DE102014101154A1 - Optoelektronische Anordnung - Google Patents

Optoelektronische Anordnung Download PDF

Info

Publication number
DE102014101154A1
DE102014101154A1 DE102014101154.6A DE102014101154A DE102014101154A1 DE 102014101154 A1 DE102014101154 A1 DE 102014101154A1 DE 102014101154 A DE102014101154 A DE 102014101154A DE 102014101154 A1 DE102014101154 A1 DE 102014101154A1
Authority
DE
Germany
Prior art keywords
optoelectronic
sacrificial
section
sacrificial anode
corrodible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014101154.6A
Other languages
English (en)
Other versions
DE102014101154A8 (de
Inventor
Matthias Knörr
Matthias Goldbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102014101154.6A priority Critical patent/DE102014101154A1/de
Priority to PCT/EP2015/051784 priority patent/WO2015114041A1/de
Publication of DE102014101154A1 publication Critical patent/DE102014101154A1/de
Publication of DE102014101154A8 publication Critical patent/DE102014101154A8/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/16Electrodes characterised by the combination of the structure and the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)

Abstract

Eine optoelektronische Anordnung umfasst ein erstes Element und eine Opferanode. Das erste Element weist ein korrodierbares erstes Material auf. Die Opferanode weist ein zweites Material auf, das unedler als das erste Material ist. Das erste Element und die Opferanode sind elektrisch leitend miteinander verbunden.

Description

  • Die vorliegende Erfindung betrifft eine optoelektronische Anordnung gemäß Patentanspruch 1.
  • Optoelektronische Anordnungen, beispielsweise Leuchtdioden-Anordnungen, werden für verschiedene Beleuchtungsanwendungen genutzt. Dabei können die optoelektronischen Anordnungen korrosiven Gasen wie Schwefelwasserstoff oder Stickoxid ausgesetzt sein. Dies ist beispielsweise bei in Automobilen und an Straßen und in Tunneln eingesetzten optoelektronischen Anordnungen der Fall. Es ist bekannt, dass derartige korrosive Gase metallische Komponenten der optoelektronischen Anordnungen angreifen können. Besonders anfällig sind Komponenten, die Silber aufweisen, beispielsweise silberhaltige Leitkleber und Silberbeschichtungen.
  • Eine Aufgabe der vorliegenden Erfindung besteht darin, eine optoelektronische Anordnung bereitzustellen. Diese Aufgabe wird durch eine optoelektronische Anordnung mit den Merkmalen des Anspruchs 1 gelöst. In den abhängigen Ansprüchen sind verschiedene Weiterbildungen angegeben.
  • Eine optoelektronische Anordnung umfasst ein erstes Element und eine Opferanode. Das erste Element weist ein korrodierbares erstes Material auf. Die Opferanode weist ein zweites Material auf, das unedler als das erste Material ist. Das erste Element und die Opferanode sind elektrisch leitend miteinander verbunden. Vorteilhafterweise bewirkt die Opferanode dieser optoelektronischen Anordnung einen Korrosionsschutz des ersten Elements. Durch die Opferanode wird eine Korrosion des ersten Elements beispielsweise auch unter dem Einfluss korrosiver Gase verhindert. Dadurch eignet sich die optoelektronische Anordnung vorteilhafterweise für einen Einsatz in Umgebungen, die korrosiven Medien, etwa korrosiven Gasen wie Stickoxiden und Schwefelwasserstoff, ausgesetzt sind. Beispielsweise eignet sich die optoelektronische Anordnung für einen Einsatz in Kraftfahrzeugen und an Straßen und in Straßentunneln. Da das erste Element der optoelektronischen Anordnung durch die Opferanode vor einer Korrosion geschützt wird, kann das erste Element vorteilhafterweise ein korrodierbares Material wie Silber aufweisen, welches kostengünstig erhältlich ist und für viele Einsatzbereiche besonders geeignete Eigenschaften aufweist.
  • In einer Ausführungsform der optoelektronischen Anordnung weist das erste Material Ag, Cu oder Ni auf. Das zweite Material weist dabei Cu, Al, Mg, Zn, Ti, V, Fe, Sn, Ni oder In auf. Dabei sollte stets sichergestellt sein, dass das zweite Material unedler als das erste Material, in der elektrochemischen Spannungsreihe (Redoxreihe) also negativer, ist. Vorteilhafterweise ermöglicht es der Schutz des ersten Elements durch die Opferanode, das erste Material des ersten Elements für einen konkreten Anwendungsfall optimal zu wählen, ohne dabei eine mögliche Korrosionsanfälligkeit des ersten Materials berücksichtigen zu müssen.
  • In einer Ausführungsform der optoelektronischen Anordnung weist diese eine weitere Opferanode auf. Dabei sind die Opferanode und die weitere Opferanode der optoelektronischen Anordnung über einen optoelektronischen Halbleiterchip elektrisch miteinander verbunden. Der optoelektronische Halbleiterchip kann beispielsweise ein Leuchtdiodenchip (LED-Chip) sein. Vorteilhafterweise werden dadurch mit beiden Polen des optoelektronischen Halbleiterchips der optoelektronischen Anordnung verbundene Elemente der optoelektronischen Anordnung durch die Opferanode und die weitere Opferanode vor einer Korrosion geschützt.
  • In einer Ausführungsform der optoelektronischen Anordnung umfasst diese ein ein Gehäusematerial aufweisendes Gehäuse und einen zumindest teilweise in das Gehäusematerial eingebetteten Träger. Dabei wird die Opferanode durch einen an dem Träger angeordneten Opferabschnitt gebildet. Die optoelektronische Anordnung kann dabei als optoelektronisches Bauelement (Package) ausgebildet sein. Vorteilhafterweise ergibt sich durch die Ausbildung der Opferanode als an dem Träger angeordneter Opferabschnitt eine besonders kompakte Gestaltung der optoelektronischen Anordnung.
  • In einer Ausführungsform der optoelektronischen Anordnung weist der Träger das zweite Material auf. Dabei ist der Träger in dem Opferabschnitt unbeschichtet. Vorteilhafterweise wird die Opferanode bei dieser optoelektronischen Anordnung durch das zweite Material des Trägers selbst gebildet. Dadurch ist die optoelektronische Anordnung vorteilhafterweise besonders einfach und kostengünstig herstellbar.
  • In einer Ausführungsform der optoelektronischen Anordnung ist der Träger in dem Opferabschnitt mit dem zweiten Material beschichtet. Vorteilhafterweise kann die optoelektronische Anordnung auch in dieser Ausführungsform einfach und kostengünstig hergestellt werden.
  • In einer Ausführungsform der optoelektronischen Anordnung ist das zweite Material in dem Opferabschnitt in pastöser Form auf dem Träger angeordnet. Das zweite Material kann dabei beispielsweise durch Nadeldosieren (Dispensen) auf dem Träger angeordnet werden. Vorteilhafterweise ermöglicht auch dies eine einfache und kostengünstige Herstellung der optoelektronischen Anordnung. Außerdem kann dabei vorteilhafterweise eine große Menge des zweiten Materials vorhanden sein, wodurch die Opferanode eine lange Lebensdauer aufweisen kann.
  • In einer Ausführungsform der optoelektronischen Anordnung weist der Träger eine Vorderseite auf, auf der ein optoelektronischer Halbleiterchip angeordnet ist. Dabei ist auch der Opferabschnitt an der Vorderseite des Trägers angeordnet. Vorteilhafterweise können dadurch an der Vorderseite des Trägers zur Verfügung stehende Flächenbereiche zur Ausbildung des Opferabschnitts genutzt sein.
  • In einer Ausführungsform der optoelektronischen Anordnung weist das Gehäuse eine erste Kavität auf. Dabei ist der optoelektronische Halbleiterchip in der ersten Kavität angeordnet. Auch der Opferabschnitt ist in der ersten Kavität angeordnet. Vorteilhafterweise ermöglicht dies eine kompakte Gestaltung der optoelektronischen Anordnung.
  • In einer Ausführungsform der optoelektronischen Anordnung weist das Gehäuse eine erste Kavität und eine zweite Kavität auf. Dabei ist der optoelektronische Halbleiterchip in der ersten Kavität angeordnet. Der Opferabschnitt ist in der zweiten Kavität angeordnet. Vorteilhafterweise muss dadurch in der ersten Kavität kein Platz für den Opferabschnitt der Opferanode reserviert sein. Dies ermöglicht es beispielsweise, die erste Kavität vollständig reflektierend auszubilden.
  • In einer Ausführungsform der optoelektronischen Anordnung weist der Träger eine Vorderseite und eine der Vorderseite gegenüberliegende Rückseite auf. Dabei ist auf der Vorderseite ein optoelektronischer Halbleiterchip angeordnet. Der Opferabschnitt ist an der Rückseite angeordnet. Vorteilhafterweise werden dadurch für den Opferabschnitt der Opferanode an der Rückseite des Trägers zur Verfügung stehende Volumina genutzt.
  • In einer Ausführungsform der optoelektronischen Anordnung weist der Träger eine Vorderseite und eine an die Vorderseite anschließende Seitenfläche auf. Dabei ist auf der Vorderseite ein optoelektronischer Halbleiterchip angeordnet. Der Opferabschnitt ist an der Seitenfläche angeordnet. Der an der Seitenfläche des Trägers angeordnete Opferabschnitt der Opferanode kann dabei beispielsweise während des Vereinzelns der optoelektronischen Anordnung in einem Sägeprozess freigelegt werden. Dadurch ist vorteilhafterweise kein gesonderter Prozessschritt erforderlich, um den Opferabschnitt der Opferanode mit der Atmosphäre in Kontakt zu bringen.
  • In einer Ausführungsform der optoelektronischen Anordnung ist der Opferabschnitt zumindest teilweise durch das Gehäusematerial bedeckt. Dabei kann das Gehäusematerial ein Elektrolyt bilden, das einen Ionentransport zwischen dem ersten Material des ersten Elements und dem zweiten Material der Opferanode bewirkt. Vorteilhafterweise ist der Opferabschnitt der Opferanode bei dieser optoelektronischen Anordnung von außen nicht sichtbar, wodurch sich ein gefälliges äußeres Erscheinungsbild der optoelektronischen Anordnung ergibt.
  • In einer Ausführungsform der optoelektronischen Anordnung ist das erste Element ein mit dem ersten Material beschichteter Abschnitt des Trägers. Beispielsweise kann das erste Element durch einen spiegelnd beschichteten Abschnitt des Trägers gebildet sein. Das erste Material kann dabei beispielsweise Silber aufweisen. Vorteilhafterweise wird durch die Opferanode der optoelektronischen Anordnung eine Korrosion der Spiegelfläche verhindert, wodurch auch eine Verschlechterung der Reflexionseigenschaften der Spiegelfläche verhindert wird.
  • In einer Ausführungsform der optoelektronischen Anordnung ist das erste Element ein Leitkleber. Der Leitkleber kann beispielsweise zur Befestigung eines optoelektronischen Halbleiterchips der optoelektronischen Anordnung dienen. Der Leitkleber kann beispielsweise Silber aufweisen. Vorteilhafterweise wird durch die Opferanode der optoelektronischen Anordnung eine Korrosion des Leitklebers und eine damit einhergehende Erhöhung eines thermischen Widerstands des Leitklebers und eine Reduzierung einer Festigkeit des Leitklebers verhindert.
  • In einer Ausführungsform der optoelektronischen Anordnung weist diese eine Leiterplatte auf. Dabei ist mindestens ein optoelektronisches Bauelement auf der Leiterplatte angeordnet. Die Opferanode ist ebenfalls an der Leiterplatte angeordnet. Vorteilhafterweise können bei dieser optoelektronischen Anordnung auch optoelektronische Bauelemente ohne in das jeweilige optoelektronische Bauelement integrierte Opferanoden vor einer Beschädigung durch Korrosion geschützt sein.
  • In einer Ausführungsform der optoelektronischen Anordnung weist diese einen Kühlkörper zur Kühlung mindestens eines optoelektronischen Bauelements der optoelektronischen Anordnung auf. Dabei ist die Opferanode auf dem Kühlkörper angeordnet. Vorteilhafterweise können auch bei dieser optoelektronischen Anordnung optoelektronische Bauelemente ohne integrierte Opferanoden vor einer Beschädigung durch Korrosion geschützt sein.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen in jeweils schematisierter Darstellung
  • 1 eine geschnittene Seitenansicht eines ersten optoelektronischen Bauelements;
  • 2 eine Aufsicht auf das erste optoelektronische Bauelement;
  • 3 eine Aufsicht auf Leiterrahmenabschnitte des ersten optoelektronischen Bauelements;
  • 4 eine Aufsicht auf ein zweites optoelektronisches Bauelement;
  • 5 eine Aufsicht auf Leiterrahmenabschnitte des zweiten optoelektronischen Bauelements;
  • 6 eine Aufsicht auf ein drittes optoelektronisches Bauelement;
  • 7 eine Aufsicht auf Leiterrahmenabschnitte des dritten optoelektronischen Bauelements;
  • 8 eine Aufsicht auf ein viertes optoelektronisches Bauelement;
  • 9 eine Aufsicht auf Leiterrahmenabschnitte des vierten optoelektronischen Bauelements;
  • 10 eine rückseitige Ansicht des vierten optoelektronischen Bauelements;
  • 11 eine Aufsicht auf Rückseiten der Leiterrahmenabschnitte des vierten optoelektronischen Bauelements;
  • 12 eine Aufsicht auf ein fünftes optoelektronisches Bauelement;
  • 13 eine Seitenansicht des fünften optoelektronischen Bauelements;
  • 14 eine Aufsicht auf ein sechstes optoelektronisches Bauelement;
  • 15 eine Aufsicht auf Leiterrahmenabschnitte des sechsten optoelektronischen Bauelements;
  • 16 eine Aufsicht auf eine optoelektronische Bauelementeanordnung; und
  • 17 eine Seitenansicht einer weiteren optoelektronischen Bauelementeanordnung.
  • 1 zeigt eine schematische geschnittene Seitenansicht eines ersten optoelektronischen Bauelements 10. 2 zeigt eine schematische Aufsicht auf das erste optoelektronische Bauelement 10. Das erste optoelektronische Bauelement 10 kann beispielsweise ein Leuchtdioden-Bauelement (LED-Bauelement) sein. Das erste optoelektronische Bauelement 10 kann aber auch ein Laser-Bauelement, ein Lichtsensor oder ein anderes optoelektronisches Bauelement sein. Das erste optoelektronische Bauelement 10 kann auch als Package bezeichnet werden.
  • Das erste optoelektronische Bauelement 10 weist einen ersten Leiterrahmenabschnitt 100 und einen zweiten Leiterrahmenabschnitt 200 auf. Der erste Leiterrahmenabschnitt 100 weist eine Vorderseite 101 und eine der Vorderseite 101 gegenüberliegende Rückseite 102 auf. Der zweite Leiterrahmenabschnitt 200 weist eine Vorderseite 201 und eine der Vorderseite 201 gegenüberliegende Rückseite 202 auf. 3 zeigt eine schematische Aufsicht auf die Vorderseiten 101, 201 der Leiterrahmenabschnitte 100, 200.
  • Die Leiterrahmenabschnitte 100, 200 weisen jeweils ein elektrisch leitendes Material auf, bevorzugt ein Metall. Beispielsweise können der erste Leiterrahmenabschnitt 100 und der zweite Leiterrahmenabschnitt 200 Cu aufweisen. Der erste Leiterrahmenabschnitt 100 und der zweite Leiterrahmenabschnitt 200 sind voneinander beabstandet und elektrisch gegeneinander isoliert.
  • Der erste Leiterrahmenabschnitt 100 und der zweite Leiterrahmenabschnitt 200 des ersten optoelektronischen Bauelements 10 sind in ein Gehäuse 300 des ersten optoelektronischen Bauelements 10 eingebettet. Das Gehäuse 300 weist ein elektrisch isolierendes Gehäusematerial 303 auf, das beispielsweise ein Kunststoffmaterial, etwa ein Epoxidharz, ein Silikon oder eine Keramik, sein kann. Das Gehäuse 300 kann beispielsweise durch einen Formprozess (Moldprozess) hergestellt sein. Dabei werden der erste Leiterrahmenabschnitt 100 und der zweite Leiterrahmenabschnitt 200 bevorzugt bereits während der Herstellung des Gehäuses 300 in das Gehäusematerial 303 des Gehäuses 300 eingebettet.
  • Das Gehäuse 300 weist eine Oberseite 301 und eine der Oberseite 301 gegenüberliegende Unterseite 302 auf. An der Unterseite 302 des Gehäuses 300 sind Teile der Rückseite 102 des ersten Leiterrahmenabschnitts 100 und Teile der Rückseite 202 des zweiten Leiterrahmenabschnitts 200 zugänglich und bilden dort elektrische Anschlussflächen des ersten optoelektronischen Bauelements 10. Die an der Unterseite 302 des Gehäuses 300 freiliegenden Teile der Rückseiten 102, 202 der Leiterrahmenabschnitte 100, 200 können beispielsweise für eine Oberflächenmontage geeignete Lötkontaktflächen bilden.
  • An seiner Oberseite 301 weist das Gehäuse 300 eine erste Kavität 310 und eine zweite Kavität 320 auf. In der ersten Kavität 310 des Gehäuses 300 ist ein Teil der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 zugänglich. In der zweiten Kavität 320 des Gehäuses 300 ist ein Teil der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 zugänglich.
  • In der ersten Kavität 310 des Gehäuses 300 ist ein optoelektronischer Halbleiterchip 400 angeordnet. Der optoelektronische Halbleiterchip 400 kann beispielsweise ein Leuchtdiodenchip (LED-Chip), ein Laser-Chip, eine Photodiode oder ein anderer optoelektronischer Halbleiterchip sein. Der optoelektronische Halbleiterchip 400 weist eine Oberseite 401 und eine der Oberseite 401 gegenüberliegende Unterseite 402 auf. Die Unterseite 402 des optoelektronischen Halbleiterchips 400 ist mittels eines elektrisch leitenden Befestigungselements 410 derart an der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 befestigt, dass eine elektrisch leitende Verbindung zwischen einer an der Unterseite 402 des optoelektronischen Halbleiterchips 400 angeordneten elektrischen Kontaktfläche des optoelektronischen Halbleiterchips 400 und dem ersten Leiterrahmenabschnitt 100 besteht. Eine an der Oberseite 401 des optoelektronischen Halbleiterchips 400 angeordnete weitere elektrische Kontaktfläche des optoelektronischen Halbleiterchips 400 ist mittels eines Bonddrahts 420 elektrisch leitend mit dem in der zweiten Kavität 320 des Gehäuses 300 zugänglichen Teil der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 verbunden.
  • Die Oberseite 401 des optoelektronischen Halbleiterchips 400 bildet eine Strahlungsdurchtrittsfläche des optoelektronischen Halbleiterchips 400. Im Betrieb des ersten optoelektronischen Bauelements 10 wird an der Oberseite 401 des optoelektronischen Halbleiterchips 400 elektromagnetische Strahlung emittiert oder absorbiert.
  • Über der Oberseite 401 des optoelektronischen Halbleiterchips 400 ist ein Konverterelement 430 angeordnet. In 2 ist das Konverterelement 430 der Übersichtlichkeit halber nicht dargestellt. Das Konverterelement 430 ist dazu vorgesehen, eine Wellenlänge einer durch den optoelektronischen Halbleiterchip 400 emittierten oder absorbierten elektromagnetischen Strahlung zu konvertieren. Beispielsweise kann das Konverterelement 430 dazu ausgebildet sein, durch den optoelektronischen Halbleiterchip 400 emittierte elektromagnetische Strahlung mit einer Wellenlänge aus dem blauen oder ultravioletten Spektralbereich in weißes Licht zu konvertieren. Das Konverterelement 430 kann eingebettete wellenlängenkonvertierende Partikel umfassen, die beispielsweise einen organischen Leuchtstoff, einen anorganischen Leuchtstoff und/oder Quantenpunkte aufweisen. Das Konverterelement 430 kann auch entfallen.
  • Der optoelektronische Halbleiterchip 400, das Konverterelement 430 und zumindest Teile des Bonddrahts 420 sind in einen Verguss 440 eingebettet, der die erste Kavität 310 des Gehäuses 300 ausfüllt. In der Darstellung der 2 ist der Verguss 440 der Übersichtlichkeit halber nicht gezeigt. Der Verguss 440 kann beispielsweise ein Silikon aufweisen. Der Verguss 440 dient einem Schutz des optoelektronischen Halbleiterchips 400, des Konverterelements 430 und des Bonddrahts 420 vor einer Beschädigung durch äußere Einwirkungen. Der Verguss 440 kann auch entfallen.
  • Das Befestigungselement 410 zur Befestigung des optoelektronischen Halbleiterchips 400 an der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 in der ersten Kavität 310 des Gehäuses 300 kann beispielsweise als Leitkleber ausgebildet sein. Das Befestigungselement 410 kann ein korrodierbares Material 411 aufweisen, beispielsweise Silber.
  • Das korrodierbare Material 411 des Befestigungselements 410 könnte unter dem Einfluss eines korrosiven Mediums, beispielsweise eines korrosiven Gases wie Schwefelwasserstoff oder Stickoxid, korrodieren. Beispielsweise könnte in dem korrodierbaren Material 411 des Befestigungselements 410 enthaltenes Silber unter dem Einfluss von Schwefelwasserstoff zu Silbersulfid korrodieren. In diesem Fall könnte das Befestigungselement 410 eine schwarze Farbe annehmen, was das optische Erscheinungsbild des ersten optoelektronischen Bauelements 10 nachteilig beeinflussen würde. Außerdem könnte sich durch die Korrosion des korrodierbaren Materials 411 des Befestigungselements 410 mechanische und thermische Eigenschaften des Befestigungselements 410 nachteilig verändern. Insbesondere könnte durch eine Korrosion des korrodierbaren Materials 411 des Befestigungselements 410 ein thermischer Widerstand des Befestigungselements 410 erhöht und eine Festigkeit der Anbindung des optoelektronischen Halbleiterchips 400 an die Vorderseite 101 des ersten Leiterrahmenabschnitts 100 reduziert werden. Dadurch könnte sich die Lebensdauer des ersten optoelektronischen Bauelements 10 reduzieren.
  • Der erste Leiterrahmenabschnitt 100 des ersten optoelektronischen Bauelements 10 kann ein erstes korrodierbares Element 110 aufweisen, das seinerseits ein erstes korrodierbares Material 111 aufweist. Das erste korrodierbare Material 111 ist ein Material, das unter dem Einfluss eines korrosiven Mediums, etwa unter dem Einfluss eines korrosiven Gases wie Schwefelwasserstoff oder Stickoxid, korrodieren kann. Das erste korrodierbare Material 111 kann beispielsweise Silber aufweisen.
  • Das erste korrodierbare Element 110 kann beispielsweise durch eine an der Vorderseite 101 und/oder der Rückseite 102 angeordnete Beschichtung des ersten Leiterrahmenabschnitts 100 oder durch den ersten Leiterrahmenabschnitt 100 selbst gebildet sein. Falls das erste korrodierbare Element 110 durch eine Beschichtung des ersten Leiterrahmenabschnitts 100 mit dem ersten korrodierbaren Material 111 gebildet ist, kann das erste korrodierbare Element 110 dazu dienen, eine optische Reflektivität des ersten Leiterrahmenabschnitts 100 zu erhöhen.
  • Würde das erste korrodierbare Material 111 des ersten korrodierbaren Elements 110 korrodieren, beispielsweise durch eine Bildung von Silbersulfid, so würde die Reflektivität des ersten Leiterrahmenabschnitts 100 reduziert. Außerdem könnte im Fall einer Korrosion des ersten korrodierbaren Materials 111 des ersten korrodierbaren Elements 110 eine Anhaftung des Vergusses 440 und/oder anderer Komponenten des ersten optoelektronischen Bauelements 10 reduziert werden.
  • Um eine Korrosion des ersten korrodierbaren Materials 111 des ersten korrodierbaren Elements 110 und/oder eine Korrosion des korrodierbaren Materials 411 des Befestigungselements 410 zu verhindern, weist das erste optoelektronische Bauelement 10 eine erste Opferanode 120 auf. Die erste Opferanode 120 ist elektrisch leitend mit dem ersten korrodierbaren Element 110 und mit dem Befestigungselement 410 verbunden.
  • Die erste Opferanode 120 wird durch einen ersten Opferabschnitt 121 gebildet, der an dem in der ersten Kavität 310 zugänglichen Teil der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 angeordnet ist. Der erste Opferabschnitt 121 der ersten Opferanode 120 weist ein erstes Opfermaterial 122 auf. Im in 1 bis 3 dargestellten Beispiel wird der erste Opferabschnitt 121 der ersten Opferanode 120 durch mehrere voneinander getrennte Flächenabschnitte der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 gebildet. Die Vorderseite 101 des ersten Leiterrahmenabschnitts 100 kann in dem ersten Opferabschnitt 121 der ersten Opferanode 120 mit dem ersten Opfermaterial 122 beschichtet sein. Der erste Leiterrahmenabschnitt 100 kann jedoch auch selbst das erste Opfermaterial 122 aufweisen, welches in diesem Fall im Bereich des ersten Opferabschnitts 121 der ersten Opferanode 120 freiliegt. Der erste Leiterrahmenabschnitt 100 kann in dem ersten Opferabschnitt 121 der ersten Opferanode 120 auch gezielt mit dem ersten Opfermaterial 122 versetzt sein.
  • Das erste Opfermaterial 122 ist unedler als das erste korrodierbare Material 111 des ersten korrodierbaren Elements 110 und als das korrodierbare Material 411 des Befestigungselements 410. Dies bedeutet, dass das erste Opfermaterial 122 der ersten Opferanode 120 in der elektrochemischen Spannungsreihe (Redoxreihe) negativer ist als das erste korrodierbare Material 111 des ersten korrodierbaren Elements 110 und als das korrodierbare Material 411 des Befestigungselements 410. Dadurch wird unter dem Einfluss eines korrosiven Mediums anstelle des ersten korrodierbaren Materials 111 des ersten korrodierbaren Elements 110 und anstelle des korrodierbaren Materials 411 des Befestigungselements 410 das erste Opfermaterial 122 der ersten Opferanode 120 korrodiert. Als Elektrolyt kann dabei beispielsweise eine in umgebender Luft enthaltene Feuchtigkeit, der Verguss 440 und/oder das Gehäusematerial 303 des Gehäuses 300 dienen. Durch die Korrosion des ersten Opfermaterials 122 der ersten Opferanode 120 wird eine Korrosion des ersten korrodierbaren Materials 111 des ersten korrodierbaren Elements 110 und eine Korrosion des korrodierbaren Materials 411 des Befestigungselements 410 verhindert. Das erste korrodierbare Element 110 und das Befestigungselement 410 werden also durch die erste Opferanode 120 geschützt.
  • Der zweite Leiterrahmenabschnitt 200 weist ein zweites korrodierbares Element 210 auf, das ein zweites korrodierbares Material 211 aufweist. Das zweite korrodierbare Element 210 kann beispielsweise durch eine Beschichtung des zweiten Leiterrahmenabschnitts 200 oder durch einen an der Vorderseite 201 und/oder der Rückseite 202 freiliegenden Abschnitt des zweiten Leiterrahmenabschnitts 200 selbst gebildet sein.
  • Um eine Korrosion des zweiten korrodierbaren Materials 211 des zweiten korrodierbaren Elements 210 zu verhindern, weist der zweite Leiterrahmenabschnitt 200 eine zweite Opferanode 220 auf, die elektrisch leitend mit dem zweiten korrodierbaren Element 210 verbunden ist. Die zweite Opferanode 220 wird durch einen zweiten Opferabschnitt 221 gebildet, der in einem in der zweiten Kavität 320 des Gehäuses 300 zugänglichen Teil der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 an der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 angeordnet ist.
  • Die zweite Opferanode 220 weist ein zweites Opfermaterial 222 auf, das unedler als das zweite korrodierbare Material 211 des zweiten korrodierbaren Elements 210 ist. Das zweite Opfermaterial 222 der zweiten Opferanode 220 kann das gleiche Material sein wie das erste Opfermaterial 122 der ersten Opferanode 120. Die zweite Opferanode 220 kann durch eine Beschichtung der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 mit dem zweiten Opfermaterial 222 im zweiten Opferabschnitt 221 gebildet sein. Der zweite Leiterrahmenabschnitt 200 kann aber auch selbst das zweite Opfermaterial 222 aufweisen und/oder gezielt mit dem zweiten Opfermaterial 222 versetzt sein. In diesem Fall wird die zweite Opferanode 220 durch einen im zweiten Opferabschnitt 221 freiliegenden Teil des zweiten Leiterrahmenabschnitts 200 gebildet.
  • Die erste Opferanode 120 des ersten optoelektronischen Bauelements 10 kann zum Schutz anderer oder weiterer Elemente als dem ersten korrodierbaren Element 110 und dem Befestigungselement 410 vor Korrosion dienen. Dabei müssen die anderen oder weiteren zu schützenden korrodierbaren Elemente elektrisch leitend mit der ersten Opferanode 120 verbunden sein. Die zweite Opferanode 220 kann zum Schutz anderer oder weiterer korrodierbarer Elemente als dem zweiten korrodierbaren Element 210 vor Korrosion dienen. Die anderen oder weiteren zu schützenden Elemente müssen dabei elektrisch leitend mit der zweiten Opferanode 220 verbunden sein. Wahlweise kann entweder die erste Opferanode 120 oder die zweite Opferanode 220 entfallen.
  • Das erste korrodierbare Material 111 des ersten korrodierbaren Elements 110, das korrodierbare Material 411 des Befestigungselements 410 und das zweite korrodierbare Material 211 des zweiten korrodierbaren Elements 210 können beispielsweise Ag, Cu oder Ni aufweisen. Das erste Opfermaterial 122 der ersten Opferanode 120 und das zweite Opfermaterial 222 der zweiten Opferanode 220 können beispielsweise Cu, Al, Mg, Zn, Ti, V, Fe, Sn, Ni oder In aufweisen. Dabei muss das Opfermaterial 122, 222 jeder Opferanode 120, 220 unedler sein als das korrodierbare Material 111, 411, 211 des durch die jeweilige Opferanode 120, 220 zu schützenden korrodierbaren Elements 110, 410, 210.
  • Der in 1 bis 3 dargestellte Aufbau des ersten optoelektronischen Bauelements 10 mit den in das Gehäusematerial 303 des Gehäuses 300 eingebetteten Leiterrahmenabschnitten 100, 200 ist lediglich beispielhaft zu verstehen. Das erste optoelektronische Bauelement 10 könnte anstelle der Leiterrahmenabschnitte 100, 200 auch einen keramischen Träger, einen als Platine ausgebildeten Träger oder einen anderen Träger aufweisen.
  • Anhand der 4 bis 15 werden nachfolgend weitere optoelektronische Bauelemente erläutert, die jeweils nur geringe Unterschiede zu dem ersten optoelektronischen Bauelement 10 aufweisen. Für gleiche und gleich wirkende Komponenten werden in 4 bis 15 dieselben Bezugszeichen verwendet wie in 1 bis 3. Die folgende Beschreibung konzentriert sich auf die Abweichungen zwischen dem ersten optoelektronischen Bauelement 10 und den weiteren optoelektronischen Bauelementen. Ähnliche oder entsprechende Teile werden nicht erneut detailliert beschrieben. Es ist möglich, die nachfolgend anhand der 4 bis 15 beschriebenen Merkmale in anderer Zusammenstellung miteinander zu kombinieren.
  • 4 zeigt eine schematische Aufsicht auf ein zweites optoelektronisches Bauelement 20. 5 zeigt eine schematische Aufsicht auf die Leiterrahmenabschnitte 100, 200 des zweiten optoelektronischen Bauelements 20. Das zweite optoelektronische Bauelement 20 unterscheidet sich von dem ersten optoelektronischen Bauelement 10 dadurch, dass das Gehäuse 300 an seiner Oberseite 301 zusätzlich zu der ersten Kavität 310 und der zweiten Kavität 320 eine dritte Kavität 330 und eine vierte Kavität 340 aufweist. In der dritten Kavität 330 des Gehäuses 300 ist der die erste Opferanode 120 bildende erste Opferabschnitt 121 der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 zugänglich. In der vierten Kavität 340 des Gehäuses 300 ist der die zweite Opferanode 220 bildende zweite Opferabschnitt 221 der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 zugänglich.
  • Der erste Opferabschnitt 121 der ersten Opferanode 120 und der zweite Opferabschnitt 221 der zweiten Opferanode 220 sind bei dem zweiten optoelektronischen Bauelement 20 ausgebildet wie bei dem ersten optoelektronischen Bauelement 10. Insbesondere ist die erste Opferanode 120 elektrisch leitend mit dem ersten korrodierbaren Element 110 und mit dem Befestigungselement 410 verbunden. Die zweite Opferanode 220 ist elektrisch leitend mit dem zweiten korrodierbaren Element 210 verbunden.
  • Dadurch, dass der die erste Opferanode 120 bildende erste Opferabschnitt 121 bei dem zweiten optoelektronischen Bauelement 20 in der dritten Kavität 330 und nicht in der ersten Kavität 310 angeordnet ist, kann der gesamte in der ersten Kavität 310 freiliegende Teil der Vorderseite 110 des ersten Leiterrahmenabschnitts 100 bei dem zweiten optoelektronischen Bauelement 20 vorteilhafterweise optisch reflektierend beschichtet sein.
  • 6 zeigt eine schematische Aufsicht auf ein drittes optoelektronisches Bauelement 30. 7 zeigt eine schematische Aufsicht auf die Leiterrahmenabschnitte 100, 200 des dritten optoelektronischen Bauelements 30. Bei dem dritten optoelektronischen Bauelement 30 liegt der die erste Opferanode 120 bildende erste Opferabschnitt 121 der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 nicht in der ersten Kavität 310 des Gehäuses 300 frei, sondern ist durch das Gehäusematerial 303 des Gehäuses 300 bedeckt. Entsprechend liegt auch der die zweite Opferanode 220 bildende zweite Opferabschnitt 221 der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 nicht in der zweiten Kavität 320 des Gehäuses 300 frei, sondern ist durch das Gehäusematerial 303 des Gehäuses 300 bedeckt. Davon abgesehen sind die erste Opferanode 120 und die zweite Opferanode 220 bei dem dritten optoelektronischen Bauelement 30 ausgebildet wie bei dem ersten optoelektronischen Bauelement 10.
  • Dadurch, dass die erste Opferanode 120 und die zweite Opferanode 220 bei dem dritten optoelektronischen Bauelement 30 durch das Gehäusematerial 303 des Gehäuses 300 abgedeckt sind, führt eine durch Korrosion der ersten Opferanode 120 und der zweiten Opferanode 220 verursachte optische Veränderung der ersten Opferanode 120 und der zweiten Opferanode 220 bei dem dritten optoelektronischen Bauelement 30 vorteilhafterweise nicht zu einer optischen Beeinträchtigung des dritten optoelektronischen Bauelements 30.
  • 8 zeigt eine schematische Aufsicht auf ein viertes optoelektronisches Bauelement 40. 9 zeigt eine schematische Aufsicht auf die Leiterrahmenabschnitte 100, 200 des vierten optoelektronischen Bauelements 40. 10 zeigt eine schematische rückwärtige Ansicht des vierten optoelektronischen Bauelements 40, in der die Unterseite 302 des Gehäuses 300 und die Rückseiten 102, 202 der Leiterrahmenabschnitte 100, 200 sichtbar sind. 11 zeigt eine schematische rückwärtige Ansicht der Leiterrahmenabschnitte 100, 200 des vierten optoelektronischen Bauelements 40, in der die Rückseiten 102, 202 der Leiterrahmenabschnitte 100, 200 sichtbar sind.
  • Das vierte optoelektronische Bauelement 40 unterscheidet sich von dem ersten optoelektronischen Bauelement 10 dadurch, dass der die erste Opferanode 120 bildende erste Opferabschnitt 121 an der Rückseite 102 des ersten Leiterrahmenabschnitts 100 angeordnet ist. Entsprechend ist auch der die zweite Opferanode 220 bildende zweite Opferabschnitt 221 an der Rückseite 202 des zweiten Leiterrahmenabschnitts 200 angeordnet.
  • Der erste Opferabschnitt 121 und der zweite Opferabschnitt 221 liegen an den Rückseiten 102, 202 der Leiterrahmenabschnitte 100, 200 frei, sind also nicht durch das Gehäusematerial 303 des Gehäuses 300 bedeckt. Es wäre aber auch möglich, die Opferabschnitte 121, 221 an den Rückseiten 102, 202 der Leiterrahmenabschnitte 100, 200 durch das Gehäusematerial 303 des Gehäuses 300 zu bedecken. Im Übrigen sind die erste Opferanode 120 und die zweite Opferanode 220 bei dem vierten optoelektronischen Bauelement 40 wie bei dem ersten optoelektronischen Bauelement 10 ausgebildet.
  • 12 zeigt eine schematische Aufsicht auf ein fünftes optoelektronisches Bauelement 50. 13 zeigt eine schematische Seitenansicht des fünften optoelektronischen Bauelements 50. In der in 13 dargestellten Seitenansicht ist eine sich von der Oberseite 301 des Gehäuses 300 zu der Unterseite 302 des Gehäuses 300 erstreckende Seitenfläche des Gehäuses 300 des fünften optoelektronischen Bauelements 50 sichtbar. An der Seitenfläche des Gehäuses 300 liegen eine Seitenfläche 103 des ersten Leiterrahmenabschnitts 100 und eine Seitenfläche 203 des zweiten Leiterrahmenabschnitts 200 frei. Die Seitenflächen 103, 203 der Leiterrahmenabschnitte 100, 200 des fünften optoelektronischen Bauelements 50 können beispielsweise während eines Vereinzelns des fünften optoelektronischen Bauelements 50 durch einen Sägeprozess freigelegt worden sein.
  • Im Unterschied zu dem ersten optoelektronischen Bauelement 10 ist der die erste Opferanode 120 bildende erste Opferabschnitt 121 bei dem fünften optoelektronischen Bauelement 50 an der Seitenfläche 103 des ersten Leiterrahmenabschnitts 100 angeordnet. Entsprechend ist der die zweite Opferanode 220 bildende zweite Opferabschnitt 221 an der Seitenfläche 203 des zweiten Leiterrahmenabschnitts 200 angeordnet. Davon abgesehen sind die erste Opferanode 120 mit dem ersten Opferabschnitt 121 und die zweite Opferanode 220 mit dem zweiten Opferabschnitt 221 bei dem fünften optoelektronischen Bauelement 50 ausgebildet wie bei dem ersten optoelektronischen Bauelement 10.
  • 14 zeigt eine schematische Aufsicht auf ein sechstes optoelektronisches Bauelement 60. 15 zeigt eine schematische Aufsicht auf die Leiterrahmenabschnitte 100, 200 des sechsten optoelektronischen Bauelements 60. Wie bei dem zweiten optoelektronischen Bauelement 20 weist das Gehäuse 300 auch bei dem sechsten optoelektronischen Bauelement 60 an seiner Oberseite 301 eine dritte Kavität 330 und eine vierte Kavität 340 auf. Der die erste Opferanode 120 bildende erste Opferabschnitt 121 ist an einem in der dritten Kavität 330 des Gehäuses 300 zugänglichen Teil der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 angeordnet. Der die zweite Opferanode 220 bildende zweite Opferabschnitt 221 ist an einem in der vierten Kavität 340 zugänglichen Teil der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 angeordnet.
  • Bei dem sechsten optoelektronischen Bauelement 60 ist die erste Opferanode 120 allerdings nicht durch eine Beschichtung der Vorderseite 101 des ersten Leiterrahmenabschnitts 100 mit dem ersten Opfermaterial 122 und auch nicht durch einen das erste Opfermaterial 122 aufweisenden freiliegenden Teil des ersten Leiterrahmenabschnitts 100 gebildet. Entsprechend ist auch die zweite Opferanode 220 nicht durch eine Beschichtung der Vorderseite 201 des zweiten Leiterrahmenabschnitts 200 mit dem zweiten Opfermaterial 222 und auch nicht durch einen das zweite Opfermaterial 222 aufweisenden und freiliegenden Teil des zweiten Leiterrahmenabschnitts 200 gebildet. Stattdessen ist das erste Opfermaterial 122 bei dem sechsten optoelektronischen Bauelement 60 als pastöses Material in der dritten Kavität 330 über dem ersten Opferabschnitt 121 angeordnet, um die erste Opferanode 120 zu bilden. Entsprechend ist das zweite Opfermaterial 222 in der vierten Kavität 340 als pastöses Material über dem zweiten Opferabschnitt 221 angeordnet, um die zweite Opferanode 220 zu bilden.
  • Das pastöse erste Opfermaterial 122 und das pastöse zweite Opfermaterial 222 können beispielsweise durch Nadeldosieren (Dispensen) in den Kavitäten 330, 340 angeordnet worden sein. Vorteilhafterweise ist es dadurch möglich, dass die erste Opferanode 120 eine vergleichsweise große Menge des ersten Opfermaterials 122 aufweist. Entsprechend kann auch die zweite Opferanode 220 eine vergleichsweise große Menge des zweiten Opfermaterials 222 aufweisen.
  • 16 zeigt eine schematische Darstellung einer optoelektronischen Bauelementeanordnung 500. Die optoelektronische Bauelementeanordnung 500 kann beispielsweise eine Leuchtdioden-Anordnung sein. Die optoelektronische Bauelementeanordnung 500 kann für einen Einsatz in einem Kraftfahrzeug oder an einer Straße oder in einem Tunnel vorgesehen sein.
  • Die optoelektronische Bauelementeanordnung 500 weist eine Leiterplatte 510 auf. Auf einer Oberseite der Leiterplatte 510 ist eine Mehrzahl optoelektronischer Bauelemente 520 angeordnet. Die optoelektronischen Bauelemente 520 sind mittels auf der Leiterplatte 510 angeordneter Leiterbahnen 511 in einer elektrischen Reihenschaltung miteinander verschaltet. Die optoelektronischen Bauelemente 520 können auch als Packages bezeichnet werden.
  • Jedes optoelektronische Bauelement 520 weist mindestens einen optoelektronischen Halbleiterchip 521 auf, der beispielsweise als Leuchtdiodenchip, als Laserchip oder als Fotosensor ausgebildet sein kann.
  • Ferner weist jedes optoelektronische Bauelement 520 ein erstes korrodierbares Element 522 und ein zweites korrodierbares Element 524 auf. Das erste korrodierbare Element 522 jedes optoelektronischen Bauelements 520 weist ein erstes korrodierbares Material 523 auf. Das zweite korrodierbare Element 524 jedes optoelektronischen Bauelements 520 weist ein zweites korrodierbares Material 525 auf.
  • Die optoelektronischen Bauelemente 520 können wie das erste optoelektronische Bauelement 10 ausgebildet sein. Allerdings weisen die optoelektronischen Bauelemente 520 keine Opferanoden 120, 220 zum Schutz der korrodierbaren Elemente 522, 524 auf.
  • Stattdessen sind bei der optoelektronischen Bauelementeanordnung 500 auf der Leiterplatte 510 mehrere Opferanoden angeordnet. Eine erste Opferanode 530, die ein erstes Opfermaterial 531 aufweist, ist elektrisch leitend mit einem ersten Abschnitt der Leiterbahn 511 an einem ersten Ende der Reihenschaltung von optoelektronischen Halbleiterchips 521 verbunden. Eine zweite Opferanode 540, die ein zweites Opfermaterial 541 aufweist, ist elektrisch leitend mit einem zweiten Abschnitt der Leiterbahn 511 an einem zweiten Längsende der Reihenschaltung von optoelektronischen Halbleiterchips 521 verbunden. Jeder zwischen zwei optoelektronischen Halbleiterchips 521 der Reihenschaltung von optoelektronischen Halbleiterchips 521 angeordnete Abschnitt der Leiterbahn 511 ist elektrisch leitend mit je einer weiteren Opferanode 550 verbunden, die ein weiteres Opfermaterial 551 aufweist.
  • Damit ist jedes korrodierbare Element 522, 524 jedes optoelektronischen Halbleiterchips 521 der optoelektronischen Bauelementeanordnung 500 derart unmittelbar elektrisch leitend mit einer der Opferanoden 530, 540, 550 verbunden, dass sich das jedes korrodierbare Element 522, 524 und die jeweilige Opferanode 530, 540, 550 auf gleichem elektrischen Potential befinden. Damit ist jedes korrodierbare Element 522, 524 durch die jeweils zugeordnete Opferanode 530, 540, 550 vor einer Korrosion geschützt.
  • Die Opfermaterialien 531, 541, 551 der Opferanoden 530, 540, 550 sind jeweils unedler als die korrodierbaren Materialien 523, 525 der korrodierbaren Elemente 522, 524. Die Opfermaterialien 531, 541, 551 der Opferanoden 530, 540, 550 können ausgebildet sein wie die Opfermaterialien 122, 222 der Opferanoden 120, 220 des ersten optoelektronischen Bauelements 10 der 1 bis 3. Die korrodierbaren Materialien 523, 525 der korrodierbaren Elemente 522, 524 können ausgebildet sein wie die korrodierbaren Materialien 111, 211, 411 der korrodierbaren Elemente 110, 210, 410 des ersten optoelektronischen Bauelements 10 der 1 bis 3.
  • 17 zeigt eine schematische geschnittene Seitenansicht einer optoelektronischen Bauelementeanordnung 600. Die optoelektronische Bauelementeanordnung 600 kann beispielsweise eine Leuchtdiodenanordnung sein. Die optoelektronische Bauelementeanordnung 600 kann beispielsweise für einen Einsatz in einem Kraftfahrzeug, an einer Straße oder in einem Straßentunnel vorgesehen sein.
  • Die optoelektronische Bauelementeanordnung 600 weist eine Leiterplatte 610 auf. Die Leiterplatte 610 ist auf einem Kühlkörper 613 angeordnet. Die Leiterplatte 610 weist eine Mehrzahl von Metallisierungen 611 auf, die sich jeweils von einer Oberseite der Leiterplatte 610 durch die Leiterplatte 610 bis zu einer Unterseite der Leiterplatte 610 erstrecken und elektrisch und thermisch leitend mit dem Kühlkörper 613 verbunden sind. An der Oberseite der Leiterplatte 610 ist jede Metallisierung 611 der Leiterplatte 610 über eine Leitverbindung 612 elektrisch leitend mit je einem optoelektronischen Bauelement 620 verbunden. Die optoelektronischen Bauelemente 620 sind somit in einer Parallelschaltung angeordnet.
  • Die optoelektronischen Bauelemente 620 der optoelektronischen Bauelementeanordnung 600 können jeweils wie die optoelektronischen Bauelemente 520 der optoelektronischen Bauelementeanordnung 500 der 16 ausgebildet sein. Insbesondere weist jedes optoelektronische Bauelement 620 der optoelektronischen Bauelementeanordnung 600 mindestens einen optoelektronischen Halbleiterchip auf. Außerdem weist jedes optoelektronische Bauelement 620 der optoelektronischen Bauelementeanordnung 600 mindestens ein korrodierbares Element mit einem korrodierbaren Material auf. Das korrodierbare Element ist dabei über die Leitverbindung 612 und die Metallisierung 611 derart elektrisch leitend mit dem Kühlkörper 613 verbunden, dass sich der Kühlkörper 613 und das korrodierbare Element auf einem gemeinsamen Potential befinden.
  • Zum Schutz der korrodierbaren Elemente der optoelektronischen Bauelemente 620 der optoelektronischen Bauelementeanordnung 600 weist der Kühlkörper 613 der optoelektronischen Bauelementeanordnung 600 eine Opferanode 630 mit einem Opfermaterial 631 auf. Die Opferanode 630 ist derart elektrisch leitend mit dem Kühlkörper 613 verbunden, dass sich die Opferanode 630 auf dem gleichen elektrischen Potential befindet wie die korrodierbaren Elemente der optoelektronischen Bauelemente 620 der optoelektronischen Bauelementeanordnung 600.
  • Das Opfermaterial 631 ist unedler als das korrodierbare Material der korrodierbaren Elemente der optoelektronischen Bauelemente 620. Das Opfermaterial 631 kann beispielsweise wie die Opfermaterialien 122, 222, 411 des ersten optoelektronischen Bauelements 10 ausgebildet sein. Das korrodierbare Material der korrodierbaren Elemente der optoelektronischen Bauelemente 620 der optoelektronischen Bauelementeanordnung 600 kann wie die korrodierbaren Materialien 111, 211, 411 des ersten optoelektronischen Bauelements 10 der 1 bis 3 ausgebildet sein.
  • Die optoelektronischen Bauelemente 620 der optoelektronischen Bauelementeanordnung 600 können weitere korrodierbare Elemente aufweisen, die sich auf anderen elektrischen Potentialen als die bisher genannten korrodierbaren Elemente der optoelektronischen Bauelemente 620 befinden. In diesem Fall kann die optoelektronische Bauelementeanordnung 600 weitere Opferanoden aufweisen, die sich auf gemeinsamem Potential mit den weiteren korrodierbaren Elementen befinden.
  • Die Erfindung wurde anhand der bevorzugten Ausführungsbeispiele näher illustriert und beschrieben. Dennoch ist die Erfindung nicht auf die offenbarten Beispiele eingeschränkt. Vielmehr können hieraus andere Variationen vom Fachmann abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 10
    erstes optoelektronisches Bauelement
    20
    zweites optoelektronisches Bauelement
    30
    drittes optoelektronisches Bauelement
    40
    viertes optoelektronisches Bauelement
    50
    fünftes optoelektronisches Bauelement
    60
    sechstes optoelektronisches Bauelement
    100
    erster Leiterrahmenabschnitt
    101
    Vorderseite
    102
    Rückseite
    103
    Seitenfläche
    110
    erstes korrodierbares Element
    111
    erstes korrodierbares Material
    120
    erste Opferanode
    121
    erster Opferabschnitt
    122
    erstes Opfermaterial
    200
    zweiter Leiterrahmenabschnitt
    201
    Vorderseite
    202
    Rückseite
    203
    Seitenfläche
    210
    zweites korrodierbares Element
    211
    zweites korrodierbares Material
    220
    zweite Opferanode
    221
    zweiter Opferabschnitt
    222
    zweites Opfermaterial
    300
    Gehäuse
    301
    Oberseite
    302
    Unterseite
    303
    Gehäusematerial
    310
    ersten Kavität
    320
    zweite Kavität
    330
    dritte Kavität
    340
    vierte Kavität
    400
    optoelektronischer Halbleiterchip
    401
    Oberseite
    402
    Unterseite
    410
    Befestigungselement
    411
    korrodierbares Material
    420
    Bonddraht
    430
    Konverterelement
    440
    Verguss
    500
    optoelektronische Bauelementeanordnung
    510
    Leiterplatte
    511
    Leiterbahn
    520
    optoelektronisches Bauelement
    521
    optoelektronischer Halbleiterchip
    522
    erstes korrodierbares Element
    523
    erstes korrodierbares Material
    524
    zweites korrodierbares Element
    525
    zweites korrodierbares Material
    530
    erste Opferanode
    531
    erstes Opfermaterial
    540
    zweite Opferanode
    541
    zweites Opfermaterial
    550
    weitere Opferanode
    551
    weiteres Opfermaterial
    600
    optoelektronische Bauelementeanordnung
    610
    Leiterplatte
    611
    Metallisierung
    612
    Leitverbindung
    613
    Kühlkörper
    620
    optoelektronisches Bauelement
    630
    Opferanode
    631
    Opfermaterial

Claims (17)

  1. Optoelektronische Anordnung (10, 20, 30, 40, 50, 60, 500, 600) mit einem ersten Element (110, 410, 522) und einer Opferanode (120, 530, 630), wobei das erste Element (110, 410, 522) ein korrodierbares erstes Material (111, 411, 523) aufweist, wobei die Opferanode (120, 530, 630) ein zweites Material (122, 531, 631) aufweist, das unedler als das erste Material (111, 411, 523) ist, wobei das erste Element (110, 410, 522) und die Opferanode elektrisch leitend miteinander verbunden sind.
  2. Optoelektronische Anordnung (10, 20, 30, 40, 50, 60, 500, 600) gemäß Anspruch 1, wobei das erste Material (111, 411, 523) Ag, Cu oder Ni aufweist, wobei das zweite Material (122, 531, 631) Cu, Al, Mg, Zn, Ti, V, Fe, Sn, Ni oder In aufweist.
  3. Optoelektronische Anordnung (10, 20, 30, 40, 50, 60, 500) gemäß einem der vorhergehenden Ansprüche, wobei die optoelektronische Anordnung (10, 20, 30, 40, 50, 60, 500) eine weitere Opferanode (220, 540, 550) aufweist, wobei die Opferanode (120, 530, 630) und die weitere Opferanode (220, 540, 550) über einen optoelektronischen Halbleiterchip (400, 521) elektrisch miteinander verbunden sind.
  4. Optoelektronische Anordnung (10, 20, 30, 40, 50, 60) gemäß einem der vorhergehenden Ansprüche, wobei die optoelektronische Anordnung (10, 20, 30, 40, 50, 60) ein ein Gehäusematerial (303) aufweisendes Gehäuses (300) und einen zumindest teilweise in das Gehäusematerial (303) eingebetteten Träger (100) umfasst, wobei die Opferanode (120) durch einen an dem Träger (100) angeordneten Opferabschnitt (121) gebildet wird.
  5. Optoelektronische Anordnung (10, 20, 30, 40, 50) gemäß Anspruch 4, wobei der Träger (100) das zweite Material (122) aufweist, wobei der Träger (100) in dem Opferabschnitt (121) unbeschichtet ist.
  6. Optoelektronische Anordnung (10, 20, 30, 40, 50) gemäß Anspruch 4, wobei der Träger (100) in dem Opferabschnitt (121) mit dem zweiten Material (122) beschichtet ist.
  7. Optoelektronische Anordnung (60) gemäß Anspruch 4, wobei das zweite Material (122) in dem Opferabschnitt (121) in pastöser Form auf dem Träger (100) angeordnet ist.
  8. Optoelektronische Anordnung (10, 20, 30, 60) gemäß einem der Ansprüche 4 bis 7, wobei der Träger (100) eine Vorderseite (101) aufweist, wobei auf der Vorderseite (101) ein optoelektronischer Halbleiterchip (400) angeordnet ist, wobei der Opferabschnitt (121) an der Vorderseite (101) angeordnet ist.
  9. Optoelektronische Anordnung (10) gemäß Anspruch 8, wobei das Gehäuse (300) eine erste Kavität (310) aufweist, wobei der optoelektronische Halbleiterchip (400) in der ersten Kavität (310) angeordnet ist, wobei der Opferabschnitt (121) in der ersten Kavität (310) angeordnet ist.
  10. Optoelektronische Anordnung (20, 60) gemäß Anspruch 8, wobei das Gehäuse (300) eine erste Kavität (310) und eine zweite Kavität (320) aufweist, wobei der optoelektronischer Halbleiterchip (400) in der ersten Kavität (310) angeordnet ist, wobei der Opferabschnitt (121) in der zweiten Kavität (320) angeordnet ist.
  11. Optoelektronische Anordnung (40) gemäß einem der Ansprüche 4 bis 7, wobei der Träger (100) eine Vorderseite (101) und eine der Vorderseite (101) gegenüberliegende Rückseite (102) aufweist, wobei auf der Vorderseite (101) ein optoelektronischer Halbleiterchip (400) angeordnet ist, wobei der Opferabschnitt (121) an der Rückseite (102) angeordnet ist.
  12. Optoelektronische Anordnung (50) gemäß einem der Ansprüche 4 bis 7, wobei der Träger (100) eine Vorderseite (101) und eine an die Vorderseite (101) anschließende Seitenfläche (103) aufweist, wobei auf der Vorderseite (101) ein optoelektronischer Halbleiterchip (400) angeordnet ist, wobei der Opferabschnitt (121) an der Seitenfläche (103) angeordnet ist.
  13. Optoelektronische Anordnung (30) gemäß einem der Ansprüche 4 bis 12, wobei der Opferabschnitt (121) zumindest teilweise durch das Gehäusematerial (303) bedeckt ist.
  14. Optoelektronische Anordnung (10, 20, 30, 40, 50, 60) gemäß einem der Ansprüche 4 bis 13, wobei das erste Element (110) ein mit dem ersten Material (111) beschichteter Abschnitt des Trägers (100) ist.
  15. Optoelektronische Anordnung (10, 20, 30, 40, 50, 60) gemäß einem der Ansprüche 1 bis 13, wobei das erste Element (410, 522) ein Leitkleber ist.
  16. Optoelektronische Anordnung (500) gemäß einem der Ansprüche 1 bis 3, wobei die optoelektronische Anordnung (500) eine Leiterplatte (510) aufweist, wobei mindestens ein optoelektronisches Bauelement (520) auf der Leiterplatte (510) angeordnet ist, wobei die Opferanode (530) auf der Leiterplatte (510) angeordnet ist.
  17. Optoelektronische Anordnung (600) gemäß einem der Ansprüche 1 bis 3, wobei die optoelektronische Anordnung (600) einen Kühlkörper (613) zur Kühlung mindestens eines optoelektronischen Bauelements (620) der optoelektronischen Anordnung (600) aufweist, wobei die Opferanode (630) auf dem Kühlkörper (613) angeordnet ist.
DE102014101154.6A 2014-01-30 2014-01-30 Optoelektronische Anordnung Withdrawn DE102014101154A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014101154.6A DE102014101154A1 (de) 2014-01-30 2014-01-30 Optoelektronische Anordnung
PCT/EP2015/051784 WO2015114041A1 (de) 2014-01-30 2015-01-29 Optoelektronische anordnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014101154.6A DE102014101154A1 (de) 2014-01-30 2014-01-30 Optoelektronische Anordnung

Publications (2)

Publication Number Publication Date
DE102014101154A1 true DE102014101154A1 (de) 2015-07-30
DE102014101154A8 DE102014101154A8 (de) 2015-10-22

Family

ID=52434808

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014101154.6A Withdrawn DE102014101154A1 (de) 2014-01-30 2014-01-30 Optoelektronische Anordnung

Country Status (2)

Country Link
DE (1) DE102014101154A1 (de)
WO (1) WO2015114041A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198656A1 (de) * 2016-05-18 2017-11-23 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines optoelektronischen bauteils und optoelektronisches bauteil
DE102018110954A1 (de) * 2018-05-07 2019-11-07 Optics Balzers Ag Lift-Off Verfahren mittels Jetten

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079517A1 (en) * 2000-12-22 2002-06-27 Hyung-Jun Kim Semiconductor device capable of preventing corrosion of metal wires from CMP (chemical mechanical polishing) process
US20080122081A1 (en) * 2006-11-23 2008-05-29 Samsung Electronics Co., Ltd. Method of fabricating electronic device having sacrificial anode, and electronic device fabricated by the same
US20110121326A1 (en) * 2009-11-26 2011-05-26 Dsem Holdings Sdn. Bhd. Submount Having Reflective Cu-Ni-Ag Pads Formed Using Electroless Deposition
US20120145219A1 (en) * 2010-12-09 2012-06-14 Ppg Industries Ohio, Inc Corrosion resistant solar mirror
US20130298983A1 (en) * 2010-08-11 2013-11-14 Korea University Research And Business Foundation Corrosion-resistant photovoltaic module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064154A1 (en) * 2003-01-16 2004-07-29 Matsushita Electric Industrial Co., Ltd. Lead frame for a semiconductor device
JP4758976B2 (ja) * 2007-12-03 2011-08-31 日立ケーブルプレシジョン株式会社 半導体発光素子搭載用リードフレーム及びその製造方法並びに発光装置
JP2010206034A (ja) * 2009-03-05 2010-09-16 Panasonic Corp 光半導体装置用リードフレーム,光半導体装置用パッケージ,光半導体装置,光半導体装置用リードフレームの製造方法,光半導体装置用パッケージの製造方法および光半導体装置の製造方法
DE102010003321A1 (de) * 2010-03-26 2011-09-29 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079517A1 (en) * 2000-12-22 2002-06-27 Hyung-Jun Kim Semiconductor device capable of preventing corrosion of metal wires from CMP (chemical mechanical polishing) process
US20080122081A1 (en) * 2006-11-23 2008-05-29 Samsung Electronics Co., Ltd. Method of fabricating electronic device having sacrificial anode, and electronic device fabricated by the same
US20110121326A1 (en) * 2009-11-26 2011-05-26 Dsem Holdings Sdn. Bhd. Submount Having Reflective Cu-Ni-Ag Pads Formed Using Electroless Deposition
US20130298983A1 (en) * 2010-08-11 2013-11-14 Korea University Research And Business Foundation Corrosion-resistant photovoltaic module
US20120145219A1 (en) * 2010-12-09 2012-06-14 Ppg Industries Ohio, Inc Corrosion resistant solar mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198656A1 (de) * 2016-05-18 2017-11-23 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines optoelektronischen bauteils und optoelektronisches bauteil
US10840417B2 (en) 2016-05-18 2020-11-17 Osram Opto Semiconductors Gmbh Method for manufacturing an optoelectronic component and optoelectronic component
DE102018110954A1 (de) * 2018-05-07 2019-11-07 Optics Balzers Ag Lift-Off Verfahren mittels Jetten

Also Published As

Publication number Publication date
DE102014101154A8 (de) 2015-10-22
WO2015114041A1 (de) 2015-08-06

Similar Documents

Publication Publication Date Title
EP2345074B1 (de) Trägerkörper für ein halbleiterbauelement, halbleiterbauelement und verfahren zur herstellung eines trägerkörpers
DE102007001706A1 (de) Gehäuse für optoelektronisches Bauelement und Anordnung eines optoelektronischen Bauelementes in einem Gehäuse
DE112011101327T5 (de) Licht aussendende Vorrichtung
EP2856504A1 (de) Leuchtdiodenvorrichtung
DE102015104886A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
DE102013212247B4 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
WO2016180851A1 (de) Optoelektronisches bauteil
DE102015109876A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102010053809A1 (de) Optoelektronisches Halbleiterbauelement, Verfahren zu dessen Herstellung und Verwendung eines derartigen Bauelements
EP3304605B1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
EP2327110B9 (de) Optoelektronisches bauteil und verfahren zur herstellung eines optoelektronischen bauteils
DE102015108117A1 (de) Bauelement
DE102014101154A1 (de) Optoelektronische Anordnung
EP2283525A2 (de) Leuchtchip und leuchtvorrichtung mit einem solchen
EP2195863B1 (de) Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement
DE102013207111B4 (de) Optoelektronisches Bauelement
WO2007076842A2 (de) Optoelektronischer halbleiterchip und optoelektronisches bauelement mit solch einem halbleiterchip
EP2380218B1 (de) Optoelektonisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
WO2011117052A1 (de) Optoelektronisches bauelement
DE102018118762A1 (de) Laserbauelement mit einem Laserchip
DE102021113592A1 (de) Optoelektronisches halbleiterbauteil und paneel
DE102004047061B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102019100612A1 (de) Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
WO2015114103A1 (de) Oberflächenmontierbares multichip-bauelement
DE102010017560A1 (de) Leuchte aufweisend eine Leiterplattenanordnung mit Leuchtdiode

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee