DE102014200168A1 - Halbleitendes Nanopartikel/Polymer (Hybrid-) Material enthaltend halbleitende kohlenstoffhaltige Komponenten - Google Patents
Halbleitendes Nanopartikel/Polymer (Hybrid-) Material enthaltend halbleitende kohlenstoffhaltige Komponenten Download PDFInfo
- Publication number
- DE102014200168A1 DE102014200168A1 DE102014200168.4A DE102014200168A DE102014200168A1 DE 102014200168 A1 DE102014200168 A1 DE 102014200168A1 DE 102014200168 A DE102014200168 A DE 102014200168A DE 102014200168 A1 DE102014200168 A1 DE 102014200168A1
- Authority
- DE
- Germany
- Prior art keywords
- semiconducting
- vol
- polymer
- amount
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 66
- 229920000642 polymer Polymers 0.000 title claims abstract description 53
- 239000000463 material Substances 0.000 title abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims description 59
- 239000002109 single walled nanotube Substances 0.000 claims description 26
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 19
- 239000002079 double walled nanotube Substances 0.000 claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 15
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 11
- 229910003472 fullerene Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 229910021389 graphene Inorganic materials 0.000 claims description 8
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 7
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims description 6
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims description 5
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 238000007639 printing Methods 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 239000003446 ligand Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 239000002800 charge carrier Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000002096 quantum dot Substances 0.000 description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- -1 C60 tetracenes Chemical class 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 150000001722 carbon compounds Chemical class 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241001440206 Homodes Species 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical class [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000002979 perylenes Chemical class 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- DIIDIHMSJICLIZ-UHFFFAOYSA-N 2-sulfanylethylcarbamic acid Chemical compound OC(=O)NCCS DIIDIHMSJICLIZ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- VESBOBHLCIVURF-UHFFFAOYSA-N COC(=O)CCCC1(c2ccccc2)C23c4c5c6c7c8c9c(c%10c%11c2c2c4c4c%12c5c5c6c6c8c8c%13c%14c%15c%16c%17c%18c%19c%20c%21c%22c%23c(c%14c%14c8c9c8c%10c9c%11c%10c2c(c%20c%10c%22c9c%23c%148)c4c%19c%12c%17c5c%16c6%13)C%152C(CCCC(=O)OC)(c4ccccc4)C%18%212)C137 Chemical class COC(=O)CCCC1(c2ccccc2)C23c4c5c6c7c8c9c(c%10c%11c2c2c4c4c%12c5c5c6c6c8c8c%13c%14c%15c%16c%17c%18c%19c%20c%21c%22c%23c(c%14c%14c8c9c8c%10c9c%11c%10c2c(c%20c%10c%22c9c%23c%148)c4c%19c%12c%17c5c%16c6%13)C%152C(CCCC(=O)OC)(c4ccccc4)C%18%212)C137 VESBOBHLCIVURF-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000010719 annulation reaction Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- XTNMKCFFSXJRQE-UHFFFAOYSA-N n-ethenylethenamine Chemical compound C=CNC=C XTNMKCFFSXJRQE-UHFFFAOYSA-N 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- NFBAXHOPROOJAW-UHFFFAOYSA-N phenindione Chemical compound O=C1C2=CC=CC=C2C(=O)C1C1=CC=CC=C1 NFBAXHOPROOJAW-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920002848 poly(3-alkoxythiophenes) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000329 polyazepine Polymers 0.000 description 1
- 229920000323 polyazulene Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- AMLFJZRZIOZGPW-UHFFFAOYSA-N prop-1-en-1-amine Chemical compound CC=CN AMLFJZRZIOZGPW-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/045—Fullerenes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
- H01L31/035218—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
- H01L31/035227—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
- H10K30/352—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Die vorliegende Erfindung betrifft ein halbleitendes Nanopartikel/Polymer (Hybrid-)Material enthaltend halbleitende kohlenstoffhaltige Komponenten, ein Verfahren zur Herstellung dieses Materials, sowie ein Verfahren zur Herstellung einer hybriden organischen Solarzelle aus diesem Material und die nach diesem Verfahren erzeugte Solarzelle.
Description
- Die vorliegende Erfindung betrifft ein halbleitendes Nanopartikel/Polymer (Hybrid-)Material enthaltend halbleitende kohlenstoffhaltige Komponenten, ein Verfahren zur Herstellung dieses Materials, sowie ein Verfahren zur Herstellung einer hybriden organischen Solarzelle aus diesem Material und die nach diesem Verfahren erzeugte Solarzelle.
- Solarzellen oder photovoltaische Zelle (PV Zellen) sind elektrische Bauelemente, welche die im Licht (in der Regel Sonnenlicht) enthaltene Strahlungsenergie direkt in elektrische Energie umwandeln. Nach dem Stand der Technik ist eine Vielzahl von verschiedenen Solarzellen bekannt, die aus unterschiedlichen Materialien aufgebaut sind. Zu nennen sind zum Beispiel Solarzellen auf Basis des Halbleitermaterials Silizium. Monokristalline Solarzellen werden aus einkristallinen Siliziumscheiben (Wafern) hergestellt, wie sie auch für die Halbleiterherstellung verwendet werden. Sie sind verhältnismäßig teuer.
- Die Kosten für die Herstellung von Solarzellen könnten stark reduziert werden, wenn es gelänge, in einem Rolle-zu-Rolle-Verfahren halbleitende Materialien aus einer Lösung auf ein flexibles Substrat aufzubringen.
- Um dieses Problem zu lösen, wurden in den letzten Jahren organische Solarzellen entwickelt.
- Eine organische Solarzelle ist eine Solarzelle, die aus Werkstoffen der organischen Chemie besteht diese enthält, d. h. Werkstoffe, die Kohlenwasserstoff-Verbindungen aufweisen, insbesondere Kunststoffe. Die potentiellen Vorteile von einer Solarzelle auf Kunststoffbasis gegenüber herkömmlicher Silziumsolarzellen sind:
- – geringe Herstellungskosten aufgrund billiger Produktionstechnologien,
- – Hohe Stromausbeuten durch Dünnschicht-Großflächentechnologien für Kunststoffe,
- – Flexibilität, Transparenz und einfache Handhabung (mechanische Eigenschaften von Kunststoffen),
- – Hohe Umweltverträglichkeit (Kunststoffe auf Kohlenstoffbasis),
- – Anpassung an das Sonnenspektrum durch gezielte Polymersynthese,
- – ”Bunte” Solarzellen für architektonische Stilelemente.
- Dies sind Gründe für die in den letzten Jahren zunehmenden Entwicklungen auf dem Gebiet organischer Solarzellen. Die heutzutage verfügbaren organischen Solarzellen weisen allerdings eine geringere Effizienz und Lebensdauer auf als Solarzellen auf Basis anorganischer Halbleitermaterialien. Der Wirkungsgrad, mit dem Sonnenenergie in elektrische Energie umgewandelt wird, liegt mit ca. 7% noch weit unter dem von Solarzellen aus anorganischem Halbleitermaterial.
- Die effizienten Vertreter organischer Solarzellen basieren auf der Verwendung eines sogenannten Donor-Akzeptor(D-A)-Systems, d. h. auf der geschickten Kombination verschiedener Halbleiter, welche nach Absorption von Licht einen extrem schnellen Transfer (<< 1 ps) der entstandenen Ladungsträger zu Donor und Akzeptor zeigen (z. B. Dünnschichten aus konjugierten Polymeren und Fullerenen). Nach der Absorption von Photonen, deren Energie den Abstand zwischen HOMO (Highest Occupied Molecular Orbital) und LUMO (Lowest Unoccupied Molecular Orbital) des Donors bzw. Akzeptors überschreitet, entstehen sogenannte Exzitonen (elektrostatisch gebundene Paare positiver und negativer Ladungen), die u. a. durch das lokale elektrische Feld an einer D-A Grenzfläche für eine gewisse Zeitspanne getrennt werden. Nach der Trennung erfolgt der Ladungstransport in den zwei Halbleitern selektiv. Die Ladungsträger bewegen sich durch „Hüpfen” durch den Halbleiter; dieses Verhalten wird durch das ungeordnet vorliegende Umfeld (amorph oder mikrokristallin) mit einer Vielzahl von Energiebarrieren erzwungen. Die individuellen Ladungen treffen auf viele Molekül- und Phasengrenzen und damit auf substantielle und strukturelle Defekte, was die Rekombination und somit den Verlust der photochemisch generierten Ladungsträger bedeutet.
- In einer organischen Solarzelle besteht die (aus flüssiger Phase und/oder durch Vakuumverfahren aufgebrachte) Absorberschicht in der Regel aus einem Volumengemisch von donor- und akzeptorartigen organischen Halbleitern, die auf eine lichtdurchlässige, leitfähige Elektrode, z. B. ein mit einem transparenten Leiter beschichtetes Glas, aufgebracht wird. Auf die andere Seite der Absorberschicht wird eine Metallelektrode aufgedampft. Sie sammelt die Ladungsträger ein, welche das entgegengesetzte Vorzeichen besitzen, verglichen mit dem Vorzeichen der Ladungsträger, die über die transparente Elektrode abfließen. Die Lichtdurchlässigkeits- bzw. die Rückreflexionseigenschaften der Elektroden erhöhen die Quantenausbeute. Auch kann die Dicke der Absorberschicht im Resonator zwischen Glaselektrode und Metallelektrode auf Maximalabsorption einer gewissen Wellenlänge optimiert werden.
- So genannte hybride Solarzellen sollen die positiven Eigenschaften anorganischer (hohe Effizienz, hohe Lebensdauer) und organischer Solarzellen (geringere Herstellkosten, leichte und flexible Zellen) vereinen. Derartige Solarzellen sind unter anderem aus der
US 6,878,871 B2 bekannt. In diesem Dokument wird eine Solarzelle beschrieben, bei der Halbleiter-Nanopartikel in einer photoaktiven organischen Schicht enthalten sind. - Der Großteil dieser auch unter dem Oberbegriff „bulk heterojunction cells” bekannten Solarzellen wird hergestellt, indem eine Mischung aus Donor- und Akzeptor-Materialien aus einer Lösung auf ein Substrat aufgetragen wird.
- Zur Effizienzsteigerung von hybriden Solarzellen wurde von Dissanayake et al. (Mater. Res. Soc. Symp. Proc., 1102 (2008) 1102-LL07-06) demonstriert, dass der Zusatz von PbS-Quantum Dots (QD) in einem C60-Tetracene System sich vorteilhaft auf die Leistung der Solarzelle auswirkt. Hier wurden jedoch keine Polymere, sondern nur kleine Moleküle (Tetracene und Pentacene) verwendet. Ein Nachteil von Solarzellen auf Basis von kleinen Molekülen ist, dass diese Solarzellen durch Aufdampfverfahren hergestellt werden. Solche Verfahren sind schwieriger zu prozessieren als lösungsbasierte Verfahren. Somit Solarzellen auf der Basis von kleinen Molekülen schwieriger zu produzieren als Solarzellen, die durch lösungsbasierte Verfahren hergestellt werden.
- In Chen et al. (Nature Nanotechnology, 3 (2008) 543) wurde durch Mischungen von Polymeren und CdTe-Quantum Dots eine Leistungs-Verbesserung bei Photodetektoren offenbart.
- Kim et al. (Appl. Phys. Lett., 92 (2008) 191107/1) haben gezeigt, dass PbS-Quantum Dots-Schichten in Tandem-Solarzellen auf Basisschichten von [6,6]-Phenyl-C61-Butyric acid methyl ester/Poly (3-Hexylthiophene) PCBM/P3HT verwendet werden können und zu einer höheren Effizienz führen. Ein Nachteil der Tandem-Zellen ist ihr komplizierter Aufbau. Die damit erzielten Effizienzsteigerungen rechtfertigen nicht den höheren Aufwand bei der Herstellung der Tandem-Zellen.
- Anctil et al. (Mater. Res. Soc. Symp. Proc., 1013 (2007) 1013-Z07-30) stellte eine Photodiode bzw. Solarzelle auf Basis von Poly-[2-methoxy-5-(2-ethyl)-hexoxy-1,4-phenylen-vinylen] (MEV-PPV) Polymer sowie PCBM und InAs-Quantum Dots (InAs-QDs) vor. In dieser Zelle werden die halbleitenden Quantum Dots als Additiv benutzt. Sie dienen als zusätzliche Absorber neben dem Polymer. Dies geht auch aus den verwendeten Gewichtsanteilen der einzelnen Materialien in der Zelle hervor. PCBM soll dabei nicht den Ladungstransfer begünstigen.
- Polymer und PCBM wurden stets im Gewichtsverhältnis 1:4 eingesetzt. Es wurde außerdem gezeigt, dass die Zugabe von InAs-QDs mit zunehmendem Anteil (MEV-PPV:QD:PCBM = 1:0:4, 1:4:4, 1:16:4 offenbart) zu einer signifikanten Verschlechterung der Effizienz der Solarzelle führte. Dies wurde auf eine Fehlanpassung der Energieniveaus der beteiligten Komponenten zurückgeführt. Die Quantum Dots wirkten hier als Fallen für die entstandenen Löcher, sodass durch die Zugabe der Quantum Dots ein effizienter Ladungstransfer von Polymer zum PCBM nicht gefördert sondern behindert wird. Außerdem wird der Ladungstransport im PCBM-Netzwerk zu der Anode behindert. Nachteilig bei den in dieser Arbeit offenbarten Solarzellen sind sicherlich neben den ungeeigneten Energiebandlagen auch der sehr hohe relative Anteil an PCBM und die nicht genau definierten Schichtdicken.
- Eine Kombination von CdSe-Quantum Dots mit Single Walled Carbon Nanotubes (SWCNT) und halbleitenden Polymeren wird in B. J. Landi et al. (Solar Energy Materials & Solar Cells, 87 (2005) 733) vorgeschlagen. Hier wurden Quantum Dots an SWCNTs nach deren gezielten Oxidation und Carboxylierung kovalent gekoppelt. Ziel dieser Modifikation ist eine schnelle Ableitung der Elektronen von dissozierten Exzitonen. Die Effizienzen sind jedoch sehr gering und es wurden Stromdichten von weit unter 1 μA/cm2 erzielt. Wegen der durchgeführten Oxidation und Carboxylierung kann nicht sichergestellt, dass die modifizierten SWCNTs noch die genannte hohe Leitfähigkeit und Mobilität gewährleisten.
- In allen genannten Beispielen wurden nur sphärische Halbleiter-Nanoteilchen verwendet.
- Bei einer hybriden Nanopartikel/Polymer Solarzelle, die aus als Elektronenakzeptor dienenden halbleitenden anorganischen Nanopartikel und als Elektronendonor dienenden halbleitenden Polymeren besteht, werden durch Lichtabsorption gebundene Elektronen-Loch-Paare (Exzitonen) generiert, die an der Grenzfläche zwischen Halbleiter-Nanopartikel und Polymer in freie positive (Löcher) und negative (Elektronen) Ladungsträger getrennt werden. Die Exzitonen können dabei sowohl in der organischen Phase (Polymer) als auch in der anorganischen Phase (Nanopartikel) erzeugt werden. Die jeweiligen Ladungsträger wandern nach ihrer Trennung zu ihrer respektiven Elektrode, um dort eine elektrische Spannung aufzubauen bzw. zum Photostrom der Solarzelle beizutragen. In der Praxis können Ladungstrennung und -transport jedoch durch die auf der Nanopartikel-Oberfläche verbliebenen restlichen Liganden und/oder durch unvorteilhafte Strukturierung der halbleitenden Phasen behindert werden.
- Es stellte sich demnach die Aufgabe, ein halbleitendes Hybridmaterial mit verbesserter Leistungseffizienz sowie eine hybride Nanopartikel/Polymer Solarzelle bereitzustellen, welche eine effektivere Ladungstrennung des durch Lichtabsorption erzeugten Exzitons an der Grenzschicht zwischen n- und p-leitenden Halbleitermaterialien sowie einen effektiveren Transfer der negativen Ladungsträger (Elektronen) zwischen den n-halbleitenden Nanostrukturen mit möglichst geringen Verlusten, d. h. mit einem geringen Innenwiderstand, zur Kathode gewährleistet und somit eine höhere Effizienz liefert. Das gesuchte Hybridmaterial und das Verfahren zur seiner Herstellung sollen industriell anwendbar und damit skalierbar, in hohem Durchsatz und zu geringen Kosten durchführbar sein.
- Es wurde gefunden, dass die Nanopartikel/Polymer (Hybrid-)Solarzellen durch Zugabe von Materialien, die halbleitend sind und im Wesentlichen aus reinem Kohlenstoff bestehen eine wesentliche Verbesserung der Leistungsfähigkeit der Hybrid-Solarzelle erreicht werden kann. Diese erfindungsgemäßen Materialien besitzen sog. „π-Elektronen”. π-Elektronen im Sinne der Erfindung sind dabei solche Elektronen, die an π-Bindungen von Kohlenstoff-Kohlenstoff-Bindungen, d. h. Bindungen, die durch Überlappungen der p-Orbitale von sp2-hybridisierten Kohlenstoffatomen geknüpft werden, beteiligt sind. Zu diesen π-Bindungen zählen z. B. C=C-Doppelbindungen zwischen zwei Kohlenstoffatomen.
- • Zu den erfindungsgemäßen Materialklassen gehören z. B. Single Walled Carbon Nanotubes (SWCNT) mit solchen Chiralitäten, die einen halbleitenden Charakter der SWCNTs hervorrufen.
- • Auch Double Walled Carbon Nanotubes (DWCNT), die aus zwei ineinander gesteckten SWCNTs bestehen und durch geeignete Chiralität der einzelnen SWCNTs halbleitende Eigenschaften besitzen, sind im Sinne der Erfindung geeignete Materialien.
- • Des Weiteren gehören Fullerene zu den geeigneten Materialien, wie z. B. C60, C70, C76, C84, C90, C94 oder höhere bzw. deren Derivate wie z. B. [6,6]-phenyl-C61-butyric acid methyl ester ([60]PCBM) und Metall-Fulleren Komplexe [LnM(C60)] der späten Übergangsmetalle für C60. [70]PCBM- oder andere Derivate der höheren Fullerene zählen genauso zu den geeigneten Materialien wie Bis-PCBM-Derivate, Fulleren-Inden Bisaddukte oder andere „Bis-Derivate” von C60 und den höheren Fullerenen einschließlich der entsprechenden Enantiomere. Die Auswahl des geeigneten Materials erfolgt gemäß den für die Hybridsolarzelle erforderlichen HOMO- und LUMO-Lagen.
- • Polycyclische aromatische Kohlenwasserstoffe, deren Bandlücke von 5,1 eV (Benzol) durch weitere Aneinanderreihung (d. h. Kondensierung oder Anellierung) über die Verbindungen Naphthalin, Anthracen, Phenanthren) bis hin zum Graphen kontinuierlich verringert werden kann.
- • Außerdem gehören Graphene, d. h. einzelne oder eine geringe Anzahl von Graphitschichten, zu den erfindungsgemäßen Materialklassen, wobei die passenden HOMO- und LUMO-Lagen durch geeignete Längen- und Breitenverhältnisse sowie Isomerien ausgewählt werden müssen.
- • Auch Perylene und (Poly-)Phenylene werden zu den erfindungsgemäßen Materialklassen gezählt.
- Die erfindungsgemäßen Materialien dürfen dabei nicht einen wesentlichen Teil ihrer π-Elektronen durch Modifikationsprozesse wie z. B. übermäßige Oxidation oder Funktionalisierung verlieren.
- Je nach energetischer Lage der Valenz- und Leitungsbänder der Halbleiter-Nanopartikel müssen halbleitende Polymere so gewählt werden, dass deren „Highest Occupied Molecular Orbital” (HOMO) und „Lowest Unoccupied Molecular Orbital” (LUMO) jeweils mindestens ca. 0,3 eV höher liegt als das Leitungs- und Valenzband des verwendeten Halbleiter-Nanopartikel (Typ II-Übergang).
- Die HOMO-Position der erfindungsgemäßen halbleitenden Kohlenstoffverbindungen müssen bzgl. ihrer energetischen Lage zwischen denen der entsprechenden HOMO des Polymers und der Valenzbandkante der Halbleiter-Nanopartikel liegen. Bevorzugt liegt sie möglichst nahe an der Valenzbandkante der Halbleiter-Nanopartikel. Entsprechend muss die LUMO-Position der erfindungsgemäßen halbleitenden Kohlenstoffverbindungen zwischen denen des entsprechenden LUMO des Polymers und Leitungsbandkante der Halbleiter-Nanopartikel liegen. Bevorzugt liegt sie möglichst nahe an der Leitungsbandkante der Halbleiter-Nanopartikel.
- Die Halbleiter-Nanopartikel müssen dabei so modifiziert sein, dass eine effektive Dissoziation der in dem Polymer oder in den Halbleiter-Nanopartikeln erzeugten Exzitonen möglich ist. Dazu müssen die bei der Herstellung der Halbleiter-Nanopartikel verwendeten langkettigen, hochsiedenden Tenside wie z. B. Ölsäure, Trioctylphosphin o. ä. entfernt werden und durch niedermolekulare und/oder den Ladungstransport begünstigende Tenside ersetzt werden. Diese Tenside binden meist über eine Stickstoff-, Schwefel- oder Phosphorhaltige Gruppe an das Halbleiter-Nanopartikel und gehen keine kovalente Bindung mit den erfindungsgemäßen kohlenstoffhaltigen Materialien ein. Für den Fall eines Tensidaustauschs mit Pyridin wird eine solche Prozedur z. B. von Huynh et al. (Advanced Functional Materials 13 (2003) 73–79) beschrieben. Auch andere dem Fachmann bekannte Prozeduren und Materialien sind hier anwendbar.
- Die Menge der erfindungsgemäßen kohlenstoffhaltigen Materialien, die in die aktive Schicht der Solarzelle hinzugefügt werden soll, muss so dimensioniert werden, dass der Gesamtvolumenanteil an Halbleiter-Nanopartikel plus den erfindungsgemäßen kohlenstoffhaltigen Materialklassen in der aktiven Schicht der fertigen Solarzelle folgender Gleichung genügt (C = erfindungsgemäße halbleitende Kohlenstoffverbindungen, NP = Halbleiter-Nanopartikel, P = halbleitendes Polymer), in Vol-%:
X = (C + NP)/(C + NP + P) mit 30 Vol-% < X < 70 Vol-%, bevorzugt 40 Vol-% < X < 60 Vol-%. - Außerdem gilt:
Y = C/(C + NP) mit 1 Vol-% < Y < 90 Vol-%, bevorzugt 5 Vol-% < Y < 70 Vol-%, besonders bevorzugt 10 Vol-% < Y < 50 Vol-%. - Erster Gegenstand der vorliegenden Erfindung ist daher ein halbleitendes Nanopartikel/Polymer (Hybrid-)Material, enthaltend:
- – Halbleiter-Nanopartikel, charakterisiert durch ihr Leitungsband, Valenzband und Valenzbandkante,
- – ein halbleitendes Polymer oder eine Mischung von halbleitenden Polymeren dessen/deren HOMO und LUMO jeweils mindestens ca. 0,3 eV höher als das Leitungs- und Valenzband des verwendeten Halbleiter-Nanopartikels (Typ II-Übergang) liegt/liegen,
- – eine oder mehrere halbleitende kohlenstoffhaltiges Komponenten, die im Wesentlichen aus reinem Kohlenstoff besteht und über π-Elektronen verfügt, ausgewählt aus der Gruppe der halbleitenden Single Walled Carbon Nanotubes (SWCNT) oder Double Walled Carbon Nanotubes (DWCNT), Fullerenen, polycyclischen aromatische Kohlenwasserstoffen, Graphen, Perylen und (Poly-)Phenylen, deren energetische Lage zwischen denjenigen der entsprechenden HOMO des Polymers und der Valenzbandkante der Halbleiter-Nanopartikel liegen,
- – wobei die Menge der kohlenstoffhaltigen Komponenten folgender Gleichung genügt:
X = (C + NP)/(C + NP + P) mit 30 Vol-% < X < 70 Vol-%, und Y = C/(C + NP) mit 1 Vol-% < Y < 90 Vol-%, - Die vorteilhafte Wirkung der erfindungsgemäßen halbleitenden Kohlenstoffverbindungen in der Nanopartikel/Polymer Solarzelle liegt vor allem in der vergleichsweise geringen räumlichen Ausdehnung. Dadurch sind sie in der Lage, möglichst nahe an die Oberfläche der Halbleiter-Nanopartikel heranzukommen, auch wenn sich noch Reste von Liganden auf der Oberfläche befinden, die für die Herstellung einer kolloidal stabilen Tinte aus Halbleiter-Nanopartikeln und Polymer erforderlich sind. Dadurch ist einerseits ein besserer Kontakt zwischen den als Akzeptor und Donor wirkenden Halbleiterkomponenten in der Solarzelle gewährleistet, was eine höhere Effizienz zur Folge hat und andererseits kann dadurch auch ein besserer Kontakt zwischen den als Akzeptor dienenden Halbleiter-Nanopartikeln sichergestellt werden, was den Innenwiderstand der resultierenden Solarzelle reduziert und somit ebenfalls deren Effizienz steigert.
- Unter „Halbleiter-Nanopartikel” im Sinne der vorliegenden Erfindung werden insbesondere anorganische Materialien verstanden, welche im Wesentlichen kristallin oder angenähert kristallin ausgebildet sind, eine Bandlücke von ≥ 0,5 eV bis ≤ 3,5 eV besitzen und im Durchschnitt eine charakteristische Größenausdehnung im Bereich von ≥ 1 nm bis ≤ 50 nm, bevorzugt ≥ 1,5 nm bis ≤ 40 nm, besonders bevorzugt ≥ 2 nm bis ≤ 30 nm aufweisen. Unter charakteristische Größenausdehnung im Sinne der vorliegenden Erfindung wird die Abmessung der Nanopartikel verstanden, die für deren physikalisch-chemischen Eigenschaften bestimmend ist. Dies ist bei sphärischen Teilchen der Durchmesser, bei länglichen Teilchen, z. B. Stäbchen, der Stäbchendurchmesser und bei mehrarmigen Teilchen der Armdurchmesser. Bevorzugte Morphologien der Halbleiter-Nanopartikel sind stäbchenförmige und einfach oder mehrfach verzweigte Strukturen.
- Bevorzugt sind die Halbleiter-Nanopartikel aus der Gruppe der II-VI bzw. III-V-Verbindungshalbleiter (z. B. CdSe, CdTe, InN, InP, InSb, InAs, AlAs, GaAs, GaP, GaSb, PbSe, PbS, PbTe) und Mischungen daraus. Auch ternäre Verbindungshalbleiter wie InxGa1-xAs, InxAl1-xAsInxGa1-xN, (0 ≤ x ≤ 1), ABX2 (A = Ag, Cd, Zn; B = Ga, In, Sn, Si, Ge; X = S, Se, Te, P, As) oder CuBX2 (B = Ga, In, Al; X = S, Se, Te) oder quaternäre Verbindungshalbleiter, die sich aus Mischkristallen der ternären Verbindungshalbleiter zusammensetzen, sind bevorzugt im Sinne der Erfindung.
- Für die Nutzung der Halbleiter-Nanopartikel in einer Tinte zur Herstellung von druckbaren Vorrichtung ist es vorteilhaft, wenn die Tinte in Form einer stabilen, homogenen Dispersion vorliegt, so dass die nötige Qualität des Films nach Auftragung insbesondere Spin-coating auf einem Substrat zur Herstellung einer aktiven Schicht erreicht werden kann.
- Dies wird üblicherweise dadurch erreicht, dass die Halbleiter-Nanopartikel von Liganden umhüllt werden, die:
- a. volatil sind, d. h. einen niedrigen Siedpunkt (≤ 150°C) aufweisen, so dass ggf. ein Annealing nach dem Druck der aktiven Schicht durchgeführt werden kann.
- b. ein niedriges Molekulargewicht (≤ 100 g/mol) besitzen und/oder eine kurze lineare oder verzweigte Kette (C2 bis C8), (hetero)zyklische oder (hetero)aromatische von monozyclisch bis polyzyclisch mit 3 Ringen sind,
- c. keine kovalente Bindung mit den Halbleiter-Nanopartikel ausbilden können,
- d. zu einer Tinte ohne Agglomerate einer Größe > 100 nm, bevorzugt > 20 nm, besonders bevorzugt ohne Agglomerate > 1 nm, ganz besonders bevorzugt zu einer Tinte ohne Agglomerate führt, insbesondere wenn Halbleiter-Nanopartikel mit den zusätzlichen halbleitenden kohlenstoffhaltigen Komponenten und Polymeren gemischt werden.
- Für die Nutzung der Halbleiter-Nanopartikel in einer Tinte zur Herstellung von druckbaren elektronischen Vorrichtungen und insbesondere in Solarzellen ist es vorteilhaft, wenn die Liganden außerdem eine Verbesserung der Elektronen- oder Lochleitfähigkeit (hole conductivity) bewirken. Liganden mit mindestens einem π-Elektronensystem werden entsprechend bevorzugt.
- Beispiele für Liganden können in 3 Klassen unterteilt werden: Amine, Thiole und elektroaktive Tenside.
- In einer ersten bevorzugten Ausführungsform werden Liganden mit stickstoff-, schwefel-, kohlenstoff- oder phosporhaltigen funktionellen Gruppen verwendet. Bevorzugt werden Amine, Thiole, Thiophene, Carboxyl oder Phosphat enthaltende Verbindungen mit einem Molekulargewicht Mw ≤ 100 g/mol oder Alkene, Cykloalkene, aromatische mono- oder polyzyklische Ringsysteme. Auch möglich sind Stickstoff-Heterozyklische Verbindungen wie z. B. Pyrrol, Indol, Isoindol, Imidazol, Benzimidazol, Purin, Pyrazol, Indazol, Oxazol, Benzoxazol, Isoxazol, Benzisoxazol, Pyridin, Isochinolin, Pyrazin, Pyrimidin, Pyridazin oder Cinnolin, Chinolin, Isochinolin, Chinoxalin, Acridin, Chinazolin, Carbazole. Beispiele für schwelfelhaltige Gruppen sind Thiophen, Benzothiophen, Thiazol, Benzothiazol. Besonders bevorzugt sind n-Alkylamine (2 ≤ n ≤ 8), Di-n-alkylamine (2 ≤ n ≤ 4), Vinylamin, Allylamin, Propenamin, Divinylamin, Diallylamin, Dipropenamin und Pyridin.
- Auch Derivate der oben genannten Verbindungen mit mehreren funktionellen Gruppen auf Basis von Stickstoff, Schwefel, Kohlenstoff oder Phospor sind möglich.
- Weitere Beispiele für Liganden sind Monomere und/oder Oligomere, die chemisch wie strukturell mit dem eingesetzten halbleitenden Polymer verwandt sind. Diese können ggf. durch Amin-, Thiol-, Thiophen-, Carboxyl- oder Phosphatgruppen substituiert sein.
- Weiterhin sind thermisch oder durch UV-Licht spaltbare Liganden wie z. B. tert-Butyl-N-2-(Mercaptoethylcarbamate) (= tBOC) und andere Carbamat-enthaltenden Verbindungen möglich.
- Auch Mischungen der o. g. Liganden sind einsetzbar.
- Bevorzugt werden Liganden verwendet, welche eine oder mehrere Aminogruppen enthalten. Es ist bekannt, dass diese Liganden die Oberfläche der halbleitenden Nanopartikel erheblich beeinflussen, indem sie defekte Stellen passivieren oder durch chemisches Ätzen z. B. durch Redox-Reaktionen eine Korrektur der defekten Stellen ermöglichen. Diese Optimierung der Nanopartikeloberfläche hat auch eine niedrigere Dichte von Rekombinationszentren zur Folge, was Voraussetzung für eine hohe Effizienz der druckbaren elektronischen Vorrichtungen ist.
- Typische halbleitende Polymere für Nanopartikel/Polymer (Hybrid-)Materialien sind kristallisationsfähige halbleitende Polymere wie z. B. Poly(acetylene), Polyaniline, Poly(pyrrol)e, Polyindole, Polypyrene, Polycarbazole, Polyazulene, Polyazepin, Polyfluorene, Polynapthalene, bevorzugt Poly(p-phenylene vinylene). Besonders bevorzugt sind halbleitende Polymere mit starker Affinität zu den halbleitenden Nanopartikeln, wie Polythiophene, Poly(3-alkylthiophene), Poly(p-phenylen)-sulfide. Um die Affinität zu verstärken werden Polymere mit funktionellen Gruppen bevorzugt, die physikalisch oder chemisch mit der Oberfläche der halbleitenden Nanopartikeln aufeinander abgestimmt sind. Z. B. werden in Kombination mit Cd-basierten halbleitenden Nanopartikeln vorzugsweise schwefelhaltige Polymere eingesetzt.
- Zur Herstellung des erfindungsgemäßen Materials werden üblicherweise die Halbleiter-Nanopartikel, ein oder eine Mischung von halbleitenden Polymeren und eine oder mehrere halbleitende kohlenstoffhaltiges Komponente in einem Tintenlösungsmittel dispergiert, so dass eine stabile/metastabile homogene Tinte erzeugt wird.
- Weiterer Gegenstand der vorliegenden Erfindung ist daher eine Tinte enthaltend:
- – Halbleiter-Nanopartikel, charakterisiert durch ihr Leitungsband, Valenzband und Valenzbandkante,
- – ein oder eine Mischung von halbleitenden Polymeren deren HOMO und LUMO jeweils mindestens ca. 0,3 eV höher als das Leitungs- und Valenzband des verwendeten Halbleiter-Nanopartikels (Typ II-Übergang) liegen,
- – eine oder mehrere halbleitende kohlenstoffhaltige Komponenten, die im Wesentlichen aus reinem Kohlenstoff bestehen und über π-Elektronen verfügt, ausgewählt aus der Gruppe der halbleitenden Single Walled Carbon Nanotubes (SWCNT) oder Double Walled Carbon Nanotubes (DWCNT), Fullerene, polyzyklische aromatische Kohlenwasserstoffe, Graphene, Perylene und (Poly-)Phenylene, deren energetische Lage zwischen denjenigen der entsprechenden HOMO des Polymers und der Valenzbandkante der Halbleiter-Nanopartikel liegen,
- – wobei die Menge der kohlenstoffhaltigen Komponenten, so dimensioniert wird, dass sie folgender Gleichung genügt:
X = (C + NP)/(C + NP + P) mit 30 Vol-% < X < 70 Vol-%, und Y = C/(C + NP) mit 1 Vol-% < Y < 90 Vol-%, - Zusatzstoffe können der Tinte hinzugefügt werden, um ihre Eigenschaften anzupassen.
- Es ist z. B. vorteilhaft den Kristallisationsprozess des halbleitenden Polymers zu beeinflussen, um die Ladungsträgerbeweglichkeit zu verbessern. Zusatzstoffe können der Tinte hinzugefügt werden, um die Sekundärstruktur der halbleitenden Nanopartikel in der aktiven Schicht und so den Pfad der Ladungsträger zu ihren jeweiligen Elektroden zu optimieren.
- Niedrigere innere Widerstände oder höhere Leistungen der druckbaren elektronischen Vorrichtungen sind potenziell erreichbar.
- Solche Zusatzstoffe sind aus dem Stand der Technik bekannt und entsprechen z. B. Nitrobenzol, Octanethiole oder Dihaloalkane.
- Weitere Zusatzstoffe können in der Tinte eingesetzt werden, um die Abtrennung von verbleibenden langkettigen Primärliganden aus der Nanopartikelsynthese zu fördern.
- Auch Kombinationen von Zusatzstoffen sind möglich.
- Typischerweise werden zur Herstellung der Tinte alle Komponenten, getrennt in einem gemeinsamen Tintenlösungsmittel dispergiert und die Dispersionen werden in den passenden Mengen zusammengegeben und vermischt.
- Das Tintenlösungsmittel ist bevorzugt volatil mit einem Siedepunkt ≤ 150°C. Bevorzugt werden Toluol, Xylol, Methylenchlorid, Chloroform, Chlorbenzol, Di-chlorbenzol, Tri-Chlorbenzol.
- Weiterer Gegenstand der vorliegenden Erfindung ist auch eine elektronische Vorrichtung enthaltend das erfindungsgemäße Material und insbesondere eine druckbare elektronische Vorrichtung erhaltbar durch das Drucken der erfindungsgemäßen Tinte. Insbesondere werden Solarzellen erwähnt, ohne sich darauf zu begrenzen.
- Zur Herstellung von druckbaren elektronischen Vorrichtungen wird üblicherweise die erfindungsgemäße Tinte auf die Oberfläche der druckbaren elektronischen Vorrichtung mit konventionellen Methode wie z. B. Ink-Printing, Screen-Printing, Roll-to-roll-Printing gedruckt und getrocknet.
- Idealerweise werden dann die Liganden aus der aktiven Schicht mittels Härtung (Annealing) oder Vakuum-Schritte entfernt, um die Leitfähigkeit zwischen den Nanopartikeln zu erhöhen und eine effiziente Ladungstrennung und/oder -transport zwischen Nanopartikeln, halbleitender kohlenstoffhaltiger Komponente und dem Polymer zu gewährleisten.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- US 6878871 B2 [0009]
- Zitierte Nicht-Patentliteratur
-
- Dissanayake et al. (Mater. Res. Soc. Symp. Proc., 1102 (2008) 1102-LL07-06) [0011]
- Chen et al. (Nature Nanotechnology, 3 (2008) 543) [0012]
- Kim et al. (Appl. Phys. Lett., 92 (2008) 191107/1) [0013]
- Anctil et al. (Mater. Res. Soc. Symp. Proc., 1013 (2007) 1013-Z07-30) [0014]
- B. J. Landi et al. (Solar Energy Materials & Solar Cells, 87 (2005) 733) [0016]
- Huynh et al. (Advanced Functional Materials 13 (2003) 73–79) [0024]
Claims (5)
- Halbleitendes Nanopartikel/Polymer Material, enthaltend: – Halbleiter-Nanopartikel, – ein halbleitendes Polymer oder eine Mischung von halbleitenden Polymeren deren HOMO und LUMO jeweils mindestens ca. 0,3 eV höher als das Leitungs- und Valenzband des verwendeten Halbleiter-Nanopartikels (Typ II-Übergang) liegen, – eine oder mehrere halbleitende kohlenstoffhaltige Komponenten, die im Wesentlichen aus reinem Kohlenstoff bestehen und über π-Elektronen verfügen, ausgewählt aus der Gruppe der halbleitenden Single Walled Carbon Nanotubes (SWCNT) oder Double Walled Carbon Nanotubes (DWCNT), Fullerenen, polycyclischen aromatischen Kohlenwasserstoffen, Graphen, Perylen und (Poly-)Phenylen, deren energetische Lage zwischen denen der entsprechenden HOMO des Polymers und der Valenzbandkante der Halbleiter-Nanopartikel liegen, wobei die Menge der kohlenstoffhaltigen Komponenten folgender Gleichung genügt:
X = (C + NP)/(C + NP + P) mit 30 Vol-% < X < 70 Vol-%, und Y = C/(C + NP) mit 1 Vol-% < Y < 90 Vol-%, - Tinte, enthaltend: – Halbleiter-Nanopartikel, – ein oder eine Mischung von halbleitenden Polymeren deren „Highest Occupied Molecular Orbital” (HOMO) und „Lowest Unoccupied Molecular Orbital” (LUMO) jeweils mindestens ca. 0,3 eV höher als das Leitungs- und Valenzband des verwendeten Halbleiter-Nanopartikels (Typ II-Übergang) liegen, – eine oder mehrere halbleitende kohlenstoffhaltige Komponente, die im Wesentlichen aus reinem Kohlenstoff besteht und über π-Elektronen verfügt, ausgewählt aus der Gruppe der halbleitenden Single Walled Carbon Nanotubes (SWCNT) oder Double Walled Carbon Nanotubes (DWCNT), Fullerene, polycyclischen aromatischen Kohlenwasserstoffe, Graphene, Perylene und (Poly-)Phenylene, dessen energetische Lage zwischen denen der entsprechenden HOMO des Polymers und der Valenzbandkante der Halbleiter-Nanopartikel liegen, wobei die Menge der kohlenstoffhaltigen Komponenten folgender Gleichung genügt:
X = (C + NP)/(C + NP + P) mit 30 Vol-% < X < 70 Vol-%, und Y = C/(C + NP) mit 1 Vol-% < Y < 90 Vol-%, - Elektronische Vorrichtung enthaltend das Halbleitendes Nanopartikel/Polymer Material nach Anspruch 1.
- Elektronische Vorrichtung nach Anspruch 3, erhältlich durch das Drucken einer Tinte nach Anspruch 2.
- Elektronische Vorrichtung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass es sich um eine Solarzelle handelt sind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014200168.4A DE102014200168A1 (de) | 2014-01-09 | 2014-01-09 | Halbleitendes Nanopartikel/Polymer (Hybrid-) Material enthaltend halbleitende kohlenstoffhaltige Komponenten |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014200168.4A DE102014200168A1 (de) | 2014-01-09 | 2014-01-09 | Halbleitendes Nanopartikel/Polymer (Hybrid-) Material enthaltend halbleitende kohlenstoffhaltige Komponenten |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102014200168A1 true DE102014200168A1 (de) | 2014-11-20 |
Family
ID=51831524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102014200168.4A Withdrawn DE102014200168A1 (de) | 2014-01-09 | 2014-01-09 | Halbleitendes Nanopartikel/Polymer (Hybrid-) Material enthaltend halbleitende kohlenstoffhaltige Komponenten |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102014200168A1 (de) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878871B2 (en) | 2002-09-05 | 2005-04-12 | Nanosys, Inc. | Nanostructure and nanocomposite based compositions and photovoltaic devices |
-
2014
- 2014-01-09 DE DE102014200168.4A patent/DE102014200168A1/de not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878871B2 (en) | 2002-09-05 | 2005-04-12 | Nanosys, Inc. | Nanostructure and nanocomposite based compositions and photovoltaic devices |
Non-Patent Citations (6)
Title |
---|
Anctil et al. (Mater. Res. Soc. Symp. Proc., 1013 (2007) 1013-Z07-30) |
B. J. Landi et al. (Solar Energy Materials & Solar Cells, 87 (2005) 733) |
Chen et al. (Nature Nanotechnology, 3 (2008) 543) |
Dissanayake et al. (Mater. Res. Soc. Symp. Proc., 1102 (2008) 1102-LL07-06) |
Huynh et al. (Advanced Functional Materials 13 (2003) 73-79) |
Kim et al. (Appl. Phys. Lett., 92 (2008) 191107/1) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gatti et al. | Boosting perovskite solar cells performance and stability through doping a poly‐3 (hexylthiophene) hole transporting material with organic functionalized carbon nanostructures | |
EP2227836B1 (de) | Nanokomposit-hybridmaterial | |
EP2398056B1 (de) | Organische Solarzelle mit mehreren Transportschichtsystemen | |
US8003979B2 (en) | High density coupling of quantum dots to carbon nanotube surface for efficient photodetection | |
DE102009051142B4 (de) | Photoaktives Bauelement mit invertierter Schichtfolge und Verfahren zu seiner Herstellung | |
EP2959520B1 (de) | Optoelektronisches bauelement | |
DE202006021034U1 (de) | Organisches photoaktives Bauelement | |
DE102011052041A1 (de) | Verfahren zur Herstellung eines Kohlenstoff-Dünnfilms, den Kohlenstoff-Dünnfilm umfassende elektronische Bauteile und den Kohlenstoff-Dünnfilm umfassende elektrochemische Vorrichtung | |
EP2400575B1 (de) | Optoelektronisches Bauelement mit organischen Schichten | |
DE102013106639A1 (de) | Organisches, halbleitendes Bauelement | |
EP2329539A1 (de) | Verwendung von dibenzotetraphenylperiflanthen in organischen solarzellen | |
US20110253217A1 (en) | Controlled Alignment in Polymeric Solar Cells | |
DE112012004624T5 (de) | Organischer Dünnschichttransistor und Verfahren zu dessen Herstellung | |
Amsterdam et al. | Leveraging molecular properties to tailor mixed-dimensional heterostructures beyond energy level alignment | |
DE102010056519A1 (de) | Optoelektronisches Bauelement mit dotierten Schichten | |
WO2010139804A1 (de) | Photoaktives bauelement mit organischen doppel- bzw. mehrfach-mischschichten | |
Reinhold et al. | Shorter is not always better: Analysis of a ligand exchange procedure for CuInS2 nanoparticles as the photovoltaic absorber material | |
AT503838B1 (de) | Verfahren zum herstellen einer anorganische halbleiterpartikel enthaltenden schicht sowie bauelemente umfassend diese schicht | |
DE102009036110A1 (de) | Licht absorbierendes organisches Bauelement | |
DE102014200168A1 (de) | Halbleitendes Nanopartikel/Polymer (Hybrid-) Material enthaltend halbleitende kohlenstoffhaltige Komponenten | |
Švrček et al. | Electronic interactions of silicon nanocrystals and nanocarbon materials: Hybrid solar cells | |
Yu et al. | On the role of graphene in polymer-based bulk heterojunction solar cells | |
Al-Azzawi | Investigation of polyaniline and its composites as interlayers in organic solar cells | |
Bausi | Innovative solutions and applications for polymer light-emitting diodes | |
Mallajosyula et al. | Effect of single walled carbon nanotubes on the performance of poly-(3-hexylthiophene) solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R230 | Request for early publication | ||
R120 | Application withdrawn or ip right abandoned |