DE102014114609B3 - Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger - Google Patents

Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger Download PDF

Info

Publication number
DE102014114609B3
DE102014114609B3 DE102014114609.3A DE102014114609A DE102014114609B3 DE 102014114609 B3 DE102014114609 B3 DE 102014114609B3 DE 102014114609 A DE102014114609 A DE 102014114609A DE 102014114609 B3 DE102014114609 B3 DE 102014114609B3
Authority
DE
Germany
Prior art keywords
free
piston
displacer
stirling engine
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102014114609.3A
Other languages
English (en)
Inventor
Eckhart Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Stirling GmbH
Original Assignee
First Stirling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Stirling GmbH filed Critical First Stirling GmbH
Priority to DE102014114609.3A priority Critical patent/DE102014114609B3/de
Priority to PCT/EP2015/070484 priority patent/WO2016055221A1/de
Application granted granted Critical
Publication of DE102014114609B3 publication Critical patent/DE102014114609B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • H02K7/1884Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts structurally associated with free piston engines

Abstract

Es gibt einen Freikolben-Stirlingmotor, bei dem – die exakte Bewegung des Verdrängers 4 mit einer linear elektrischen Maschine bewerkstelligt bzw. kontrolliert wird. – die exakte Bewegung des Arbeitskolbens 5 mit einer linear elektrischen Maschine bewerkstelligt bzw. kontrolliert wird. – die exakte Bewegung des Gegenschwingers 15 mit einer linear elektrischen Maschine bewerkstelligt bzw. kontrolliert wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Freikolben-Stirlingmotors mit linear hin und her schwingendem Verdränger und Arbeitskolben nach dem Oberbegriff des Anspruchs 1 sowie einen entsprechenden Freikolben-Stirlingmotor nach dem Oberbegriff des Anspruchs 8.
  • Freikolben-Stirlingmotoren finden als Kraftmaschinen neuerdings verstärktes Interesse zur dezentralen Verstromung von gasförmigen, flüssigen und festen Brennstoffen, sowie von konzentriertem Sonnenlicht, um in kleinen Leistungseinheiten als sogenannte Mikro-Kraft-Wärme-Kopplung (Mikro-KWK) in Ein- und Mehrfamilienhäusern die übliche Hausheizung und Warmwasserbereitung zu ersetzen und zusätzlich kostengünstig möglichst viel Strom zu erzeugen, der im Haus selbst und in den Elektrofahrzeugen der Hausbewohner verbraucht wird, oder gegen Vergütung in das öffentliche Stromnetz eingespeist werden kann. Aber auch als Arbeitsmaschinen finden solche Freikolben-Stirlingmotoren ein verstärktes Interesse als Tieftemperatur-Kältemaschinen (Kryokühler) für neue Anwendungen in der Supraleitung, wie zum Beispiel bei supraleitenden Windgeneratoren, Strombegrenzern, Transformatoren oder Starkstromtrassen.
  • Ein Verfahren zum Betrieb eines Freikolben-Stirlingmotors nach dem Oberbegriff des Anspruchs 1 sowie ein Freikolben-Stirlingmotor nach dem Oberbegriff des Anspruchs 8 sind von der Firma Microgen Engine Corporation bekannt und zum Beispiel in der Broschüre Ökofen „Pelletsheizungen“ beschrieben. Im Einsatz dieses Freikolben-Stirlingmotors handelt sich um Systeme, die in der Regel mit Erdgas betrieben werden und die notwendige Wärme für ein Einfamilienhaus bereitstellen, dabei aber nur sehr wenig Strom erzeugen können (max. 1 kW), sodass der elektrische Wirkungsgrad dieser Geräte, abhängig vom Gesamtwärmebedarf, entsprechend niedrig ist (3–12%). Dieser bekannte Freikolben-Stirlingmotor verwendet einen Verdränger, der direkt durch die aufgrund der im Stirlingprozess bedingten Druckschwankungen des Arbeitsgases angetrieben wird. Die Amplitude des Verdrängers wird hierbei durch den Strömungswiderstand des Arbeitsgases durch Erhitzer, Regenerator und Kühler bestimmt, die Phasenlage durch die Güte der Resonanz zwischen Verdränger und Arbeitskolben. Weder eine bestimmte Phasenverschiebung noch eine definiert veränderbare Amplitude, sowie notwendige präzise Umkehrpunkte des Verdrängers bei Vollausschlag ohne Kollisionen, lassen sich während des Betriebs einstellen. Die einzigen beiden Möglichkeiten, die Verdrängeramplitude zu verkleinern, wenn der Verdränger mit dem Erhitzerkopf kollidiert, ist bei diesem Freikolben-Stirlingmotor entweder die Erhitzerkopftemperatur abzusenken, was mit einem rapiden Wirkungsgradverlust einhergeht oder den Arbeitskolbenhub zu verkleinern, was mit einem rapiden Leistungsverlust einhergeht.
  • Zudem verwendet der bekannte Freikolben-Stirlingmotor passive Vibrationsdämpfer. Es handelt sich hierbei um eine auf Spiralfedern außen um das Motorgehäuse herum gelagerte ringförmige Masse, die durch die auf- und abwärts gehenden Vibrationen des Motorgehäuses gegenphasig zu Schwingungen angeregt wird und die Vibrationen 1. Ordnung dadurch, je nach Auslenkung, mehr oder weniger stark dämpft. Durch einen so auf Spiralfedern gelagerten Gegenschwinger ist ein Freikolben-Stirlingmotor nur in vertikaler Position betreibbar.
  • Für den wirtschaftlichen Einsatz und die massenhafte Verbreitung solcher stromerzeugenden Hausheizungen in Ein- und Mehrfamilienhäusern, für Erdgas, aber auch für heute attraktive regenerative Brennstoffe und Energiequellen, wie Bioerdgas, Holzpellets, Biokohlepellets und direktes konzentriertes Sonnenlicht, ist es zwingend erforderlich, dass während der Wärmeerzeugung ein möglichst hoher Stromanteil erzielt wird. Wünschenswert wären Anlagen, die, wie heutige Heizungen, klein, wartungsarm und leise sind und die zur Erzielung einer hohen Stromausbeute Freikolben-Stirlingmotoren verwenden, die wartungsfrei, vibrationsfrei und unhörbar sind, hohe Motorwirkungsgrade von 40% und mehr und eine hohe aber modulierbare elektrische Leistung (1,5–3 kW) bei der notwendigen Wärmebereitstellung (6–12 kW) für das Haus haben.
  • Aus der US 2008/0 295 511 A1 ist ein Freikolben-Stirlingmotor bekannt, der einen Verdränger und einen Arbeitskolben umfaßt. Der Arbeitskolben ist durch eine Federanordnung mit einem Magnetkäfig des Lineargenerators verbunden. Durch die Federkraft kann der Arbeitskolben-Hub auf den Stirlingprozess optimiert werden und so der Lineargenerator optimal zur Stromerzeugung genutzt werden.
  • Aus der DE 693 29 862 T2 ist eine Freikolben-Stirlingmaschine bekannt, bei der ein Federelement den Verdränger und den Arbeitskolben miteinander verbindet. Zur Veränderung der Federkonstante ist ein Steuerungssystem vorgesehen. Durch die Einflussnahme auf die Federkonstante wird das Verhältnis der Amplitude des Arbeitskolbens zum Verhältnis der Amplitude des Verdrängungskolbens beeinflusst. Hierbei ist eine einzelne Ansteuerung des Arbeitskolbens und des Verdrängerkolbens nicht vorgesehen.
  • Aus der US 4,649,283 A ist ein Freikolben-Stirlingmotor bekannt, mit dem Wechselstrom erzeugt werden kann. Der Freikolben-Stirlingmotor umfasst einen Verdränger, einen Arbeitskolben und einen Hilfskolben sowie außen an dem Gehäuse angebrachte Permanentmagnete zur Erzeugung von Wechselstrom. Der Hilfskolben und der Arbeitskolben sind über eine Feder verbunden, sodass der Hilfskolben durch den Arbeitskolben angesteuert wird. Eine direkte Ansteuerung von Verdränger, Arbeitskolben und Hilfskolben durch eine lineare elektrische Maschine ist nicht vorgesehen.
  • Aus der DE 10 2008 041 180 A1 ist ein Verfahren zum Betrieb einer Stirling-Kreislauf-Kühlmaschine als Freikolben-Stirling-Kreislaufmaschine bekannt. Die Freikolben-Stirling-Kreislaufmaschine besteht aus einem Verdränger und einem Kolben, welcher hin und her beweglich innerhalb des Zylinders angeordnet ist. Weiterhin ist ein elektronischer Antriebsmechanismus zum Hin- und Herbewegen des Kolbens vorgesehen. Der Verdrängerhub kann nur durch Änderung des Arbeitskolbenhubs verändert werden.
  • Aus der US 2013/0 042 607 A1 ist ein Verfahren zum Betrieb eines Freikolben-Stirlingmotors bekannt, der sowohl am Verdränger als auch am Arbeitskolben einen Linearantrieb vorsieht. Dadurch kann Verdränger und Arbeitskolben beeinflusst und/oder kontrolliert werden. Der Lineargenerator wird von einem Computer überwacht. Der Freikolben-Stirlingmotor arbeitet als Kraftmaschine oder als Kälte- bzw. Wärmepumpe.
  • Aufgabe der vorliegenden Erfindung
  • Der Erfindung liegt daher die Aufgabe zugrunde ein neuartiges Verfahren zum Betrieb eines Freikolben-Stirlingmotors mit höherem Wirkungsgrad sowie einen entsprechenden Freikolben-Stirlingmotor zur Verfügung zu stellen.
  • Lösung der Aufgabe
  • Die vorstehende Aufgabe wird bei dem Freikolben-Stirlingmotor gemäß dem Oberbegriff des Anspruchs 1 bzw. Anspruchs 8 durch die Merkmale des kennzeichnenden Teils von Anspruch 1 bzw. Anspruch 8 gelöst.
  • Zweckmäßige Ausgestaltungen der vorliegenden Erfindung werden in abhängigen Ansprüchen beansprucht.
  • Gemäß der vorliegenden Erfindung wird unter Zuhilfenahme einer elektrisch erzeugten Kraft die hin – und her erfolgende Bewegung von Verdränger, Arbeitskolben und Gegenschwinger beeinflusst und zwar vorzugsweise derart, dass der Verdränger und/oder Arbeitskolben während des Betriebs nicht aus der Mittellage driftet sondern in Letzterer verbleibt. Gemäß der Erfindung wird somit auf die durch die Arbeitsgasmasse bedingte Schwingung zusätzlich elektrisch Einfluss genommen. Gleichsam ist eine "elektrische Feder" vorgesehen, die entweder eine Bremsung oder eine Beschleunigung der Bewegung von Verdränger, Arbeitskolben und/oder Gegenschwinger bewirkt.
  • Der erfindungsgemäße Freikolben-Stirlingmotor ist dadurch gekennzeichnet, dass je eine lineare elektrische Maschine vorgesehen ist, die die Bewegung des Verdrängers, die Bewegung des Arbeitskolbens und die Bewegung des Gegenschwingers unterstützt und/oder kontrolliert.
  • Somit ist es möglich, dass eine exakte Bewegung des Verdrängers mit einer linear elektrischen Maschine bewerkstelligt bzw. kontrolliert, eine exakte Bewegung des Arbeitskolbens mit einer linear elektrischen Maschine bewerkstelligt bzw. kontrolliert und eine exakte Bewegung des Gegenschwingers mit einer linear elektrischen Maschine bewerkstelligt bzw. kontrolliert wird.
  • Dabei lassen sich verschiedene Betriebsarten/Bauformen unterscheiden, je nachdem welche Arbeitsfrequenz der Freikolben-Stirlingmotor in Bezug auf die Eigenfrequenz der natürlichen Masse-Federsysteme von Verdränger, Arbeitskolben und Gegenschwinger hat.
  • In einer a-resonanten Betriebsweise/Bauform ist keine bestimmte Arbeitsfrequenz oder Resonanzfrequenz von Verdränger, Arbeitskolben und Gegenschwinger vorgegeben. Alle Kräfte werden für die Beschleunigung der bewegten Teile überwiegend elektrisch aufgebracht und die Leistungsregelung des Freikolben-Stirlingmotors kann über die Frequenz, die Phasenlage und/oder den Hub erfolgen.
  • Die Verdrängerstange ist in der a-resonanten Betriebsweise/Bauform möglichst dünn, sodass nur ein Teil der zum Antrieb des Verdrängers notwendigen Leistung direkt aus dem Arbeitsgas kommt. Am Ende der Verdrängerstange greift ein elektrischer Linearantrieb an, der den anderen Teil der zum Antrieb des Verdrängers notwendigen Leistung beiträgt.
  • Die Mittellage des Arbeitskolbens wird im Betrieb durch die elektronisch regelbare Leistungsabgabe des Lineargenerators eingestellt, wobei der Lineargenerator so bemessen ist, dass er die, wegen der dünnen Verdrängerstange im Arbeitsgas zurückbleibende Leistung zusätzlich zur eigentlichen Stromerzeugung in elektrische Leistung umsetzen kann, die dann zum elektrischen Antrieb des Verdrängers zur Verfügung steht.
  • In der a-resonanten Betriebsweise/Bauart ist es wichtig, dass die bewegten Massen von Verdränger, Arbeitskolben und Gegenschwinger möglichst klein sind und nicht auf Federn gelagert sind, die die Arbeitsfrequenz bestimmen.
  • In der resonanten Betriebsweise/Bauart für Verdränger, Arbeitskolben und Gegenschwinger kommen die Kräfte für die Beschleunigung der bewegten Teile zum großen Teil aus eingebauten Federn, die zusammen mit der Masse der Teile Masse-Federsysteme bilden, die auf eine gemeinsame Resonanzfrequenz abgestimmt sind.
  • Hier kann die Leistungsregelung des Freikolben-Stirlingmotors nur über den Hub erfolgen.
  • Die Verdrängerstange kann so in ihrer Dicke dimensioniert sein, dass die zum Antrieb des Verdrängers notwendige Leistung direkt aus dem Arbeitsgas kommt und die elektrischen Kräfte zur Leistungsregelung nur die präzisen Umkehrpunkte und die richtige Mittellage des Verdrängers bewerkstelligen müssen.
  • Die Verdrängerstange kann aber auch so dick dimensioniert sein, dass neben der Leistung zum Antrieb des Verdrängers noch ein weiterer Teil der Leistung aus dem Arbeitsgas über die linear elektrische Maschine des Verdrängers abgegeben wird, sodass die linear elektrische Maschine des Arbeitskolbens entlastet wird. In diesem Fall arbeiten die beiden linear elektrischen Maschinen als Lineargeneratoren.
  • Zwischen der a-resonanten und der resonanten Betriebsweise/Bauart gibt es aber auch noch die Zwischenformen einer unterresonanten oder teilresonanten Betriebsweise/Bauart:
    In der unterresonanten Betriebsweise/Bauart legen eingebaute Federn die Resonanzfrequenz der bewegten Teile über der Arbeitsfrequenz des Freikolben-Stirlingmotors fest und die elektrischen Kräfte sorgen für eine unterresonante Auslenkung der bewegten Teile.
  • In der teilresonanten Betriebsweise/Bauart legen eingebaute Federn die Resonanzfrequenz der bewegten Teile zwischen einer gewünschten maximalen und minimalen Arbeitsfrequenz des Freikolben-Stirlingmotors fest und die elektrischen Kräfte der elektrischen Maschine(n) verstimmen die Resonanzfrequenz nur noch nach oben oder unten.
  • An der Masse des Gegenschwingers des erfindungsgemäßen Freikolben-Stirlingmotors greift ebenfalls ein elektrischer Linearantrieb an und löscht aktiv alle Vibrationen des Freikolben-Stirlingmotors aus.
  • In den Linearantrieben von Verdränger und Gegenschwinger und im Lineargenerator der am Arbeitskolben befestigt ist, sind Wegsensoren angebracht, die die jeweiligen momentanen Amplituden von Verdränger, Arbeitskolben und Gegenschwingermasse erfassen.
  • Der Kern der Erfindung liegt darin, dass in dem erfindungsgemäßen Freikolben-Stirlingmotor die Amplituden der schwingenden Teile, die Schwingungsformen und ihre ideale Phasenlage zueinander während des Betriebs präzise eingestellt und beliebig verändert werden können. Dies resultiert in einem hohen Wirkungsgrad, maximaler Leistung bei höchst möglicher Erhitzerkopftemperatur, einer schnellen Leistungsregelung ohne große Wirkungsgradverluste und einer vibrationsfreien lautlosen Maschine.
  • Beschreibung der Erfindung anhand von Ausführungsbeispielen der Erfindung Nachfolgend wird die Erfindung anhand von Zeichnungen näher erläutert. Es zeigen:
  • 1 eine zweckmäßige Ausgestaltung des erfindungsgemäßen Freikolben-Stirlingmotors mit Erhitzer im Längsschnitt sowie
  • 2 eine weitere zweckmäßige Ausgestaltung des erfindungsgemäßen Freikolben-Stirlingmotors mit Kaltkopf im Längsschnitt.
  • Der Freikolben-Stirlingmotor gemäß 1 umfasst einen Erhitzer 1 (in Form einzelner Erhitzerröhrchen), einen Regenerator 2, einen Kühler 3, einen Verdränger 4 sowie einen Arbeitskolben 5. Letzterer kann auf Tellerfedern 6 oder (nicht dargestellten) Magnetfedern gelagert sein, um seine Mittellage im Ruhezustand festzulegen. Die Bezugsziffer 7 bezeichnet einen Lineargenerator, der eine über den Arbeitskolben 5 und die Tellerfedern 6 bewegte Schwingspule 8 in einem feststehenden Magnettopf 9 umfasst. Bei Auslenkung aus der Mittellage wirkt auf seiner Oberseite das gesamte Arbeitsgasvolumen und auf seiner Rückseite das gesamte freie Pufferraumvolumen als Gasfeder, welche zusammen mit der bewegten Masse von Arbeitskolben 5 und der Masse der bewegten Schwingspule 8 die Arbeitsfrequenz des Stirlingmotors vorgibt. Die Arbeitsfrequenz ist die Eigenfrequenz dieses Masse-Federsystems. Sie ist abhängig von Arbeitsgasdruck, Arbeitsgastemperatur, Arbeitsgasart, Arbeitsgasvolumen, Puffervolumen, Arbeitskolbenquerschnittsfläche und der bewegten Masse.
  • Die Tellerfedern 6, auf denen der Arbeitskolben gelagert ist und die bei bewegter Schwingspule 8 auch als Stromzu- bzw. -abführungen dienen, bestimmen die Arbeitsfrequenz mit ihrer Federkonstante ebenfalls mit. Die durch die Tellerfedern 6 im Ruhezustand definierte Mittellage des Arbeitskolbens 5 verschiebt sich im Betrieb des Freikolben-Stirlingmotors, weil der Mitteldruck des Stirlingprozesses höher ist, als der Mitteldruck des Puffervolumens. Der zulässige Arbeitsbereich des Arbeitskolbens 5 wird bei den bekannten Freikolben-Stirlingmotoren durch gesteuertes Öffnen von Bypasskanälen zwischen Arbeitsvolumen und Puffervolumen geregelt. Die Einstellung einer präzisen dauerhaften Mittellage des Arbeitskolbens 5 ist jedoch nicht möglich.
  • Der Verdränger 4 ist über eine Verdrängerstange 10 ebenfalls auf Tellerfedern 11 gelagert, wodurch auch seine Mittellage im Ruhezustand festgelegt wird. Die Verdrängerstange 10 führt durch den Arbeitskolben 5 hindurch aus dem Arbeitsgasvolumen hinaus und erzeugt so während des sich ändernden Arbeitsgasdruckes eine der Querschnittsfläche der Verdrängerstange 10 und der momentanen Gasdruckdifferenz zwischen Arbeitsgasvolumen und Pufferraumvolumen entsprechende Kraft zur Bewegung des Verdrängers 4.
  • Die Federkonstante der Tellerfedern 11 des Verdrängers 4 sollte vorzugsweise so bemessen sein, dass die Tellerfedern zusammen mit der Masse des Verdrängers 4 und der Verdrängerstange 10 als zweites Masse-Feder-System die gleiche Eigenfrequenz hat, wie das oben beschriebene Masse-Feder-System des Arbeitskolbens 5. Dann sind beide Masse-Feder-Systeme in Resonanz und können mit der für den Stirlingprozess gewünschten 90°-Phasenverschiebung zueinander schwingen, wenn die genannten Abhängigkeiten genau austariert sind. Dies gelingt aber in bekannten Freikolben-Stirlingmotoren nicht über alle gewünschten Betriebszustände, sodass die gewünschte 90°-Phasenverschiebung wegläuft oder der Verdränger nicht die gewünschte Amplitude hat. Das Ergebnis ist eine kleinere Leistung und ein schlechterer Wirkungsgrad auch bei Teillast, weil man während des Betriebs keine Einwirkungsmöglichkeiten hat und weder eine bestimmte Phasenverschiebung noch eine gewünschte Amplitude oder präzise Umkehrpunkte bei Vollausschlag des Verdrängers 4 einstellen kann, wie eingangs bereits beschrieben.
  • Bei dem erfindungsgemäßen Freikolben-Stirlingmotor wird die Bewegung der bewegten Teile mit der Kraft der linear elektrischen Maschinen beeinflusst bzw. kontrolliert, sodass die gewünschte 90°-Phasenverschiebung bleibt und/oder der Verdränger 4 die gwünschte Amplitude behält, das heißt, dass diese Probleme vermieden werden können. Die Kraft, die durch die linearen elektrischen Maschinen erzeugt wird, bedingen eine Abbremsung oder Beschleunigung der bewegten Teile nach Art einer „elektrischen Feder“. Bei der Ausgestaltung des Freikolben-Stirlingmotors gemäß der Darstellung nach 1 sind neben der elektrischen Maschine in Form des Lineargenerators 7 des Arbeitskolbens 5 weitere elektrische Maschinen in Form des Lineargenerators/Linearaktuator 12 des Verdrängers 4 sowie des Linearaktuators 17 des Gegenschwingers 15 vorgesehen.
  • In den Linearantrieben 12, 17 von Verdränger 4 und Gegenschwinger 15 und im Lineargenerator 7, der am Arbeitskolben befestigt ist, sind Wegsensoren 20a20c angebracht, die die jeweiligen momentanen Amplituden von Verdränger 4, Arbeitskolben 5 und Gegenschwingermasse 15 erfassen und an die Steuerelektronik (nicht dargestellt) der linear elektrischen Maschinen 7, 12, 17 weitergeben.
  • Der erfindungsgemäße Freikolben-Stirlingmotor kann in unterschiedlichen Betriebsmodi betrieben werden.
  • In einer a-resonanten Betriebsweise/Bauform ist keine bestimmte Arbeitsfrequenz oder Resonanzfrequenz von Verdränger 4, Arbeitskolben 5 und Gegenschwinger 15 vorgegeben. Alle Kräfte für die Beschleunigung oder das Abbremsen der bewegten Teile werden durch die elektrischen Maschinen 7, 12 und/oder 17 überwiegend elektrisch aufgebracht. Die linear elektrischen Maschinen der bewegten Teile müssen dabei hohe Spitzenkräfte von zum Beispiel bis zu 5 kN mit Wirkungsgraden von zum Beispiel 95% und mehr bewerkstelligen, um möglichst wenig Blindstrom und ohmsche Verluste zu erzeugen. Dabei ist wichtig, dass die bewegten Massen von Verdränger 4, Arbeitskolben 5 und damit auch vom Gegenschwinger 15 möglichst klein sind und nicht auf mechanischen Federn gelagert sind, die die Arbeitsfrequenz bestimmen. Die Beschleunigungskräfte der bewegten Teile werden stattdessen sozusagen durch „elektronisch gesteuerte elektrische Federn“ im elektrischen Zwischenkreis realisiert, in dem zu jedem Zeitpunkt über die linear elektrischen Maschinen die erforderlichen Leistungen für die exakten Bewegungen der bewegten Teile zu- oder abgeführt werden.
  • Für alle bewegten Teile, außer der Masse des Gegenschwingers 15, werden zweckmäßigerweise Leichtbauwerkstoffe, wie zum Beispiel CFK, CFC und Titan eingesetzt. Die bewegten Wicklungen der linear elektrischen Maschinen sind aus Gewichtsgründen insbesondere aus Reinaluminium statt aus schwerem Kupfer. So kann die Leistungsregelung des Freikolben-Stirlingmotors beliebig variabel über die Frequenz, die Phasenlage oder den Hub erfolgen.
  • Die Verdrängerstange 10 ist in der a-resonanten Betriebsweise/Bauform bevorzugt möglichst dünn, sodass nur ein Teil der zum Antrieb des Verdrängers 4 notwendigen Leistung direkt aus dem Arbeitsgas kommt. Am Ende der Verdrängerstange 10 greift der elektrische Linearantrieb 12 an, hier als Tauchspulantrieb dargestellt, bestehend aus der Verdrängerschwingspule 13 und dem Verdrängermagnettopf 14, der hier beispielhaft konzentrisch im hohlen Zentrum des Magnettopfs 9 angeordnet ist und der den anderen Teil der zum Verdrängerantrieb notwendigen Leistung liefert, der indirekt auch aus dem Arbeitsgas kommt.
  • Der Lineargenerator 7 ist so bemessen, dass er die wegen der dünnen Verdrängerstange 10 im Arbeitsgas verbleibende Leistung zusätzlich zur eigentlichen Stromerzeugung in elektrische Leistung umsetzen kann, die dann zum elektrischen Antrieb des Verdrängers 4 über einen passenden Stromumrichter (nicht dargestellt) dem Linearantrieb 12 zur Verfügung steht.
  • Die Mittellage des Arbeitskolbens 5 wird im Betrieb durch die elektronisch regelbare Leistungsabgabe des Lineargenerators 7 eingestellt. Der Lineargenerator 7 ist insbesondere so bemessen, dass er die wegen der dünnen Verdrängerstange 10 im Arbeitsgas zurückbleibende Leistung zusätzlich zur eigentlichen Stromerzeugung in elektrische Leistung für den Verdrängerantrieb umsetzen kann.
  • In einer resonanten Betriebsweise/Bauart kommen die Kräfte für die Beschleunigung von Verdränger 4, Arbeitskolben 5 und Gegenschwinger 15 zum großen Teil aus den eingebauten Federn 6, 11, 16, die zusammen mit der Masse der bewegten Teile Masse-Federsysteme bilden, die auf eine gemeinsame Resonanzfrequenz abgestimmt sind. Die linear elektrischen Maschinen 7, 12 und 17 an Verdränger 4, Arbeitskolben 5 und Gegenschwinger 15 müssen hier nur so viel elektrische Leistung zu- oder abführen, dass die bewegten Teile die exakten gewünschten, weitgehend sinusförmigen, Bewegungen ausführen. Die linear elektrischen Maschinen 7, 12, 17 müssen hier nur Spitzenkräfte bis zum Beispiel 2 kN aufbringen. Wegen dieser kleineren zur Verfügung stehenden elektrischen Leistung und wegen der größeren Masse der bewegten Teile kann die Leistungsregelung des Freikolben-Stirlingmotors nur über den Hub von Verdränger 4 oder Arbeitskolben 5 erfolgen.
  • Die Verdrängerstange 10 sollte in der resonanten Betriebsweise mindestens so dick sein, dass die zum Antrieb des Verdrängers 4 notwendige Leistung direkt aus dem Arbeitsgas kommt und die elektrischen Kräfte nur die präzisen Umkehrpunkte und die richtige Mittellage des Verdrängers 4 bewerkstelligen müssen.
  • Die Verdrängerstange 10 kann aber auch so dick sein, dass neben der Leistung zum Antrieb des Verdrängers 4 noch ein weiterer Teil der Leistung aus dem Arbeitsgas über die linear elektrische Maschine 12 des Verdrängers 4 abgegeben wird, sodass die linear elektrische Maschine 7 des Arbeitskolbens 5 entlastet wird. In diesem Fall sind die beiden linear elektrischen Maschinen 7 und 12 Lineargeneratoren.
  • Zwischen der a-resonanten und der resonanten Betriebsweise/Bauform gibt es aber auch noch die Zwischenformen unterresonante und teilresonante Betriebsweise/Bauart:
    In der unterresonanten Betriebsweise/Bauform legen eingebaute Federn 6, 11, 16 die Resonanzfrequenz der bewegten Teile über der Arbeitsfrequenz des Freikolben-Stirlingmotors fest und die elektrischen Kräfte sorgen für eine unterresonante Auslenkung der zu bewegenden Teile.
  • In der teilresonanten Betriebsweise/Bauform legen eingebaute Federn 6, 11, 16 die Resonanzfrequenz der bewegten Teile zwischen die gewünschte maximale und minimale Arbeitsfrequenz des Freikolben-Stirlingmotors und die elektrischen Kräfte verstimmen die Resonanzfrequenz nur noch nach oben oder unten.
  • In allen beschriebenen Betriebsweisen/Bauformen wird die Mittellage des Arbeitskolbens 5 im Betrieb durch die elektronisch regelbare Leistungsabnahme des Lineargenerators 7 präzise eingestellt. Durch den elektrischen Antrieb des Verdrängers 4 ist eine präzise Verdrängersteuerung mit Vollausschlag ohne Kollisionen möglich, was zu maximaler Leistung und hohem Wirkungsgrad führt. Ebenso möglich ist eine schnelle Leistungsregelung über einen weiten Bereich durch Veränderung der Amplitude oder der Phasenlage des Verdrängers 4, was ein sehr gutes Teillastverhalten ergibt, weil die Erhitzertemperatur gegenüber dem Stand der Technik zur Leistungsregelung nicht abgesenkt werden muss.
  • Der Gegenschwinger 15 des erfindungsgemäßen Freikolben-Stiringmotors wird aktiv elektrisch betrieben, ist innerhalb des Motors angeordnet und besteht aus einer Masse die zwischen lageunabhängigen Tellerfedern 16 angeordnet ist und im Resonanzfall von den Vibrationen 1. Ordnung ebenfalls gegenphasig zum Schwingen angeregt wird. Die Masse 15 lässt sich aber zusätzlich mit dem Linearantrieb 17 anregen, hier dargestellt als bewegliche Schwingspule 18 und feststehendem Magnettopf 19. Ein auf dem Motorgehäuse befestigter Beschleunigungssensor (nicht dargestellt) erfasst aber neben den Vibrationen 1. Ordnung auch subharmonische Vibrationen. Durch diese zusätzliche elektrische Anregung und die elektronische Steuerung können die Vibrationen 1. Ordnung und die subharmonischen Schwingungen vollständig ausgelöscht werden. Das Resultat ist eine vibrationsfreie, lautlose Freikolben-Stirlingmaschine, die lageunabhängig, also auch liegend und über Kopf, betrieben werden kann, was in kompakten Biomassefeuerungen mit stationärer Wirbelschicht und in solaren Anwendungen mit der Sonne nachgeführten Parabolspiegeln zwingend notwendig ist.
  • Die Ausgestaltung nach 2 zeigt den erfindungsgemäßen Freikolben-Stirlingmotor als Kühleinrichtung, insbesondere als sogenannten Kryokühler. Hierzu weist der Freikolben-Stirlingmotor anstelle eines Erhitzers bzw. Erhitzerkopfs einen Kaltkopf 21 auf. Ansonsten unterscheidet sich die Konstruktion nicht von der Konstruktion gemäß der 1.
  • Bezugszeichenliste
  • 1
    Erhitzer
    2
    Regenerator
    3
    Kühler
    4
    Verdränger
    5
    Arbeitskolben
    6
    Tellerfedern Arbeitskolben
    7
    Lineargenerator
    8
    Schwingspule Lineargenerator
    9
    Magnettopf Lineargenerator
    10
    Verdrängerstange
    11
    Tellerfedern Verdränger
    12
    Linearantrieb Verdränger
    13
    Schwingspule Verdränger
    14
    Magnettopf Verdränger
    15
    Masse Gegenschwinger
    16
    Tellerfedern Gegenschwinger
    17
    Linearantrieb Gegenschwinger
    18
    Schwingspule Gegenschwinger
    19
    Magnettopf Gegenschwinger
    20a
    Wegsensor
    20b
    Wegsensor
    20c
    Wegsensor
    21
    Kaltkopf

Claims (18)

  1. Verfahren zum Betrieb eines Freikolben-Stirlingmotors mit einem Verdränger (4) sowie einem Arbeitskolben (5), wobei der Verdränger (4) sowie der Arbeitskolben (5) während des Betriebs linear hin- und herschwingen und ein Arbeitsgas abwechselnd erhitzt und abkühlt, wobei eine Leistungsregelung des Freikolben-Stirlingmotors (1) mittels elektrisch erzeugter Kraft erfolgt, die die Bewegung des Verdrängers (4) und/oder des Arbeitskolbens (5) beeinflusst oder kontrolliert, dadurch gekennzeichnet, dass für Verdränger (4), Arbeitskolben (5) und Gegenschwinger (15) je eine zugehörige lineare elektrische Maschine (7, 12 und 17) vorgesehen ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Leistungsregelung des Freikolben-Stirlingmotors (1) mittels elektrisch erzeugter Kraft über den Hub des Verdrängers (4) und/oder des Arbeitskolbens (5) erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Leistungsregelung des Freikolben-Stirlingmotors (1) mittels elektrisch erzeugter Kraft über die Frequenz des Verdrängers (4) und/oder des Arbeitskolbens (5) und/oder die Phasenlage von Arbeitskolben (5) zu Verdränger (4) erfolgt.
  4. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus der linearen Bewegung des Verdrängers (4) und/oder des Arbeitskolbens (5) und/oder des Gegenschwingers (15) die elektrische Kraft für die Leistungsregelung des Freikolben-Stirlingmotors (1) erzeugt wird.
  5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Rahmen der Leistungsregelung des Freikolben-Stirlingmotors die Mittellage des Verdrängers (4) und/oder des Arbeitskolbens (5) eingestellt wird.
  6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Freikolben-Stirlingmotor (1) in einer nicht-resonanten Betriebsweise betrieben wird.
  7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Freikolben-Stirlingmotor (1) in einer resonanten Betriebsweise betrieben wird.
  8. Freikolben-Stirlingmotor, insbesondere zum Betrieb eines Verfahrens nach mindestens einem der vorhergehenden Ansprüche, mit einem Erhitzer (1) oder Kaltkopf (21), einem Regenerator (2), einem Kühler (3), einem Verdränger (4) sowie einem Arbeitskolben (5), wobei Arbeitskolben (5) sowie Gegenschwinger (15) während des Betriebs linear hin- und herschwingen, und dadurch gekennzeichnet, dass für Verdränger (4), Arbeitskolben (5) und Gegenschwinger (15) je eine zugehörige lineare elektrische Maschine (7, 12 und 17) vorgesehen ist.
  9. Freikolben-Stirlingmotor nach Anspruch 8, dadurch gekennzeichnet, dass mindestens ein Wegsensor (20) vorgesehen ist, der die lineare Bewegung von Verdränger (4), Arbeitskolben (5) oder Gegenschwinger (15) erfasst und an eine Steuerelektronik der linearen elektrischen Maschinen (7, 12 oder 17) weitergibt.
  10. Freikolben-Stirlingmotor nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass am Verdränger (4) oder an der Verdrängerstange (10) als elektrische Maschine (12) ein elektrischer Linearantrieb vorgesehen ist.
  11. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass am Gegenschwinger (15) als elektrische Maschine (17) ein elektrischer Linearantrieb vorgesehen ist.
  12. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Mittellage des Arbeitskolbens (5) im Betrieb durch eine elektronisch regelbare Leistungsabgabe der als Lineargenerator ausgebildeten elektrischen Maschine (7) eingestellt wird, wobei die elektrische Maschine (7) so bemessen ist, dass sie die wegen der Ausgestaltung und/oder Dimensionierung der Verdrängerstange (10) im Arbeitsgas zurückbleibende Leistung zusätzlich zur eigentlichen Stromerzeugung in elektrische Leistung umsetzen kann, die zum elektrischen Antrieb des Verdrängers (4) zur Verfügung steht.
  13. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass Verdränger (4), Arbeitskolben (5) und/oder Gegenschwinger (15) nicht auf Federn gelagert sind.
  14. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass Verdränger (4), Arbeitskolben (5) und/oder Gegenschwinger (15) auf Federn (6, 11, 16) gelagert sind.
  15. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass die Verdrängerstange (10) derart ausgebildet und/oder dimensioniert ist, dass die zum Antrieb des Verdrängers (4) notwendige Leistung direkt aus dem Arbeitsgas kommt.
  16. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, dass die Verdrängerstange (10) derart ausgebildet und/oder dimensioniert ist, dass neben der Leistung zum Antrieb des Verdrängers (4) noch ein weiterer Teil der Leistung aus dem Arbeitsgas über die linear elektrische Maschine (12) des Verdrängers (4) abgegeben wird und die linear elektrische Maschine (7) des Arbeitskolbens (5) entlastet wird.
  17. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 12 und 14 bis 16, dadurch gekennzeichnet, dass eingebaute Federn (6, 11, 16) die Resonanzfrequenz der bewegten Teile über der Arbeitsfrequenz des Freikolben-Stirlingmotors festlegen und die elektrischen Kräfte für eine unterresonante Auslenkung der bewegten Teile sorgen.
  18. Freikolben-Stirlingmotor nach einem der Ansprüche 8 bis 12 und 14 bis 17, dadurch gekennzeichnet, dass eingebaute Federn (6, 11, 16) die Resonanzfrequenz der bewegten Teile zwischen die gewünschte maximale und minimale Arbeitsfrequenz des Freikolben-Stirlingmotors festlegen und die elektrischen Kräfte die Resonanzfrequenz nur noch nach oben oder unten verstimmen.
DE102014114609.3A 2014-10-08 2014-10-08 Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger Expired - Fee Related DE102014114609B3 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014114609.3A DE102014114609B3 (de) 2014-10-08 2014-10-08 Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger
PCT/EP2015/070484 WO2016055221A1 (de) 2014-10-08 2015-09-08 Freikolben-stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem verdränger, arbeitskolben und gegenschwinger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014114609.3A DE102014114609B3 (de) 2014-10-08 2014-10-08 Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger

Publications (1)

Publication Number Publication Date
DE102014114609B3 true DE102014114609B3 (de) 2015-11-19

Family

ID=54065883

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014114609.3A Expired - Fee Related DE102014114609B3 (de) 2014-10-08 2014-10-08 Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger

Country Status (2)

Country Link
DE (1) DE102014114609B3 (de)
WO (1) WO2016055221A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022093093A1 (en) * 2020-10-30 2022-05-05 Azelio Ab Alpha stirling engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649283A (en) * 1985-08-20 1987-03-10 Sunpower, Inc. Multi-phase linear alternator driven by free-piston Stirling engine
DE69329862T2 (de) * 1992-08-20 2001-08-23 Sunpower Inc Freikolben-stirlingmaschine mit veränderlicher federung
US20080295511A1 (en) * 2007-05-30 2008-12-04 Sunpower, Inc. Connection Of A Free-Piston Stirling Machine And A Load Or Prime Mover Permitting Differing Amplitudes Of Reciprocation
DE102008041076A1 (de) * 2007-08-09 2009-03-12 Global Cooling B.V. Resonanzausgleich des Status einer Freikolbenmaschine, die mit einem Linearmotor oder Wechselstromgenerator gekoppelt ist
DE102008041180A1 (de) * 2007-08-22 2009-05-07 Global Cooling B.V. Stirling-Kreislaufmaschine
US20130042607A1 (en) * 2011-08-16 2013-02-21 Global Cooling, Inc. Free-Piston Stirling Machine In An Opposed Piston Gamma Configuration Having Improved Stability, Efficiency And Control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434617A (en) * 1982-07-27 1984-03-06 Mechanical Technology Incorporated Start-up and control method and apparatus for resonant free piston Stirling engine
EP1103713A1 (de) * 1999-11-16 2001-05-30 BHKW Betreiber GmbH & Co. Anlagen KG Energiewandler und Verfahren zum Betrieb eines Energiewandlers
EP1101924A1 (de) * 1999-11-16 2001-05-23 BHKW Betreiber GmbH & Co. Anlagen KG Energiewandler und Verfahren zum Betrieb eines Energiewandlers
US6725670B2 (en) * 2002-04-10 2004-04-27 The Penn State Research Foundation Thermoacoustic device
GB2498378A (en) * 2012-01-12 2013-07-17 Isis Innovation Linear Stirling machine with expansion and compression pistons coupled by gas spring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649283A (en) * 1985-08-20 1987-03-10 Sunpower, Inc. Multi-phase linear alternator driven by free-piston Stirling engine
DE69329862T2 (de) * 1992-08-20 2001-08-23 Sunpower Inc Freikolben-stirlingmaschine mit veränderlicher federung
US20080295511A1 (en) * 2007-05-30 2008-12-04 Sunpower, Inc. Connection Of A Free-Piston Stirling Machine And A Load Or Prime Mover Permitting Differing Amplitudes Of Reciprocation
DE102008041076A1 (de) * 2007-08-09 2009-03-12 Global Cooling B.V. Resonanzausgleich des Status einer Freikolbenmaschine, die mit einem Linearmotor oder Wechselstromgenerator gekoppelt ist
DE102008041180A1 (de) * 2007-08-22 2009-05-07 Global Cooling B.V. Stirling-Kreislaufmaschine
US20130042607A1 (en) * 2011-08-16 2013-02-21 Global Cooling, Inc. Free-Piston Stirling Machine In An Opposed Piston Gamma Configuration Having Improved Stability, Efficiency And Control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022093093A1 (en) * 2020-10-30 2022-05-05 Azelio Ab Alpha stirling engine

Also Published As

Publication number Publication date
WO2016055221A1 (de) 2016-04-14

Similar Documents

Publication Publication Date Title
DE3709266C2 (de)
DE102008030633B4 (de) Verfahren zum Betreiben einer Freikolbenvorrichtung
DE10225007B4 (de) Vorrichtung und Verfahren zur Betriebssteuerung eines Kolbenverdichters
EP2224580B1 (de) Freikolbenvorrichtung mit elektrischem Lineartrieb
AT514221B1 (de) Druckluftspeicherkraftwerk mit Induktionspumpe
DE2352336A1 (de) Elektrischer generator, insbesondere fuer verbrennungsmaschinen
DE102007035914A1 (de) Freikolbenvorrichtung und Verfahren zur Steuerung und/oder Regelung einer Freikolbenvorrichtung
DE2807004C2 (de) Heißgaskolbenmaschine
DE4414257A1 (de) Verfahren zur Steuerung des Verdrängekolbens einer Freikolben-stirling-Maschine
WO2010139443A1 (de) Modularer thermoelektrischer wandler
EP2657497B1 (de) Thermoelektrischer Wandler mit verbessertem Wärmeüberträger
EP2473725A1 (de) Kolbenmaschine mit magnetischer lagerung des kolbens
DE60021863T2 (de) Verfahren und vorrichtung zum übersetzen einer mechanischen energie zwischen einer stirlingmachine und einem generator oder einem elektromotor
WO2017117620A1 (de) Druckluftspeicherkraftwerk
DE112010004186T5 (de) Schmiermittelfreie Freikolben-Stirlingmaschine reduzierter Masse mit hin- und her gehendem Kolben, antriebskoppelnd verbunden mit rotierendem elektromagnetischem Wandler, der sich rotatorisch schwingend bewegt
DE102018000824B4 (de) Vorrichtung zur Umsetzung von Verbrennungs- in Elektroenergie und Verbrennungsverfahren zum Betrieb eines Freikolbenmotors
DE102014114609B3 (de) Freikolben-Stirlingmotor mit elektrisch bewegtem und elektronisch gesteuertem Verdränger, Arbeitskolben und Gegenschwinger
EP3942172B1 (de) Stirlingmotor
DE4429602A1 (de) Synchronkolben-Stirlingmaschine
DE19614359C1 (de) Wärmekraftmaschine mit bewegtem Regenerator
DE102005016469A1 (de) Freikolbenmotor mit hydrostatischer und elektrischer Leistungsabgabe
EP3301287A1 (de) Doppelwirkende freikolben-stirling-kreislaufmaschine mit lineargenerator
DE102006056348A1 (de) Vorrichtung zur Umwandlung thermischer Energie in mechanische Bewegungsenergie
DE102010018654B4 (de) Zyklisch arbeitende Wärme-Kraftmaschine
DE102014001770A1 (de) Verbrennungskraftmaschine mit linearer elektrischer Führung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: STIPPL PATENTANWAELTE, DE

R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee