthalten; ein Mehrkern-Prozessor sein; oder einen oder mehrere Prozessor/en 502 enthalten. Obwohl diese Offenbarung einen bestimmten Prozessor beschreibt und illustriert, umfasst diese Offenbarung jeden geeigneten Prozessor.
  • In bestimmten Ausführungsformen enthält der Speicher 504 einen Hauptspeicher zur Speicherung von Anweisungen für den Prozessor 502 zur Ausführung oder Daten zur Verarbeitung durch den Prozessor 502. In einem nichteinschränkenden Beispiel kann das Computersystem 500 Anweisungen von dem Massenspeicher 506 oder einer anderen Quelle (wie z. B. einem anderen Computersystem 500) in den Hauptspeicher 504 laden. Der Prozessor 502 kann dann die Anweisungen aus dem Speicher 504 in ein internes Register oder einen internen Cache laden. Zur Ausführung der Anweisungen kann der Prozessor 502 die Anweisungen aus dem internen Register oder dem internen Cache abrufen und decodieren. Während oder nach der Ausführung der Anweisungen kann der Prozessor 502 ein oder mehrere Ergebnis/se (welche Zwischenergebnisse oder Endergebnisse sein können) in das interne Register oder den internen Cache schreiben. Der Prozessor 502 kann dann ein oder mehrere dieser Ergebnis/se in den Hauptspeicher 504 schreiben. In bestimmten Ausführungsformen führt der Prozessor 502 Anweisungen nur in einem oder mehreren internen Registern oder internen Caches oder im Hauptspeicher 504 (im Gegensatz zu dem Massenspeicher 506 oder anderen Orten) aus und verarbeitet nur Daten in einem oder in mehreren internen Registern oder internen Caches oder im Hauptspeicher 504 (im Gegensatz zum Massenspeicher 506 oder anderen Orten). Ein oder mehrere Speicherbus/se (die jeweils einen Adressbus und einen Datenbus enthalten können) können den Prozessor 502 mit dem Speicher 504 koppeln. Der Bus 512 kann einen oder mehrere Speicherbus/se enthalten, wie dies unten stehend beschrieben wird. In bestimmten Ausführungsformen können eine oder mehrere Speicherverwaltungseinheit/en (MMUs) zwischen dem Prozessor 502 und dem Hauptspeicher 504 angeordnet sein und den durch den Prozessor 502 angeforderten Zugriff auf den Speicher 504 ermöglichen. In bestimmten Ausführungsformen beinhaltet der Hauptspeicher 504 ein RAM (random access memory). Dieses RAM kann gegebenenfalls ein flüchtiger Speicher sein. Dieses RAM kann gegebenenfalls ein dynamisches RAM (DRAM) oder ein statisches RAM (SRAM) sein. Darüber hinaus kann dieses RAM gegebenenfalls ein RAM mit einem einzelnen Port oder mit mehreren Ports sein. Diese Offenbarung umfasst alle geeigneten RAMs. Der Speicher 504 kann gegebenenfalls ein oder mehrere Speicher 504 enthalten. Obwohl diese Offenbarung einen bestimmten Speicher beschreibt und illustriert, umfasst diese Offenbarung jeden geeigneten Speicher.
  • In bestimmten Ausführungsformen enthält der Speicher 506 einen Massenspeicher für Daten oder Anweisungen. In einem nichteinschränkenden Beispiel kann der Massenspeicher 506 ein Festplattenlaufwerk (HDD), ein Floppylaufwerk, einen Flash-Speicher, eine optische Platte, eine magneto-optische Platte, ein Magnetband, oder ein USB-Laufwerk (universal serial bus), oder eine Kombination von zweien oder mehreren derselben enthalten. Der Massenspeicher 506 kann gegebenenfalls wechselbare oder nicht-wechselbare (oder feste) Medien enthalten. Der Massenspeicher 506 kann innerhalb oder außerhalb des Computersystems 500 vorgesehen sein. In bestimmten Ausführungsformen ist der Massenspeicher 506 ein nichtflüchtiger Festkörperspeicher. In bestimmten Ausführungsformen enthält der Massenspeicher 506 ein ROM (read only memory). Dieses ROM kann gegebenenfalls ein maskenprogrammiertes ROM, ein programmierbares ROM (PROM), ein löschbares PROM (EPROM), ein elektrisch löschbares PROM (EEPROM), ein elektrisch veränderbares ROM (EAROM) oder ein Flash-Speicher oder eine Kombination von zweien oder mehreren derselben sein. Diese Offenbarung umfasst Massenspeicher 506 in jeder geeigneten physikalischen Form. Der Speicher 506 kann ein oder mehrere Speichersteuereinheit/en enthalten, die gegebenenfalls die Kommunikation zwischen dem Prozessor 502 und dem Massenspeicher 506 ermöglichen. Der Speicher 506 kann gegebenenfalls ein oder mehrere Speicher 506 enthalten. Obwohl diese Offenbarung bestimmte Massenspeicher beschreibt und illustriert, umfasst diese Offenbarung alle geeigneten Massenspeicher.
  • In bestimmten Ausführungsformen enthält die I/O-Schnittstelle 508 Hardware, Software, oder beides, die eine oder mehreren Schnittstelle/n zur Kommunikation zwischen dem Computersystem 500 und einem oder mehreren I/O-Geräten zur Verfügung stellt. Das Computersystem 500 kann ein oder mehrere dieser I/O-Gerät/e enthalten. Ein oder mehrere dieser I/O-Gerät/e können eine Kommunikation zwischen einem Benutzer und dem Computersystem 500 ermöglichen. In einem nichteinschränkenden Beispiel kann ein I/O-Gerät eine Tastatur, ein Ziffernfeld, ein Mikrofon, einen Monitor, eine Maus, einen Drucker, einen Scanner, einen Lautsprecher, eine Standbildkamera, einen Stift, ein Grafiktablett, einen Berührungsbildschirm, einen Trackball, eine Videokamera oder andere geeignete I/O-Gerät/e oder eine Kombination von zweien oder mehreren derselben enthalten. Ein I/O-Gerät kann auch ein oder mehrere Sensoren enthalten. Diese Offenbarung umfasst alle geeigneten I/O-Gerät/e und alle geeigneten I/O-Schnittstellen 508 für dieselben. Die I/O-Schnittstelle 508 kann gegebenenfalls ein oder mehrere Geräte oder Softwaretreiber enthalten, die es dem Prozessor 502 ermöglichen, ein oder mehrere I/O-Geräte anzusteuern. Die I/O-Schnittstelle 508 kann gegebenenfalls ein oder mehrere I/O-Schnittstellen 508 enthalten. Obwohl diese Offenbarung eine bestimmte I/O-Schnittstelle beschreibt und illustriert, umfasst diese Offenbarung alle geeigneten I/O-Schnittstellen.
  • In bestimmten Ausführungsformen enthält die Kommunikationsschnittstelle 510 Hardware, Software oder beides, die eine oder mehreren Schnittstelle/n zur Kommunikation (wie z. B. eine paketbasierte Kommunikation) zwischen dem Computersystem 500 und einem oder mehreren anderen Computersystem/en 500 oder einem oder mehreren Netzwerken ermöglicht. In einem nichteinschränkenden Beispiel kann die Kommunikationsschnittstelle 510 eine Netzwerkschnittstellen-Controller (NIC) oder einen Netzwerkadapter zur Kommunikation mit einem Ethernet oder einem anderen kabelbasierten Netzwerk, oder einen Drahtlos-NIC (WNIC) oder einen Drahtlosadapter zur Kommunikation mit einem Drahtlosnetzwerk, wie z. B. einem WI-FI-Netzwerk enthalten. Diese Offenbarung umfasst alle geeigneten Netzwerke und alle geeigneten Kommunikationsschnittstellen 510 für dieselben. In einem nichteinschränkenden Beispiel kann des Computersystem 500 mit einem Ad-hoc-Netzwerk, einem PAN (personal area network), einem LAN (local area network), einem WAN (wide area network), einem MAN (metropolitan area network) oder mit einem oder mit mehreren Teilen des Internets oder einer Kombination von zweien oder mehreren derselben kommunizieren. Ein oder mehrere Abschnitt/e von einem oder von mehreren dieser Netzwerke können kabelbasiert oder drahtlos sein. Das Computersystem 500 kann z. B. mit einem Drahtlos-PAN (WPAN) (wie z. B. einem Bluetooth WPAN), einem WI-FI-Netzwerk, einem WI-MAX-Netzwerk, einem Mobilfunknetzwerk (wie z. B. GSM (global system for mobile communications)) oder anderen geeigneten Drahtlosnetzwerken oder Kombination von zweien oder mehreren derselben kommunizieren. Das Computersystem 500 kann gegebenenfalls geeignete Kommunikationsschnittstellen für diese Netzwerke enthalten. Die Kommunikationsschnittstelle 510 kann gegebenenfalls eine oder mehrere Kommunikationsschnittstelle/n 510 enthalten. Obwohl diese Offenbarung eine bestimmte Kommunikationsschnittstelle beschreibt und illustriert, umfasst diese Offenbarung alle geeigneten Kommunikationsschnittstellen.
  • In bestimmten Ausführungsformen enthält der Bus 512 Hardware, Software oder beides, die Komponenten des Computersystems 500 miteinander verbinden. In einem nichteinschränkenden Beispiel kann der Bus 512 einen AGP (accelerated graphics port) oder einen anderen Grafik-Bus, einen EISA-Bus (enhanced industry standard architecture), einen FSB (front side bus), eine HYPERTRANSPORT-Verbindung (HT), einen ISA-Bus (industry standard architecture), eine INFINIBAND-Verbindung, einen LPC-Bus (low-pin-count), einen Speicherbus, einen MCA-Bus (Micro Channel Architecture), einen PCI-Bus (Peripheral Component Interconnnect), einen PCI-Express(PCIe)-Bus, einen SATA-Bus (serial advanced technology attachment), einen VLB-Bus (Video Electronics Standards Association local), oder andere geeignete Busse oder Kombinationen von zweien oder mehreren derselben enthalten. Der Bus 512 kann gegebenenfalls einen oder mehrere Busse 512 enthalten. Obwohl diese Offenbarung einen bestimmten Bus beschreibt und illustriert, umfasst diese Offenbarung jeden geeigneten Bus und jede geeignete Verbindung.
  • Eine Bezugnahme auf ein computerlesbares, nichttransitorisches Speichermedium kann hier ein oder mehrere halbleiterbasierte oder anderen integrierte Schaltungen (ICs) (wie z. B. ein feldprogrammierbares Gatter-Array (FPGA) oder ein anwendungsspezifisches IC (ASIC)), Festplattenlaufwerke (HDDs), Hybridlaufwerke (HHDs), optische Platten, optische Plattenlaufwerke (ODDs), magnetooptische Platten, magnetooptische Laufwerke, Floppydisks, Floppydisk-Laufwerke (FDDs), Magnetbänder, Festkörperlaufwerke (SSDs), RAM-Laufwerke, SD-Karten, SD-Laufwerke, andere geeignete computerlesbare, nichttransitorische Speichermedien, oder geeignete Kombinationen von zweien oder mehreren derselben enthalten. Ein computerlesbares, nichttransitorisches Speichermedium kann flüchtig, nichtflüchtig oder eine Kombination von flüchtig und nichtflüchtig sein.
  • ”Oder” ist hier inklusive und nicht exklusive zu verstehen, sofern nichts Gegenteiliges angegeben ist oder sich anderweitig aus dem Zusammenhang ergibt. ”A oder B” bedeutet daher ”A, B, oder beides”, sofern nichts Gegenteiliges angegeben ist oder sich anderweitig aus dem Zusammenhang ergibt. Darüber hinaus ist ”und” sowohl einzeln als auch insgesamt zu verstehen, sofern nichts Gegenteiliges angegeben ist oder sich anderweitig aus dem Zusammenhang ergibt. ”A und B” bedeutet daher ”A und B, sowohl einzeln als auch insgesamt”, sofern nichts Gegenteiliges angegeben ist oder sich anderweitig aus dem Zusammenhang ergibt.
  • Der Umfang dieser Offenbarung umfasst alle Änderungen, Substitutionen, Variationen, Abwandlungen und Modifikationen an den hier beschriebenen oder illustrierten Ausführungsformen, die ein Fachmann in Betracht ziehen würde. Der Umfang dieser Offenbarung ist nicht durch die beschriebenen oder illustrierten beispielhaften Ausführungsformen beschränkt. Obwohl darüber hinaus diese Offenbarung die jeweiligen Ausführungsformen als bestimmte Komponenten, Elemente, Funktionen, Operationen oder Schritte enthaltend beschreibt und illustriert, kann jede dieser Ausführungsformen, jede Kombination oder Permutation dieser Komponenten, Elemente, Funktionen, Operationen oder Schritte enthalten, die hier beschrieben oder illustriert wurden, die ein Fachmann in Betracht ziehen würde. Darüber hinaus umfasst eine Bezugnahme in den beigefügten Ansprüchen auf eine Vorrichtung oder ein System oder eine Komponente einer Vorrichtung oder eines Systems, die/das dazu angepasst ist, dazu eingerichtet ist, dazu in der Lage ist, dazu konfiguriert ist, oder dazu betreibbar ist, eine bestimmte Funktion auszuführen, diese Vorrichtung, dieses System oder die Komponente, unabhängig davon, ob dieses bestimmte Funktion aktiviert, eingeschaltet oder entsperrt ist, solange diese Vorrichtung, dieses System oder diese Komponente dazu angepasst, eingerichtet, in der Lage, konfiguriert oder dazu betreibbar ist, diese Funktion auszuführen.

Claims (21)

  1. System, umfassend: einen Berührungssensor mit einem ersten Satz von Leitungen aus leitfähigem Material und einem zweiten Satz von Leitungen aus leitfähigem Material, wobei der erste Satz und der zweite Satz von Leitung aus leitfähigem Material innerhalb des Berührungssensors und außerhalb des Berührungssensors angeordnet sind; einen dritten Satz von Leitungen aus leitfähigem Material, die außerhalb des Berührungssensors und zwischen dem ersten Satz von Leitungen aus leitfähigem Material, die außerhalb des Berührungssensors angeordnet sind, und dem zweiten Satz von Leitungen aus leitfähigem Material, die außerhalb des Berührungssensors angeordnet sind, angeordnet sind; und ein oder mehrere computerlesbare, nichttransitorische Speichermedien, die mit dem Berührungssensor verbunden sind und eine Logik tragen, die dazu eingerichtet ist, bei ihrer Ausführung: Festzustellen, ob der Berührungssensor in einer Gegenkapazitätsbetriebsart oder in einer Eigenkapazitätsbetriebsart betrieben werden soll; als Reaktion auf die Feststellung, dass in einer Gegenkapazitätsbetriebsart gearbeitet werden soll, ein Massesignal an den dritten Satz von Leitungen aus leitfähigem Material anzulegen, und Berührungseingaben an dem Berührungssensor unter Verwendung einer Gegenkapazitätsberührungserfassung zu erfassen; und als Reaktion auf die Feststellung, dass in einer Eigenkapazitätsbetriebsart gearbeitet werden soll, ein Spannungssignal an den dritten Satz von Leitungen aus leitfähigem Material anzulegen, und Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung zu erfassen.
  2. System nach Anspruch 1, wobei das Erfassen der Berührungseingaben an dem Berührungssensor unter Verwendung der Gegenkapazitätsberührungserfassung umfasst: Anlegen eines Ansteuersignals an den ersten Satz von Leitungen aus leitfähigem Material; und Auslesen von Signalen auf dem zweiten Satz von Leitungen aus leitfähigem Material.
  3. System nach Anspruch 2, wobei das Ansteuersignal, das an den ersten Satz von Leitungen aus leitfähigem Material angelegt wird, eine Signalform umfasst.
  4. System nach Anspruch 1, wobei das Erfassen von Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung umfasst: Anlegen eines Ansteuersignals an den ersten Satz von Leitungen aus leitfähigem Material; und Anlegen eines Massesignals an den zweiten Satz von Leitungen aus leitfähigem Material.
  5. System nach Anspruch 4, wobei das Spannungssignal, das an den dritten Satz von Leitungen aus leitfähigem Material angelegt wird, das gleiche ist, wie das Ansteuersignal, das an den ersten Satz von Leitungen aus leitfähigem Material angelegt wird.
  6. System nach Anspruch 1, wobei das Feststellen, ob der Berührungssensor in einer Gegenkapazitätsbetriebsart oder in einer Eigenkapazitätsbetriebsart betrieben werden soll, auf erfassten Berührungseingaben an dem Berührungssensor basiert.
  7. System nach Anspruch 1, wobei die Logik des Weiteren dazu betreibbar ist, als Reaktion auf die Feststellung, dass in einer Eigenkapazitätsbetriebsart gearbeitet werden soll, Berührungseingaben auf Basis von detektierten Änderungen in dem Spannungssignal auf dem dritten Satz von Leitungen aus leitfähigem Material erfasst werden.
  8. Verfahren, umfassend: Festlegen, dass ein Berührungssensor in einer Gegenkapazitätsbetriebsart betrieben wird; als Reaktion auf die Festlegung, in einer Gegenkapazitätsbetriebsart zu arbeiten, Anlegen eines Massesignals an den ersten Satz von Leitungen aus leitfähigem Material und Erfassen von Berührungseingaben an dem Berührungssensor unter Verwendung einer Gegenkapazitätsberührungserfassung; Festlegen, dass der Berührungssensor in einer Eigenkapazitätsbetriebsart betrieben wird; und als Reaktion auf die Festlegung, in einer Eigenkapazitätsbetriebsart zu arbeiten, Anlegen eines Spannungssignals an den ersten Satz von Leitungen aus leitfähigem Material und Erfassen von Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung.
  9. Verfahren nach Anspruch 8, wobei der Berührungssensor einen zweiten Satz von Leitungen aus leitfähigem Material und einen dritten Satz von Leitungen aus leitfähigem Material umfasst, und wobei die Erfassung von Berührungseingaben an dem Berührungssensor unter Verwendung einer Gegenkapazitätsberührungserfassung umfasst: Anlegen eines Ansteuersignals an den zweiten Satz von Leitungen aus leitfähigem Material; und Auslesen von Signalen auf dem dritten Satz von Leitungen aus leitfähigem Material.
  10. Verfahren nach Anspruch 9, wobei das Ansteuersignal, das an den zweiten Satz von Leitungen aus leitfähigem Material angelegt wird, eine Signalform umfasst.
  11. Verfahren nach Anspruch 8, wobei der Berührungssensor einen zweiten Satz von Leitungen aus leitfähigem Material und einen dritten Satz von Leitungen aus leitfähigem Material umfasst, und wobei die Erfassung von Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung umfasst: Anlegen eines Ansteuersignals an den zweiten Satz von Leitungen aus leitfähigem Material; und Anlegen eines Massesignal an den dritten Satz von Leitungen aus leitfähigem Material.
  12. Verfahren nach Anspruch 11, wobei das Spannungssignal, das an den ersten Satz von Leitungen aus leitfähigem Material angelegt wird, das gleiche ist, wie das Ansteuersignal, das an den zweiten Satz von Leitungen aus leitfähigem Material angelegt wird.
  13. Verfahren nach Anspruch 8, wobei die Festlegung, den Berührungssensor in einer Gegenkapazitätsbetriebsart zu betreiben, auf erfassten Berührungseingaben an dem Berührungssensor basiert.
  14. Verfahren nach Anspruch 8, wobei die Festlegung, den Berührungssensor in einer Eigenkapazitätsbetriebsart zu betreiben, auf erfassten Berührungseingaben an dem Berührungssensor basiert.
  15. Computerlesbares Medium mit Anweisungen, die dazu eingerichtet sind, bei ihrer Ausführung: Zu Entscheiden, den Berührungssensor in einer Gegenkapazitätsbetriebsart zu betreiben; als Reaktion auf die Entscheidung, in einer Gegenkapazitätsbetriebsart zu arbeiten, ein Massesignal an einen ersten Satz von Leitungen aus leitfähigem Material anzulegen, und Berührungseingaben an dem Berührungssensor unter Verwendung einer Gegenkapazitätsberührungserfassung zu erfassen; zu Entscheiden, den Berührungssensor in einer Eigenkapazitätsbetriebsart zu betreiben; und als Reaktion auf die Entscheidung, in einer Eigenkapazitätsbetriebsart zu arbeiten, ein Spannungssignal an den ersten Satz von Leitungen aus leitfähigem Material anzulegen und Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung zu erfassen.
  16. Computerlesbares Medium nach Anspruch 15, wobei der Berührungssensor einen zweiten Satz von Leitungen aus leitfähigem Material und einen dritten Satz von Leitungen aus leitfähigem Material umfasst, und wobei die Anweisungen dazu eingerichtet sind, Berührungseingaben an dem Berührungssensor unter Verwendung einer Gegenkapazitätsberührungserfassung zu erfassen, indem: ein Ansteuersignal an den zweiten Satz von Leitungen aus leitfähigem Material angelegt wird; und Signale aus dem dritten Satz von Leitungen aus leitfähigem Material erfasst werden.
  17. Computerlesbares Medium nach Anspruch 16, wobei das Ansteuersignal, das an den zweiten Satz von Leitungen aus leitfähigem Material angelegt wird, eine Signalform umfasst.
  18. Computerlesbares Medium nach Anspruch 15, wobei der Berührungssensor einen zweiten Satz von Leitungen aus leitfähigem Material und einen dritten Satz von Leitungen aus leitfähigem Material umfasst, und wobei die Anweisungen dazu konfiguriert sind, Berührungseingaben an dem Berührungssensor unter Verwendung einer Eigenkapazitätsberührungserfassung zu erfassen, indem: ein Ansteuersignal an den zweiten Satz von Leitungen aus leitfähigem Material angelegt wird; und ein Massesignal an den dritten Satz von Leitungen aus leitfähigem Material angelegt wird.
  19. Computerlesbares Medium nach Anspruch 18, wobei das Spannungssignal, das an den ersten Satz von Leitungen aus leitfähigem Material angelegt wird, das gleiche ist, wie das Ansteuersignal, das an den zweiten Satz von Leitungen aus leitfähigem Material angelegt wird.
  20. Computerlesbares Medium nach Anspruch 15, wobei die Anweisungen, die dazu eingerichtet sind, zu entscheiden, dass der Berührungssensor in einer Gegenkapazitätsbetriebsart betrieben wird, dazu konfiguriert sind, zu entscheiden, dass der Berührungssensor in einer Gegenkapazitätsbetriebsart betrieben wird, auf Basis von erfassten Berührungseingaben auf dem Berührungssensor.
  21. Computerlesbares Medium nach Anspruch 15, wobei die Anweisungen, die dazu konfiguriert sind, zu entscheiden, den Berührungssensor in einer Eigenkapazitätsbetriebsart zu betreiben, dazu konfiguriert sind, zu entscheiden, dass der Berührungssensor in einer Eigenkapazitätsbetriebsart betrieben wird, auf Basis von Berührungseingaben, die auf dem Berührungssensor erfasst wurden.
DE102014225254.7A 2013-12-10 2014-12-09 Hybrides kapazitives Berührungssystem Withdrawn DE102014225254A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/102,222 2013-12-10
US14/102,222 US9128577B2 (en) 2013-12-10 2013-12-10 Hybrid capacitive touch system design and method

Publications (1)

Publication Number Publication Date
DE102014225254A1 true DE102014225254A1 (de) 2015-06-11

Family

ID=53185589

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014225254.7A Withdrawn DE102014225254A1 (de) 2013-12-10 2014-12-09 Hybrides kapazitives Berührungssystem

Country Status (4)

Country Link
US (1) US9128577B2 (de)
CN (2) CN109976593A (de)
DE (1) DE102014225254A1 (de)
TW (1) TWI633479B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11087224B2 (en) 2017-11-15 2021-08-10 Mitsubishi Electric Corporation Out-of-vehicle communication device, out-of-vehicle communication method, information processing device, and computer readable medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9552090B2 (en) * 2014-02-05 2017-01-24 Lg Innotek Co., Ltd. Touch panel and display with the same
CN105760026A (zh) * 2014-09-26 2016-07-13 义隆电子股份有限公司 单层电容式触控面板的扫描方法及装置
US9542050B2 (en) * 2014-12-04 2017-01-10 Semtech Corporation Multi-shield capacitive sensing circuit
DE112018005555T5 (de) * 2017-10-13 2020-07-02 Tactual Labs Co. Minimale ansteuerung von sendern zur erhöhung der schwebeerkennung
KR102611382B1 (ko) * 2018-09-19 2023-12-07 삼성디스플레이 주식회사 터치 감지 유닛과 그를 포함하는 표시 장치
US11070904B2 (en) 2018-09-21 2021-07-20 Apple Inc. Force-activated earphone
US11463797B2 (en) 2018-09-21 2022-10-04 Apple Inc. Force-activated earphone
KR102150881B1 (ko) * 2019-03-21 2020-09-02 동우 화인켐 주식회사 터치센서 및 이를 형성하는 노광 마스크
KR20210106039A (ko) * 2020-02-19 2021-08-30 삼성디스플레이 주식회사 표시 장치
JP7401078B2 (ja) * 2020-04-13 2023-12-19 北京他山科技有限公司 ホバーボタンセンサユニット及びホバーボタンのトリガー方法
CN113970986B (zh) * 2020-07-23 2024-04-12 乐金显示有限公司 触摸显示装置、触摸电路及其触摸驱动方法
DE102022201390A1 (de) * 2021-03-31 2022-10-06 Apple Inc. Durch kraft aktivierter kopfhörer

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
EP1746488A2 (de) 2005-07-21 2007-01-24 TPO Displays Corp. Sensoranordnungsstruktur eines elektromagnetischen Digitalisierers
US8031174B2 (en) 2007-01-03 2011-10-04 Apple Inc. Multi-touch surface stackup arrangement
US8049732B2 (en) 2007-01-03 2011-11-01 Apple Inc. Front-end signal compensation
US7920129B2 (en) 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
TW200842681A (en) 2007-04-27 2008-11-01 Tpk Touch Solutions Inc Touch pattern structure of a capacitive touch panel
TW200844827A (en) 2007-05-11 2008-11-16 Sense Pad Tech Co Ltd Transparent touch panel device
US8040326B2 (en) 2007-06-13 2011-10-18 Apple Inc. Integrated in-plane switching display and touch sensor
JP4506785B2 (ja) 2007-06-14 2010-07-21 エプソンイメージングデバイス株式会社 静電容量型入力装置
US8319505B1 (en) * 2008-10-24 2012-11-27 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
KR101822350B1 (ko) 2008-02-28 2018-01-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 터치 스크린 센서
JP4720857B2 (ja) 2008-06-18 2011-07-13 ソニー株式会社 静電容量型入力装置および入力機能付き表示装置
US8941394B2 (en) * 2008-06-25 2015-01-27 Silicon Laboratories Inc. Capacitive sensor system with noise reduction
US20110156839A1 (en) * 2009-12-31 2011-06-30 Silicon Laboratories Inc. Capacitive sensor with variable corner frequency filter
WO2010075308A2 (en) * 2008-12-26 2010-07-01 Atmel Corporation Multiple electrode touch sensitive device
US8866500B2 (en) * 2009-03-26 2014-10-21 Cypress Semiconductor Corporation Multi-functional capacitance sensing circuit with a current conveyor
US9323398B2 (en) * 2009-07-10 2016-04-26 Apple Inc. Touch and hover sensing
US8031094B2 (en) 2009-09-11 2011-10-04 Apple Inc. Touch controller with improved analog front end
CN101840293B (zh) * 2010-01-21 2012-03-21 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
CN102200866B (zh) * 2010-03-24 2015-11-25 上海天马微电子有限公司 互电容触摸感应装置及其检测方法、触摸显示装置
US8624870B2 (en) * 2010-04-22 2014-01-07 Maxim Integrated Products, Inc. System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
KR20130088040A (ko) * 2010-05-25 2013-08-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 고속 저전력 멀티-터치 터치 디바이스 및 그 제어기
US8508502B2 (en) * 2010-10-31 2013-08-13 Pixart Imaging Inc. Capacitive touchscreen system with touch position encoding during analog-to-digital conversion
CN102073425A (zh) * 2010-12-29 2011-05-25 广东中显科技有限公司 触摸屏的触控系统
WO2012129247A2 (en) 2011-03-21 2012-09-27 Apple Inc. Electronic devices with flexible displays
US9866660B2 (en) 2011-03-21 2018-01-09 Apple Inc. Electronic devices with concave displays
US8816977B2 (en) 2011-03-21 2014-08-26 Apple Inc. Electronic devices with flexible displays
US8934228B2 (en) 2011-03-21 2015-01-13 Apple Inc. Display-based speaker structures for electronic devices
US9178970B2 (en) 2011-03-21 2015-11-03 Apple Inc. Electronic devices with convex displays
US8665236B2 (en) 2011-09-26 2014-03-04 Apple Inc. Electronic device with wrap around display
CN103049153B (zh) * 2011-10-14 2016-08-17 禾瑞亚科技股份有限公司 触摸屏的侦测装置与方法
US9372582B2 (en) * 2012-04-19 2016-06-21 Atmel Corporation Self-capacitance measurement
US8913021B2 (en) * 2012-04-30 2014-12-16 Apple Inc. Capacitance touch near-field—far field switching
EP2660691B1 (de) * 2012-05-04 2018-07-11 BlackBerry Limited Elektronische Vorrichtung mit berührungsempfindlicher Anzeige und Verfahren zum Erkennen von Berührungen
US8952927B2 (en) * 2012-05-18 2015-02-10 Atmel Corporation Self-capacitance measurement with compensated capacitance
KR101424331B1 (ko) * 2012-06-21 2014-07-31 엘지디스플레이 주식회사 터치 센싱 장치와 그 구동 방법
US9727770B2 (en) * 2013-07-22 2017-08-08 Apple Inc. Controllable signal processing in a biometric device
US9576176B2 (en) * 2013-07-22 2017-02-21 Apple Inc. Noise compensation in a biometric sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11087224B2 (en) 2017-11-15 2021-08-10 Mitsubishi Electric Corporation Out-of-vehicle communication device, out-of-vehicle communication method, information processing device, and computer readable medium

Also Published As

Publication number Publication date
US9128577B2 (en) 2015-09-08
TWI633479B (zh) 2018-08-21
US20150160756A1 (en) 2015-06-11
CN109976593A (zh) 2019-07-05
TW201535220A (zh) 2015-09-16
CN104699335A (zh) 2015-06-10
CN104699335B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
DE102014225254A1 (de) Hybrides kapazitives Berührungssystem
DE102013200692A1 (de) Sensor-Stapel mit einander gegenüberliegenden Elektroden
DE102014223344A1 (de) Smart Watch mit adaptivem Berührungsbildschirm
DE102013210986A1 (de) Berührungssensor mit komplexen Klebstoffgrenzen
DE202012101428U1 (de) Berührungssensor mit verbesserter Berührungserfassung unter Verwendung von Bewegungsinformationen
DE102013227191A1 (de) Berührungssensorabtastung für anzeigeeingebettete Berührungssensoren
DE202012103338U1 (de) Berührungssensor
DE202012102751U1 (de) Berührungssensor mit Leiterbahnen unterschiedlicher Breite
DE202012102850U1 (de) Berührungssensor mit kapazitiv gekoppelten Bondpads
DE102013200691A1 (de) Auf Display befindliche Sensor-Schichtanordnung
DE102013200648A1 (de) Sensor-Schichtanordnung mit zwei Substraten
DE202012101400U1 (de) Berührungssensor mit randomisierten Mikromerkmalen
DE102014214937A1 (de) Positionsdetektion eines Objekts in der Nähe eines Berührungssensors
DE102012215865A1 (de) Integriertes Testsystem für einen Berührungssensor
DE202012103232U1 (de) Berührungssensor mit verbesserter Berührungserfassung
DE102014212207A1 (de) Schnelle Abtastung für Gegenkapazitätsbildschirme
DE202012102443U1 (de) Aktiver Stylus mit fester Koppelung und Berührungssensor-Gerät
DE202012102384U1 (de) Berührungssensor mit Oberflächenirregularitäten
DE102014217875A1 (de) Generischer Netzaufbau mit Zufallsverteilung
DE102012215894A1 (de) Verbesserung des Signal-/Rauschabstandes bei Berührungssensoren
DE102015211352A1 (de) Einzelschichtberührungssensor
DE102014217980A1 (de) Randomisiertes Netzdesign
DE102013213689A1 (de) Berührungssensorsteuerungs-Sensorknotenpunkt
DE102012213822A1 (de) Berührungserfassung mit einem gemeinsamen Treiber
DE102014222478A1 (de) Kapazitive Messschaltung für ein Berührungssensorgerät

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: PETERREINS SCHLEY PATENT- UND RECHTSANWAELTE, DE

Representative=s name: PETERREINS SCHLEY PATENT- UND RECHTSANWAELTE P, DE

R081 Change of applicant/patentee

Owner name: NEODRON LTD., IE

Free format text: FORMER OWNER: ATMEL CORPORATION, SAN JOSE, CALIF., US

R082 Change of representative

Representative=s name: PETERREINS SCHLEY PATENT- UND RECHTSANWAELTE, DE

Representative=s name: PETERREINS SCHLEY PATENT- UND RECHTSANWAELTE P, DE

R005 Application deemed withdrawn due to failure to request examination