DE102014212586B3 - Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors - Google Patents

Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors Download PDF

Info

Publication number
DE102014212586B3
DE102014212586B3 DE102014212586.3A DE102014212586A DE102014212586B3 DE 102014212586 B3 DE102014212586 B3 DE 102014212586B3 DE 102014212586 A DE102014212586 A DE 102014212586A DE 102014212586 B3 DE102014212586 B3 DE 102014212586B3
Authority
DE
Germany
Prior art keywords
phase
motor
switch
current
load condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014212586.3A
Other languages
English (en)
Inventor
c/o ELMOS Semiconductor AG Hartzsch Jörg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elmos Semiconductor SE
Original Assignee
Elmos Semiconductor SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102014212586.3A priority Critical patent/DE102014212586B3/de
Application filed by Elmos Semiconductor SE filed Critical Elmos Semiconductor SE
Priority to CN201910446850.7A priority patent/CN110224662A/zh
Priority to EP18186091.7A priority patent/EP3428667B1/de
Priority to US15/321,763 priority patent/US10338142B2/en
Priority to EP18186092.5A priority patent/EP3428668B1/de
Priority to CN201580035641.3A priority patent/CN106664051B/zh
Priority to PCT/EP2015/064786 priority patent/WO2016001194A1/de
Priority to EP15733434.3A priority patent/EP3161496B8/de
Priority to CN201910446869.1A priority patent/CN110350847A/zh
Application granted granted Critical
Publication of DE102014212586B3 publication Critical patent/DE102014212586B3/de
Priority to US16/414,903 priority patent/US10768235B2/en
Priority to US16/414,901 priority patent/US10620268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Nach dem Verfahren ist ein Schaltschema für die Bestromung eines mehrphasigen Elektromotors vorgesehen, das pro Motorphase hochohmig geschaltete Highside- und Lowside-Schalter vorsieht. Beide dieser Schalter einer Phase sind also kurzzeitig ausgeschaltet. Dadurch fließt, bedingt durch die induktive Last, die der Elektromotor darstellt, ein Strom, dessen Abklingen und insbesondere dessen Abklingzeit ab Entstehung des Stroms Aussagen darüber zulässt, ob der Elektromotor augenblicklich unter fehlerhaften Lastbedingungen läuft. Dazu werden die Rezirkulationszeitspannen pro Phase oder aber die Rezirkulationszeitspannen von Phase zu Phase miteinander vergleichen bzw. ins Verhältnis zueinander gesetzt. Sofern die naturgemäß vorhandenen Schwankungen der Rezirkulationszeitspannen innerhalb von Erwartungswertebereichen liegen, ist davon auszugehen, dass der Elektromotor fehlerfrei arbeitet. Bei davon abweichenden Veränderungen der Rezirkulationszeitspannen kann dies, gegebenenfalls nach weiteren Prozeduren, als Anfangshinweis für eine möglicherweise fehlerhafte Lastbedingung des Motors angesehen werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors.
  • Fehlerhafte Lastbedingungen bei Elektromotoren sind insbesondere dann kritisch, wenn Kurzschlüsse auftreten. Derartige Kurzschlüsse werden üblicherweise anhand der Spannungsabfälle über den Drain-Source-Strecken der internen oder externen Treiber-Transistoren der Ansteuereinheit erkannt, über die Elektromotore oder andere Lasten angesteuert werden. Diese Spannungsabfälle werden im Regelfall einzeln, d. h. pro Phase des Motors, bewertet. Wenn ein messtechnisch erfasster Strom höher als der größte in Betrieb zulässige Strom ist, deutet dies auf einen externen Kurzschluss von mindestens einer der Motoranschlussleitungen hin. Ein Nachteil bei der Detektion von Kurzschlüssen ist, dass insbesondere ”weiche” Kurzschlüsse nach Masse nicht unbedingt erkannt werden können. Ein weiteres Problem besteht darin, dass der Überstrom bei relativ hochohmigen Kurzschlüssen oder bei Kurzschlüssen mit induktivem Beiwert des Kurzschlussstroms teilweise nicht außerhalb des größten, im Betrieb des Motors zulässigen Stroms liegt. Auch ist es bei induktiven Beiwerten und bei PWM-Ansteuerungen von Lasten, wie z. B. Elektromotoren, möglich, dass die Stromzunahme im Kurzschlussfall so langsam ist (”weicher” Kurzschluss), dass ein PWM-Zyklus vor Erreichen der Überstromabschaltschwelle beendet ist. Die Leistungstransistoren aber können sich in derartigen Fällen dennoch derart stark aufheizen, dass es zu Schädigungen kommen kann, die so schnell auftreten, dass auch eine Übertemperaturerkennung wegen ihres Zeitverzuges keinen ausreichenden Schutz bietet.
  • Verfahren zur Fehlerstromdetektion bei Elektromotoren mit elektrischer Kommutierung sind z. B. aus DE 102 16 986 A1 , US 8 054 026 B2 , EP 2 164 169 A1 und EP 2 116 857 A1 bekannt, und zwar unter Zugrundelegung eines Vergleichs von Mustern aus wiederholt auftretenden elektrischen Parametern des Elektromotors mit für dessen fehlerfreien Betrieb geltenden Erwartungswerten.
  • Aufgabe der Erfindung ist es daher, eine Kurzschlusserkennung zu schaffen, die in der Lage ist, einen Kurzschluss zuverlässig aufzudecken und somit die Transistoren vor einer Schädigung zu schützen, was darauf hinausläuft, dass ein Brand der Elektronik verhindert werden kann.
  • Zur Lösung dieser Aufgabe wird mit der Erfindung ein Verfahren nach Anspruch 1 vorgeschlagen. Einzelne Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Das Verfahren nach der Erfindung dient der Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors mit elektrischer Kommutierung (z. B.: BLDC-, EC-, SR- oder Steppermotoren) mit einer elektronischen Ansteuerung, die pro Motorphase einen Highside-Schalter und einen Lowside-Schalter aufweist, wobei die Highside- und die Lowside-Schalter der Motorphasen zyklisch ein- und ausgeschaltet werden, und zwar gemäß einem Schaltschema, das zyklisch wiederkehrende Zeitpunkte aufweist, in denen für mindestens eine Motorphase sowohl der Highside- als auch der Lowside-Schalter für ein Ausschaltintervall hochohmig geschaltet, d. h. ausgeschaltet sind, wobei bei fehlerfreier Lastbedingung zumindest zu Beginn einzelner Ausschaltintervalle oder auch über mehrere Ausschaltintervalle hinweg noch für eine gewisse Rezirkulationszeitspanne, die gleich einem für einen fehlerfreien Betrieb des Motors entsprechendem Erwartungswert ist, ein Strom fließt, wobei bei dem Verfahren
    • – mit Beginn eines im Schaltschema vorgegebenen Ausschaltintervalls eine Zeitmesseinheit gestartet und die Rezirkulationszeitspanne gemessen wird, bis zu der in der abgeschalteten Motorphase noch ein Strom einer Größe fließt, deren vorzeichenunabhängiger Betrag größer ist als ein vorgegebener Schwellwert,
    • – wobei diese Zeitmessung, sofern die Rezirkulationszeitspanne nicht während des besagten Ausschaltintervalls beendet wird, dann im zumindest nächsten Ausschaltintervall weitergeführt wird, bis die Rezirkulationszeitspanne beendet ist,
    • – wobei dieser Vorgang für Ausschaltintervalle nach vorheriger Highside-Schalter-Aktivierung und/oder nach vorheriger Lowside-Schalter-Aktivierung jeder Phase des Motors wiederholt wird,
    • – wobei die gemessenen Rezirkulationszeitspannen für die verschiedenen Phasen des Motors untereinander und/oder für jeweils eine Phase des Motors in sequentieller Abfolge miteinander und/oder mit dem Erwartungswert verglichen werden und
    • – wobei eine Abweichung von dem jeweiligen Erwartungswert als ein Hinweis, insbesondere Anfangshinweis auf einen Fehlerstrom gewertet wird.
  • Nach der Erfindung ist also ein Schaltschema für die Bestromung eines mehrphasigen Elektromotors vorgesehen, das pro Motorphase hochohmig geschaltete Highside- und Lowside-Schalter vorsieht. Beide dieser Schalter einer Motorphase sind also kurzzeitig ausgeschaltet. Dadurch fließt, bedingt durch die induktive Last, die der Elektromotor darstellt, ein Strom, dessen Abklingen und insbesondere dessen Abklingzeit Aussagen darüber zulässt, ob der Elektromotor augenblicklich unter fehlerhaften Lastbedingungen läuft. Dazu werden erfindungsgemäß die Rezirkulationszeitspannen pro Motorphase oder aber die Rezirkulationszeitspannen von Phase zu Phase des Motors miteinander vergleichen bzw. ins Verhältnis zueinander gesetzt. Sofern die naturgemäß vorhandenen Schwankungen der Rezirkulationszeitspannen innerhalb von Erwartungswertebereichen liegen, ist davon auszugehen, dass der Elektromotor fehlerfrei arbeitet. Bei Veränderungen der Rezirkulationszeitspannen kann dies, gegebenenfalls nach weiteren Prozeduren, als Anfangshinweis für eine möglicherweise fehlerhafte Lastbedingung des Motors angesehen werden. In welcher Form auf einen derartig erkannten ersten Hinweis reagiert wird (beispielsweise Abschalten des Elektromotors, Überführen des Elektromotors in einen anderen Betriebszustand zum Schutze des Motors vor einer drohenden Zerstörung etc.) ist grundsätzlich nicht Gegenstand der Erfindung. Auch ist es für die Erfindung grundsätzlich nur von untergeordneter Bedeutung, nach welcher Zeitspanne ab dem ersten Erkennen eines Hinweises auf eine möglicherweise vorliegende fehlerhafte Lastbedingung in welcher Form reagiert wird.
  • Durch die Bildung der Verhältnisse der motorphasenübergreifend aufeinanderfolgenden Rezirkulationszeitspannen oder aber der pro Phase des Motors aufeinanderfolgenden Rezirkulationszeitspannen werden Werte berechnet, die mit einem Erwartungswert bzw. mit einem Erwartungswertbereich verglichen werden. Sofern die berechneten Werte innerhalb eines Erwartungswertbereichs liegen, wird nicht davon ausgegangen, dass eine fehlerbehaftete Lastbedingung vorliegen könnte.
  • Die Erfindung ist insbesondere vor dem Hintergrund zu sehen, dass für die Ansteuerung mehrphasiger Elektromotoren oder anderer induktiver Lasten in zunehmendem Maße niederohmige Leistungstransistoren eingesetzt werden. Diese Leistungstransistoren sind derart preisgünstig herstellbar, dass ihre Gesamtkosten für das Gesamtsystem geringer sind als wenn man z. B. mit einem Kühlkörper zur Kühlung konventioneller Leistungstreiber arbeiten würde, die einen höheren RSDON aufweisen. Ein weiterer Vorteil des Einsatzes moderner niederohmiger Leistungstransistoren ist in dem vereinfachten Verbau der Elektronik auf Grund der geringeren Verlustleistung dieser Leistungstransistoren zu sehen. Außerdem reduziert sich in der Gesamtenergiebilanz betrachtet der CO2-Ausstoß. Allerdings sind durch die niederohmigen Leistungstransistoren die Spannungsabfälle im Kurzschlussfall wegen des niedrigen RSDON derart klein, dass ein Kurzschlussfall mit bisherigen Mitteln nicht mehr sicher detektiert werden kann. Man arbeitet daher mit deutlich empfindlicheren Kurzschlussschwellen, um den geänderten Anforderungen infolge niederohmiger Leistungstransistoren begegnen zu können. Hierbei handelt es sich allerdings um Lösungen des Problems, die nicht alle Kurzschlussfälle zu erkennen vermögen. Insbesondere im Hinblick auf BLDC- und DC-Brückentreiber-ICs sowie Steppermotor-Treiber-ICs hat der erfindungsgemäße Ansatz klare Vorteile, indem er sich auf Grund der großen Nachfrage derartiger Treiber-ICs schnell durchsetzen würde.
  • Die Erwartungswerte bzw. Erwartungswertbereiche werden zweckmäßigerweise empirisch festgelegt. Hierbei ist denkbar,
    • – dass die Erwartungswerte für maximal zulässige Abweichungen, bei denen noch keine fehlerhafte Lastbedingung erkannt werden soll, an einem oder mehreren vorgealterten Referenzsystemen mit fehlerfreiem Lastzustand angelernt, also die typischen Werte ermittelt und mit wählbaren zusätzlichen zulässigen Toleranzen versehen in der Ansteuereinheit als maximal zulässiger Erwartungswertbereich abgelegt werden, und/oder
    • – dass die Erwartungswerte für maximal zulässige Abweichungen bei denen noch keine fehlerhafte Lastbedingung erkannt werden soll, an jedem Motorsystem für sich nach der Produktion mit fehlerfreiem Lastzustand angelernt, also die typischen Werte ermittelt und mit wählbaren zusätzlichen zulässigen Toleranzen versehen in der Ansteuereinheit als maximal zulässiger Erwartungswertbereich abgelegt werden, und/oder
    • – dass die Erwartungswerte für maximal zulässige Abweichungen bei denen noch keine fehlerhafte Lastbedingung erkannt werden soll, im Laufe der Lebenszeit des Motors mit höheren Toleranzen versehen werden, und/oder
    • – dass die detektierte fehlerhafte Lastbedingung durch ein Abweichen des Kommutierungswinkels vom Zielbereich entsteht und dass die Ansteuereinheit den Fehler durch Anpassung zumindest eines der beiden Ansteuerparameter Amplitude und Phase kompensiert.
  • In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass aus der Art der Abweichungen von den Erwartungswerten für die einzelnen Motorphasen untereinander auf die Art der fehlerhaften Lastbedingungen wie Nebenschluss Motorphase gegen Motorphase, Nebenschluss Motorphase gegen Ground, Nebenschluss Motorphase gegen Versorgungsspannung, zu hochohmiger Motorphasenanschluss (evtl. durch Kontaktierungsproblem in Steckern), Wackelkontakt einer Motorphase, fehlerhafte Treiberwiderstände einzelner Highside- oder Lowside-Treiber (ggf. nur unter bestimmten Lastzuständen) und/oder auch für jede einzelne Motorphase in sequentieller Abfolge auf die fehlerhaften Lastbedingungen wie Wackelkontakt, mechanische Fehler, Lagerspiel, Getriebefehler, mechanische Fehler in der Applikation, wobei die Häufigkeit der sequentiell auftretenden Abweichungen Aussage geben kann über den genauen Fehlerort, geschlossen wird.
  • Zwecks Klassifizieren der Abweichung des betreffenden Parameters von dem entsprechenden Erwartungswert oder -bereich können Verfahren zur statistischen Mustererkennung Anwendung finden, mit denen Betriebszustände des elektrischen (Schritt-)Motors klassifizierbar sind, um definierte Maßnahmen zur Minimierung der Auswirkung von Fehlfunktionen und zur Prognostizierung der zukünftigen Auswirkungen einer Fehlfunktion auf den Motor ergreifen zu können. Die Prognose kann dabei in Form zukünftiger möglicher Betriebszustände erfolgen, denen Wahrscheinlichkeiten und/oder Bewertungszahlen (z. B. Auswirkungsbewertungen) zugeordnet sind.
  • Hierbei können ein oder mehrere der nachfolgend aufgelisteten Verarbeitungsschritte durchgeführt werden:
    • a) Bilden eines Feature-Vektors aus mehreren Werten der Abweichungen, die gleichzeitig und/oder sequenziell festgestellt werden, wobei der Feature-Vektor auf einfache und höhere Ableitungen und/oder einfache und höhere Integrale dieser Werte und/oder andere aus diesen Werten abgeleitete Größen sowie weitere Größen aus anderen Sensorsystemen umfassen kann.
    • b) Multiplikation eines Feature-Vektors mit einer Lineardiskriminanzanalyse-(LDA-)Matrix zu einem modifizierten Feature-Vektor zur Steigerung der Selektivität.
    • c) Vergleich des modifizierten Feature-Vektors mit prototypischen Vektoren, d. h. den Betriebszustandsprototypen, die insbesondere in einer Prototypendatenbank abgelegt sind, wobei das Ergebnis des Vergleiches ein binärer und/oder digitaler und/oder analoger Abstandswert zwischen dem modifizierten Feature-Vektor und dem jeweiligen prototypischen Vektor je bewertetem prototypischen Vektor ist.
    • d) Selektion mindestens eines Betriebszustandsprototyps der besagten Datenbank aufgrund eines Abstandswertes, wobei insbesondere der Betriebszustandsprototyp mit dem kleinsten Abstandswert und/oder der Betriebszustand mit der schwersten Auswirkung und/oder mit der schwersten Auswirkungsbewertung selektiert wird.
    • e) Ausgabe zumindest des selektierten Betriebszustandsprototyp.
    • f) Gegebenenfalls Ausgabe zumindest des Abstandswertes der dem Feature-Vektor relativ zum selektierten Betriebszustandsprototypen zugeordnet ist und/oder eines daraus abgeleiteten Wertes.
    • g) Gegebenenfalls Ausgabe weiterer selektierter Betriebszustandsprototypen und zugehöriger Abstandswerte und/oder daraus abgeleiteter Werte zur Ausgabe einer Hypothesenliste, die typischerweise auch den selektierten Betriebszustandsprototypen und dessen Abstandswert umfasst.
    • h) Gegebenenfalls Ermittlung der wahrscheinlichsten Kette von Betriebszustandsprototypen und Prognose mindestens eines folgenden prognostizierten Betriebszustandes oder einer prognostizierten Betriebszustandssequenz.
    • i) Gegebenenfalls Einleitung von Maßnahmen auf Grund des selektierten Betriebszustandes und/oder der ermittelten Hypothesenliste und/oder des prognostizierten Betriebszustandes oder der prognostizierten Betriebszustandssequenz.
  • Alternativ zu den an sich bekannten Grundverfahren der statistischen Mustererkennung können zur Verarbeitung der Abweichungen des betreffenden Parameters von dem diesem zugeordneten Erwartungswert oder -bereich neuronale Netze und/oder Petrinetze und/oder Fuzzy-Logik und/oder ein Viterbi-Algorithmus eingesetzt werden.
  • In vorteilhafter Weiterbildung der Erfindung kann ferner vorgesehen sein, dass anstelle der Größe eines Stroms ein die Größe des Stroms repräsentierender elektrischer Parameter gemessen wird, und zwar z. B. ein Spannungsabfall über einem elektrischen/elektronischen Bauteil, insbesondere über einem Shunt-Widerstand oder einem Transistor, bei dem es sich insbesondere um einen Highside- und/oder einen Lowside-Schalter handelt.
  • Ferner kann es zweckmäßig sein, wenn die Zeitmessung in der hochohmigen Motorphase durch einen Komparator beendet wird, wenn die Spannung der Motorphase eine eingestellte Komparatorschwelle über- oder unterschreitet.
  • Von Vorteil kann es sein, wenn auf die eigentlich hochohmige Motorphase ein vorgegebener, dem Rezirkulationsstrom entgegengesetzter Prüfstrom aufgeschaltet wird, demzufolge der Spannungs-Wechsel am Motorphasenanschluss bei Reduktion des Rezirkulationsstromes auf den eingestellten Prüfstrom erfolgt.
  • Vorteilhaft kann es sein, wenn die Zeitmesseinheit linear, also mit gleichbleibender Zählgeschwindigkeit arbeitet.
  • Ferner kann es von Vorteil sein, wenn die Zeitmesseinheit logarithmisch arbeitet.
  • In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass die Zeitmessung zwischen den einzelnen Intervallen des Hochohmig-Schaltens angehalten wird.
  • In vorteilhafter Weiterbildung der Erfindung kann ferner vorgesehen sein, dass die Zeitmessung zwischen den einzelnen Intervallen des Hochohmig-Schaltens weiterläuft.
  • Vorteilhaft kann es sein, wenn anstelle der beschriebenen exakten Zeitmessung lediglich zu einem festen Zeitpunkt nach einem Hochohmig-Schalten eine Überprüfung auf Über- oder Unterschreitung der vorgebbaren Komparatorschwelle erfolgt und demzufolge die Zeitmessung in der dadurch entstehenden Auflösung (Anzahl von PWM-Zyklen mit Hochohmig-Schalten) erfolgt.
  • Ferner kann es vorteilhaft sein, wenn anstelle der Zeitspanne zwischen den besagten Mess-Start-Zeitpunkten im Schaltschema und der Einnahme der Stromschwellwerte die Zeitspannen zwischen den einzelnen Über- und/oder Unterschreitungen der Komparator-Schwellwerte gemessen und die Zeiten der einzelnen Motorphasen untereinander und/oder jeder Motorphase für sich in zeitlicher Abfolge verglichen oder mit einem für den fehlerfreien Betrieb des Motors geltenden Erwartungswert verglichen werden, wobei eine Abweichung der Größe der aktuellen Zeitspannen untereinander und/oder von dem Erwartungswert als ein Hinweis, insbesondere Anfangshinweis auf einen Fehlerstrom gewertet wird.
  • Gegenüber dem Stand der Technik ergibt sich unter Verwendung des erfindungsgemäßen Verfahrens eine höhere Erkennungssicherheit auf fehlerhafte Lastbedingungen durch verbesserte Nutzsignale und eine verbesserte Performance des Detektionsverfahrens. Die Erkennungsschwelle für das Vorliegen einer fehlerhaften Lastbedingung (z. B. Kurzschluss) ist nicht mehr abhängig von der Größe des maximal im Betrieb zulässigen Stroms. Außerdem ist eine günstige Implementierung des erfindungsgemäßen Verfahrens möglich.
  • Die Erfindung ist insbesondere vor dem Hintergrund zu sehen, dass für die Ansteuerung mehrphasiger Elektromotoren oder anderer induktiver Lasten in zunehmendem Maße niederohmige Leistungstransistoren eingesetzt werden. Diese Leistungstransistoren sind derart preisgünstig herstellbar, dass ihre Gesamtkosten für das Gesamtsystem geringer sind als wenn man z. B. mit einem Kühlkörper zur Kühlung konventioneller Leistungstreiber arbeiten würde, die einen höheren RSDON aufweisen. Ein weiterer Vorteil des Einsatzes moderner niederohmiger Leistungstransistoren ist in dem vereinfachten Verbau der Elektronik auf Grund der geringeren Verlustleistung dieser Leistungstransistoren zu sehen. Außerdem reduziert sich in der Gesamtenergiebilanz betrachtet der CO2-Ausstoß. Allerdings sind durch die niederohmigen Leistungstransistoren die Spannungsabfälle im Kurzschlussfall wegen des niedrigen RSDON derart klein, dass ein Kurzschlussfall mit bisherigen Mitteln nicht mehr sicher detektiert werden kann. Man arbeitet daher mit deutlich empfindlicheren Kurzschlussschwellen, um den geänderten Anforderungen infolge niederohmiger Leistungstransistoren begegnen zu können. Hierbei handelt es sich allerdings um Lösungen des Problems, die nicht alle Kurzschlussfälle zu erkennen vermögen. Insbesondere im Hinblick auf BLDC- und DC-Brückentreiber-ICs sowie Steppermotor-Treiber-ICs hat der erfindungsgemäße Ansatz klare Vorteile, indem er sich auf Grund der großen Nachfrage derartiger Treiber-ICs schnell durchsetzen würde.
  • Die Erfindung wird nachfolgend anhand diverser Ausführungsbeispiele sowie unter Bezugnahme auf die Zeichnung näher erläutert. Im Einzelnen zeigen dabei:
  • 1 eine Beschaltungsoption für die Ansteuerung eines grundsätzlich beliebigen mehrphasigen (im Ausführungsbeispiel dreiphasigen) Elektromotors,
  • 2 ein Beispiel für eine Block-Kommutierung eines beispielsweise dreiphasigen Motortyps (beispielsweise gemäß 1),
  • 3 eine Beschaltungsoption für einen bipolaren elektrisch kommutierten Motor (z. B. Stepper-Motor) und
  • 4 ein Beispiel für eine Block-Kommutierung eines bipolaren elektrisch kommutierten Motors (beispielsweise gemäß 3).
  • Kommen im Schaltschema einer mehrphasigen induktiven Last (z. B. mehrphasiger Elektromotor) Intervalle mit hochohmig geschalteten Endstufen vor oder ist man in der Lage, diese in ein Schaltschema einer mehrphasigen induktiven Last einzubauen, so kann mittels eines einfachen Komparators im hochohmig geschalteten Zustand eines Lastanschlusses der Zeitpunkt des Vorzeichenwechsels des Stroms nach dem Hochohmig-Schalten detektiert werden. In dem Fall, dass im Schaltschema üblicherweise keine hochohmig geschalteten Motorphasen vorkommen, sind diese gemäß dem erfindungsgemäßen Verfahren kurz vor der Stelle einzubauen, an der der Wert des betreffenden Stromes Null erreicht. Die erfindungsgemäß gemessene Rezirkulationszeit ist ein Maß für den in der induktiven Last (Motorwicklung) vorhandenen Strom zum Zeitpunkt des Hochohmig-Schaltens und auch für die Induktivität des Motoranschlusses. Hier kann man entweder die Zeitpunkte mit den durch die PWM-Ansteuerung vorgegebenen Vorgabewerten vergleichen oder aber bevorzugt die Zeiten zwischen Hochohmig-Schalten und Aktivierung des Komparators zu bestimmten PWM-Kombinationen vermessen und die Zeitmessungen der einzelnen Motorphasen miteinander vergleichen.
  • Weichen die Ergebnisse dieser Vergleiche von Erwartungswerten ab, so kann man anhand der Art der Abweichungen auf unterschiedliche Fehlstrom-Ursachen schließen. Asymmetrisch aufgebaute Motoren können dabei zu Erwartungswerten führen, die Asymmetrien enthalten.
  • Auch können sich die Erwartungswerte über mehrere elektrische Bewegungszyklen hinweg ändern, wenn z. B. ein mehrpoliger Motor mehrere elektrische Zyklen durchfahren muss, um eine mechanische Umdrehung durchzuführen. Hier kann es dann zu einem zyklischen Muster von Vergleichswerten (d. h. Erwartungswerten) kommen.
  • Ohne Fehlströme sollten sich die besagten Muster von Vergleichswerten einstellen. Bei Nebenschlüssen oder anderen Fehlern werden die Verhältnisse der Rezirkulationszeiten zueinander von den Erwartungswerten abweichen. Bei entsprechender Empfindlichkeit der Messeinrichtung können die oben beschriebenen Signale auch zur Kommutierung des Motors genutzt werden. Eine Realisierung kann zum großen Teil in kompakter Digitaltechnik erfolgen.
  • 1 zeigt ein Beispiel für die Beschaltung eines in diesem Ausführungsbeispiel dreiphasigen Elektromotors mit Hilfe einer Vollbrücke, die den drei Phasen U, V und W jeweils zugeordnete Highside-Schalter UH, VH und WH sowie drei diesen Phasen jeweils zugeordnete Lowside-Schalter UL, VL und WL aufweist. Der Elektromotor ist mit BLDC (brushless DC) bezeichnet und kann beispielsweise in Stern- oder Dreiecksbetrieb gefahren werden.
  • Eine mögliche Blockkommutierung für einen derartigen dreiphasigen Motor mit Beschaltung gemäß 1 ist in 2 gezeigt. Die einzelnen Abschnitte einer elektrischen 360°-Drehung sind mit 0 bis 5 bezeichnet. Die Ein- und Auszustände der Highside- und Lowside-Schalter UH, UL, VH, VL, WH, und WL sind in 2 mit 1 (für eingeschaltet) und 0 (für ausgeschaltet) dargestellt. Zu erkennen ist, dass das Schalt- bzw. Kommutierungsschema Zeitabschnitte aufweist, in denen einzelne Motorphasen hochohmig geschaltet sind.
  • Der Zeitverlauf der Spannungen an den drei Phasen des Motors ist bei V(U), V(V) und V(W) gezeigt. Die Transienten in den Spannungsverläufen an den Motorphasen sind vergrößert in den letzten beiden Diagrammen gezeigt. Die Transientenzeiten, also die Rezirkulationszeitspannen (tu +, tu, tv +, tv , tw +, tw ) werden von Phase zu Phase des Motors bzw. phasenübergreifend oder innerhalb einer Motorphase fortlaufend und/oder intermittierend und/oder sporadisch von Zeit zu Zeit miteinander verglichen. Durch diesen Vergleich der Rezirkulationszeitspannen kann auf Fehlerzustände des Motors geschlossen werden. Wiederholen sich die konstruktionsbedingt gegebenen Rezirkulationszeitspannenunterschiede zyklisch, so kann auf Asymmetrien des Elektromotors geschlossen werden. Plötzliche Änderungen oder andere Änderungen der Rezirkulationszeitspannen, die von dem zuvor beschriebenen Muster abweichen, lassen auf fehlerhafte Lastbedingungen schließen. Durch den erfindungsgemäß vorgesehenen Vergleich der Rezirkulationszeitspannen kann also ein erster Hinweis auf einen Fehlerzustand des Motors erlangt werden.
  • Neben der in 2 gezeigten Blockkommutierung lässt sich das erfindungsgemäße Verfahren aber auch bei Elektromotoren realisieren, die mit Sinus- oder Space-Vector-Kommutierung arbeiten. Bei diesen Kommutierungsschemata existieren üblicherweise keine hochohmigen Zustände, die ausreichend lang für eine Detektion der Rezirkulationszeitspanne wären. Es kann aber im Bereich des zu erwartenden Nulldurchgangs des Phasenstroms eine hochohmig geschaltete Motorphase eingeführt werden. Diese kann entweder eine feste Länge aufweisen oder sie wird bevorzugt nach Abschluss der Zeitmessung beendet.
  • 3 zeigt die Beschaltung eines bipolaren elektrisch kommutierten Motors mit den Highside- und Lowside-Schaltern A1H, A2H, A1L, A2L, B1H, B2H, B1L und B2L. Ein entsprechend Kommutierungsschema für einen derartigen elektrisch kommutierten Motor ist beispielhaft in 4 angegeben. Auch hier ist zu erkennen, dass im Funktionsblock L Rezirkulationszeitspannen t(A1), t(A2), t(B1) und t(B2) miteinander verglichen werden. Dieser Vergleich kann motorphasenübergreifend oder aber innerhalb einer Motorphase bzw. jeder Motorphase erfolgen.
  • Eine bevorzugte Ausführungsvariante für die Ermittlung der Rezirkulationszeitspanne ist eine logarithmische Zeitmessung. Diese folgt einer einem Logarithmus angenäherten Funktion, und zwar in der Art, dass sich mit zunehmender Zählzeit die Geschwindigkeit des Zählers verringert. Das hat folgende Vorteile:
    • a) Es können kleine und große Zeiten mit der gleichen relativen Genauigkeit ermittelt werden. Eine unnötig hohe Genauigkeit bei großen Absolutzeitmessungen entfällt.
    • b) Die Anzahl auszuwertender Bits pro Messwert verringert sich drastisch.
    • c) Die Ermittlung von Zeitverhältnissen, für die üblicherweise eine ”Punktrechnung” notwendig ist, kann wegen der Logarithmusbildung durch eine ”Strichrechnung” nachgebildet werden. Dies verringert den Hardware- und Software-Aufwand bei der Vergleichsoperation.
    • d) Es kann eine kostensparende Umsetzung der Auswertung entweder durch eine kleinere Logik und/oder CPU-zeitsparende Realisierung in einem Controller erfolgen.

Claims (15)

  1. Verfahren zur Erlangung eines Hinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors mit elektrischer Kommutierung mit einer elektronischen Ansteuerung, die pro Motorphase einen Highside-Schalter und einen Lowside-Schalter aufweist, wobei die Highside- und die Lowside-Schalter der Motorphasen zyklisch ein- und ausgeschaltet werden, und zwar gemäß einem Schaltschema, das zyklisch wiederkehrende Zeitpunkte aufweist, in denen für mindestens eine Motorphase sowohl der Highside- als auch der Lowside-Schalter für ein Ausschaltintervall hochohmig geschaltet, d. h. ausgeschaltet sind, wobei bei fehlerfreier Lastbedingung zumindest zu Beginn einzelner Ausschaltintervalle oder auch über mehrere Ausschaltintervalle hinweg noch für eine gewisse Rezirkulationszeitspanne, die gleich einem für einen fehlerfreien Betrieb des Elektromotors geltenden Erwartungswert ist, ein Strom fließt, wobei bei dem Verfahren – mit Beginn eines im Schaltschema vorgegebenen Ausschaltintervalls eine Zeitmesseinheit gestartet und die Rezirkulationszeitspanne gemessen wird, bis zu der in der abgeschalteten Motorphase noch ein Strom einer Größe fließt, deren vorzeichenunabhängiger Betrag größer ist als ein vorgegebener Schwellwert, – wobei diese Zeitmessung, sofern die Rezirkulationszeitspanne nicht während des besagten Ausschaltintervalls beendet wird, dann im zumindest nächsten Ausschaltintervall weitergeführt wird, bis die Rezirkulationszeitspanne beendet ist, – wobei dieser Vorgang für Ausschaltintervalle nach vorheriger Highside-Schalter-Aktivierung und/oder nach vorheriger Lowside-Schalter-Aktivierung jeder Motorphase wiederholt wird, – wobei die gemessenen Rezirkulationszeitspannen für die verschiedenen Motorphasen untereinander und/oder für jeweils eine Motorphase in sequentieller Abfolge miteinander und/oder mit dem Erwartungswert verglichen werden und – wobei eine Abweichung von dem jeweiligen Erwartungswert als ein Hinweis auf das Vorliegen eines Fehlerstroms gewertet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass aus der Art der Abweichungen von den Erwartungswerten für die einzelnen Motorphasen untereinander auf die Art der fehlerhaften Lastbedingung wie Nebenschluss Motorphase gegen Motorphase, Nebenschluss Motorphase gegen Masse, Nebenschluss Motorphase gegen Versorgungsspannung, zu hochohmiger Motorphasenanschluss, Wackelkontakt einer Motorphase, fehlerhafte Widerstände einzelner Highside- oder Lowside-Schalter und/oder auch für jede einzelne Motorphase in sequentieller Abfolge auf fehlerhafte Lastbedingungen wie Wackelkontakt, mechanische Fehler, Lagerspiel, Getriebefehler, mechanische Fehler in der Applikation geschlossen wird, wobei die Häufigkeit der sequentiell auftretenden Abweichungen Aussage geben kann über den genauen Fehlerort.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass anstelle der Größe eines Stroms ein die Größe des Stroms repräsentierender elektrischer Parameter gemessen wird, und zwar z. B. ein Spannungsabfall über einem elektrischen/elektronischen Bauteil, insbesondere über einem Shunt-Widerstand oder über einem Transistor, bei dem es sich insbesondere um einen Highside- und/oder einen Lowside-Schalter handelt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, die Zeitmessung in einem Ausschaltintervall durch einen Komparator beendet wird, wenn die Spannung der Motorphase eine eingestellte Komparatorschwelle über- oder unterschreitet.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass auf ein Ausschaltintervall ein vorgegebener, dem Rezirkulationsstrom entgegengesetzter Prüfstrom aufgeschaltet wird, demzufolge der Spannungs-Wechsel am Phasenanschluss bei Reduktion des Rezirkulationsstromes auf den eingestellten Prüfstrom erfolgt.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zeitmesseinheit linear, also mit gleichbleibender Zählgeschwindigkeit arbeitet.
  7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zeitmesseinheit logarithmisch arbeitet.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Zeitmessung für die Dauer zwischen den einzelnen Ausschaltintervallen angehalten wird.
  9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Zeitmessung zwischen den einzelnen Ausschaltintervallen weiterläuft.
  10. Verfahren nach Anspruch 4 oder nach einem der Ansprüche 5 bis 8, soweit auf Anspruch 4 rückbezogen, dadurch gekennzeichnet, dass anstelle der beschriebenen exakten Zeitmessung lediglich zu einem festen Zeitpunkt nach Beginn eines Ausschaltintervalls eine Überprüfung auf Über- oder Unterschreitung der vorgebbaren Komparatorschwelle erfolgt und demzufolge die Zeitmessung in der dadurch entstehenden Auflösung erfolgt.
  11. Verfahren nach Anspruch 4 oder nach einem der Ansprüche 5 bis 9, soweit auf Anspruch 4 rückbezogen, dadurch gekennzeichnet, dass anstelle der Zeitspannen zwischen den jeweils besagten Mess-Start-Zeitpunkten im Schaltschema und der Einnahme der Stromschwellwerte die Zeitspannen zwischen den einzelnen Über- und/oder Unterschreitungen der Komparator-Schwellwerte gemessen und die Zeitspannen der einzelnen Motorphasen untereinander und/oder jeder Motorphase für sich in zeitlicher Abfolge verglichen oder mit einem für den fehlerfreien Betrieb des Elektromotors geltenden Erwartungswert verglichen werden, wobei eine Abweichung der Größe der aktuellen Zeitspannen untereinander und/oder von dem Erwartungswert als ein Hinweis auf das Vorliegen eines Fehlerstroms gewertet wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Erwartungswerte für maximal zulässige Abweichungen, bei denen noch kein fehlerhafter Lastzustand erkannt werden soll, an mindestens einem vorgealterten Referenzsystem mit fehlerfreiem Lastzustand angelernt werden, also die typischen Werte ermittelt und mit wählbaren zusätzlichen zulässigen Toleranzen versehen in der Ansteuereinheit als maximal zulässige Erwartungswerte abgelegt werden.
  13. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Erwartungswerte für maximal zulässige Abweichungen bei denen noch kein fehlerhafter Lastzustand erkannt werden soll, an jedem Motorsystem für sich nach der Produktion mit fehlerfreiem Lastzustand angelernt werden, also die typischen Werte ermittelt und mit wählbaren zusätzlichen zulässigen Toleranzen versehen in der Ansteuereinheit als maximal zulässige Erwartungswerte abgelegt werden.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Erwartungswerte für maximal zulässige Abweichungen, bei denen noch kein fehlerhafter Lastzustand erkannt werden soll, im Laufe der Lebenszeit des Motors mit höheren Toleranzen versehen werden.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass in dem Fall, dass die detektierte fehlerhafte Lastbedingung durch ein Abweichen des Kommutierungswinkels vom Zielbereich entsteht, die Ansteuereinheit alsdann den Fehler durch Anpassung zumindest eines der beiden Ansteuerparameter Amplitude und Phase kompensiert.
DE102014212586.3A 2014-06-30 2014-06-30 Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors Active DE102014212586B3 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE102014212586.3A DE102014212586B3 (de) 2014-06-30 2014-06-30 Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors
CN201910446869.1A CN110350847A (zh) 2014-06-30 2015-06-30 用于获得对电动机的可能有故障的负载状况的提示的方法
US15/321,763 US10338142B2 (en) 2014-06-30 2015-06-30 Faulty load detection for multi-phase electric motor
EP18186092.5A EP3428668B1 (de) 2014-06-30 2015-06-30 Verfahren zur erlangung eines hinweises, insbesondere eines anfangshinweises auf eine mögliche fehlerhafte lastbedingung eines mehrphasigen elektromotors
CN201580035641.3A CN106664051B (zh) 2014-06-30 2015-06-30 用于获得对多相电动机的有故障的负载状况的提示的方法
PCT/EP2015/064786 WO2016001194A1 (de) 2014-06-30 2015-06-30 Verfahren zur erlangung eines hinweises, insbesondere eines anfangshinweises auf eine mögliche fehlerhafte lastbedingung eines mehrphasigen elektromotors
CN201910446850.7A CN110224662A (zh) 2014-06-30 2015-06-30 用于获得对电动机的可能有故障的负载状况的提示的方法
EP18186091.7A EP3428667B1 (de) 2014-06-30 2015-06-30 Verfahren zur erlangung eines hinweises, insbesondere eines anfangshinweises auf eine mögliche fehlerhafte lastbedingung eines mehrphasigen elektromotors
EP15733434.3A EP3161496B8 (de) 2014-06-30 2015-06-30 Verfahren zur erlangung eines hinweises, insbesondere eines anfangshinweises auf eine mögliche fehlerhafte lastbedingung eines mehrphasigen elektromotors
US16/414,903 US10768235B2 (en) 2014-06-30 2019-05-17 Faulty load detection for multi-phase electric motor
US16/414,901 US10620268B2 (en) 2014-06-30 2019-05-17 Faulty load detection for multi-phase electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014212586.3A DE102014212586B3 (de) 2014-06-30 2014-06-30 Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors

Publications (1)

Publication Number Publication Date
DE102014212586B3 true DE102014212586B3 (de) 2015-12-24

Family

ID=54768209

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014212586.3A Active DE102014212586B3 (de) 2014-06-30 2014-06-30 Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors

Country Status (1)

Country Link
DE (1) DE102014212586B3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338142B2 (en) 2014-06-30 2019-07-02 Elmos Semiconductor Ag Faulty load detection for multi-phase electric motor
US11815043B2 (en) * 2016-10-14 2023-11-14 Robert Bosch Gmbh Method for detecting a short circuit across a load
CN117849617A (zh) * 2024-01-10 2024-04-09 关兴 一种星形连接电机阻感故障检测方法、系统、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216986A1 (de) * 2002-04-16 2003-10-30 Heidenhain Gmbh Dr Johannes Verfahren zum Überprüfen eines Umrichters
EP2116857A1 (de) * 2008-05-06 2009-11-11 ebm-papst Mulfingen GmbH & Co.KG Verfahren und Einrichtung zum Erfassen einer Strompolarität innerhalb eines getakteten Brückenzweiges
EP2164169A1 (de) * 2007-04-16 2010-03-17 Mitsubishi Electric Corporation Elektromotor-steuervorrichtung
US8054026B2 (en) * 2008-05-15 2011-11-08 Toyota Jidosha Kabushiki Kaisha Short circuit phase identification method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216986A1 (de) * 2002-04-16 2003-10-30 Heidenhain Gmbh Dr Johannes Verfahren zum Überprüfen eines Umrichters
EP2164169A1 (de) * 2007-04-16 2010-03-17 Mitsubishi Electric Corporation Elektromotor-steuervorrichtung
EP2116857A1 (de) * 2008-05-06 2009-11-11 ebm-papst Mulfingen GmbH & Co.KG Verfahren und Einrichtung zum Erfassen einer Strompolarität innerhalb eines getakteten Brückenzweiges
US8054026B2 (en) * 2008-05-15 2011-11-08 Toyota Jidosha Kabushiki Kaisha Short circuit phase identification method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338142B2 (en) 2014-06-30 2019-07-02 Elmos Semiconductor Ag Faulty load detection for multi-phase electric motor
US10620268B2 (en) 2014-06-30 2020-04-14 Elmos Semiconductor Ag Faulty load detection for multi-phase electric motor
US10768235B2 (en) 2014-06-30 2020-09-08 Elmos Semiconductor Aktiengesellschaft Faulty load detection for multi-phase electric motor
US11815043B2 (en) * 2016-10-14 2023-11-14 Robert Bosch Gmbh Method for detecting a short circuit across a load
CN117849617A (zh) * 2024-01-10 2024-04-09 关兴 一种星形连接电机阻感故障检测方法、系统、设备及介质

Similar Documents

Publication Publication Date Title
EP3428668B1 (de) Verfahren zur erlangung eines hinweises, insbesondere eines anfangshinweises auf eine mögliche fehlerhafte lastbedingung eines mehrphasigen elektromotors
DE19723456C2 (de) Fehlschlußerkennungseinrichtung für elektrische Verbraucher
DE102015103715A1 (de) Überspannungsschutz für einen synchronen Leistungsgleichrichter
DE102008025442A1 (de) Drehpositionsbestimmungssystem für bürstenlosen Motor
DE112014002475T5 (de) Wechselrichtervorrichtung
DE102014212586B3 (de) Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors
DE102016122964A1 (de) System und Verfahren für ein Leistungswandlungssystem
EP3145750A1 (de) Verfahren zum schalten eines wechselrichters eines elektrischen antriebs eines kraftfahrzeugs und entsprechend schaltbarer wechselrichter
DE102014212572B4 (de) Verfahren zur Erlangung eines Hinweises, insbesondere Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors
DE102018217302A1 (de) Gleichstrom-Gleichstrom-Wandler
DE102014102566A1 (de) An einem Fahrzeug angebrachte drehende elektrische Maschine mit mehreren Gleichrichtungsmodi
DE102014200503A1 (de) Verfahren zum Betreiben eines aktiven Gleichrichters, Schaltungsanordnung und Computerprogramm
EP2893603B1 (de) Verfahren zur ansteuerung eines aktiven brückengleichrichters bei lastabwurf, gleichrichteranordnung und computerprogrammprodukt
DE102014212626B3 (de) Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors
EP3413459B1 (de) Verfahren zur blockiererkennung von elektrisch kommutierten elektromotoren
DE10249568B4 (de) Fehleranalyse einer Wechselrichter-Schaltung
EP1547220A1 (de) Verfahren zur überstromerkennung eines elektrischen antriebes
DE102014212612A1 (de) Verfahren zur Erlangung eines Hinweises, insbesondere eines Anfangshinweises auf einen sich abzeichnenden Schrittverlust bei einem ein- oder mehrphasigen Schrittmotor
DE102020114727A1 (de) Verfahren und Anordnung zur kontinuierlichen Kalibrierung eines Messwiderstands
EP1478071A2 (de) Verfahren zur Überwachung einer Leistungsendstufe
WO2010118978A2 (de) Verfahren zum betrieb einer steuerschaltung, insbesondere zur anwendung in einem kraftfahrzeug
EP1695104B1 (de) Verfahren und anordnung zur prüfung einer leistungsendstufe
EP2504917B1 (de) Vorrichtung und verfahren zum messen eines motorstroms eines gleichstrommotors
WO2023021087A1 (de) Verfahren und vorrichtung zur detektion eines kurzschlusses eines halbleiterschaltelementes in einem inverter zum bestromen eines elektrischen antriebs in einem elektrofahrzeug oder hybridfahrzeug; inverter mit einer solchen vorrichtung
DE102022206434A1 (de) Verfahren zum überwachten Einschalten eines Verbrauchers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: VON KREISLER SELTING WERNER - PARTNERSCHAFT VO, DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: ELMOS SEMICONDUCTOR SE, DE

Free format text: FORMER OWNER: ELMOS SEMICONDUCTOR AKTIENGESELLSCHAFT, 44227 DORTMUND, DE

R082 Change of representative

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE