DE102013227146A1 - Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz - Google Patents

Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz Download PDF

Info

Publication number
DE102013227146A1
DE102013227146A1 DE102013227146.8A DE102013227146A DE102013227146A1 DE 102013227146 A1 DE102013227146 A1 DE 102013227146A1 DE 102013227146 A DE102013227146 A DE 102013227146A DE 102013227146 A1 DE102013227146 A1 DE 102013227146A1
Authority
DE
Germany
Prior art keywords
workpiece
manipulator arm
assembly
current position
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013227146.8A
Other languages
English (en)
Inventor
Otmar Honsberg
Simon Klumpp
Reinhard Neureiter
Matthias Müller
Martin Patz
Markus Bschorr
Josef KRANZ
Martin Eberl
Robert HAMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUKA Systems GmbH
Original Assignee
Daimler AG
KUKA Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG, KUKA Systems GmbH filed Critical Daimler AG
Priority to DE102013227146.8A priority Critical patent/DE102013227146A1/de
Priority to PCT/EP2014/078865 priority patent/WO2015097102A1/de
Publication of DE102013227146A1 publication Critical patent/DE102013227146A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • G05B19/4182Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell manipulators and conveyor only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39102Manipulator cooperating with conveyor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50392Overhead conveyor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

Die Erfindung betrifft ein Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz (1) eines von einem mehrere aufeinander folgende Glieder (13) und Gelenke (12) aufweisenden Manipulatorarm (9) eines Industrieroboters (11) gehandhabten Bauteils (16) an eine Fügestelle eines Werkstücks (4), das von einem Werkstückträger (3) hängend gehalten dem Montagearbeitsplatz (1) zugeführt ist. Die Erfindung betrifft außerdem einen automatisierten Montagearbeitsplatz (1) aufweisend einen Industrieroboter (11) mit einem Manipulatorarm (9) und einer Steuervorrichtung (10), die ausgebildet und/oder eingerichtet ist, ein erfindungsgemäßes Verfahren durchzuführen.

Description

  • Die Erfindung betrifft ein Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz eines von einem mehrere aufeinander folgende Glieder und Gelenke aufweisenden Manipulatorarm eines Industrieroboters gehandhabten Bauteils an eine Fügestelle eines Werkstücks, das von einem Werkstückträger hängend gehalten, dem Montagearbeitsplatz zugeführt ist. Die Erfindung betrifft außerdem einen automatisierten Montagearbeitsplatz aufweisend einen Industrieroboter mit einem Manipulatorarm und einer Steuervorrichtung, die ausgebildet und/oder eingerichtet ist, ein erfindungsgemäßes Verfahren durchzuführen.
  • Aus der EP 1 556 190 B1 ist ein Verfahren zum Bearbeiten, insbesondere zum Fügen von Werkstücken im Karosserierohbau bekannt, wobei die Werkstücke von einem Förderer entlang einer Transferlinie transportiert und von mehreren an der Transferlinie stationär angeordneten mehrachsigen Robotern bearbeitet werden, und wobei die Werkstücke kontinuierlich gefördert und während der Förderbewegung von den Robotern bearbeitet werden, wobei die Roboter in ihren Achsbewegungen mit der Förderbewegung synchronisiert werden und wobei die Bewegung und die Position der Werkstücke mit einer Sensorik erfasst und an ein Steuerungssystem gemeldet werden, welches den Förderer und die Roboter steuert. Dieses Dokument beschreibt auch eine Bearbeitungsanlage, insbesondere Fügeanlage für den Karosserierohbau, bestehend aus einem Förderer für die Werkstücke und mehrere entlang der Transferlinie stationär angeordneten mehrachsigen Robotern, wobei der Förderer als kontinuierlich arbeitender Förderer ausgebildet ist und die Roboter für eine Bearbeitung der bewegten Werkstücke in ihren Achsbewegungen mit der Förderbewegung synchronisierbar sind, wobei die Bearbeitungsanlage eine Sensorik zur Bewegungs- und Positionserfassung der Werkstücke und ein Steuerungssystem aufweist, an das der Förderer, die Sensorik und die Roboter angeschlossen sind, wobei das Steuerungssystem den Förderer steuert.
  • Die DE 101 64 159 A1 beschreibt ein System zur automatischen Positionierung eines Armaturenbretts für ein Fahrzeug, aufweisend einen Synchronwagen zum synchronen Bewegen mit einem Gehänge mittels einer Synchronisationsklemmeinrichtung, der eine Automobilkarosserie in einer Montagelinie auf einem Arbeitsortboden fördert; eine Robotereinheit, die an einer Seite des Synchronwagens angebracht ist, zum Zuführen und Positionieren des Armaturenbretts in die Automobilkarosserie, wobei das Armaturenbrett mittels eines Greifers eingeklemmt und von einem Armaturenbrett-Zubringförderer zugeführt wird, der parallel zu dem Synchronwagen läuft; mehrere Positionsdetektoren, die an Abschnitten des Greifers der Robotereinheit angeordnet sind, zum Ausgeben von Armaturenbrett- und Automobilkarosserie-Positionsfehlersignalen durch Abtasten des Armaturenbretts und einer Seite der Automobilkarosserie.
  • Aus der DE 10 2011 106 321 A1 ist ein Verfahren zum Steuern eines insbesondere humankollaborierenden Roboters bekannt, bei dem eine roboter- oder aufgabenspezifische Redundanz des Roboters aufgelöst wird. Als humankollaborierender Roboter wird in diesem Zusammenhang insbesondere ein Roboter bezeichnet, der mit einem Menschen physisch interagiert, beispielsweise, indem ein Aufenthalt des Menschen in einem Arbeitsraum des Roboters vorgesehen ist. Insbesondere bei solchen Roboterapplikationen ist es wünschenswert, die Folgen einer Kollision eines Kontaktpunktes des Roboters mit seiner Umgebung, insbesondere dem Menschen, zu reduzieren. Bisher werden hierzu, beispielsweise nach ISO-10218, Grenzwerte vorgegeben, etwa eine maximale Geschwindigkeit eines Werkzeugbezugspunktes, dem so genannten Tool-Center-Point (TCP) von 0,2 bis 0,25 m/s. Derartige humankollaborierende Roboter werden unter Anderem auch als Leichtbauroboter bezeichnet.
  • Aufgabe der Erfindung ist es, an einem automatisierten Montagearbeitsplatz ein Bauteil an einem hängend gelagerten Werkstück automatisiert durch einen Manipulatorarm zuverlässig montieren zu können.
  • Die Aufgabe der Erfindung wird gelöst durch ein Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz eines von einem mehrere aufeinander folgende Glieder und Gelenke aufweisenden Manipulatorarm eines Industrieroboters gehandhabten Bauteils an eine Fügestelle eines Werkstücks, das von einem Werkstückträger hängend gehalten dem Montagearbeitsplatz zugeführt ist, aufweisend die Schritte:
    • – automatisches Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks innerhalb des Montagearbeitsplatzes mittels einer mit dem Werkstück verbundenen Gebereinrichtung, durch welche Positions- und/oder Lagewerte des Werkstücks über eine Aufnehmereinrichtung erfasst werden,
    • – Bewegen des Manipulatorarms, insbesondere eines durch den Manipulatorarm geführten Werkzeugs, wie eines Schraubers, aus einer Grundstellung in eine Montageanfangsstellung gemäß eines auf der Steuervorrichtung des Industrieroboters gespeicherten Roboterzustellprogramms unter Anpassen der Montageanfangsstellung aufgrund der erfassten momentanen Position und/oder momentanen Lage des Werkstücks,
    • – kraft- und/oder momentengeregeltes Ansteuern der Gelenke des Manipulatorarms auf Grundlage eines auf der Steuervorrichtung des Industrieroboters gespeicherten Robotermontageprogramms, welches Bewegungsbefehle zum Durchführen einer aus der Montageanfangsstellung heraus erfolgenden Montage des Bauteils an die Fügestelle des Werkstücks enthält.
  • Manipulatorarme mit zugehörigen Robotersteuerungen, insbesondere Industrieroboter sind Arbeitsmaschinen, die zur automatischen Handhabung und/oder Bearbeitung von Objekten mit Werkzeugen ausgerüstet werden können und in mehreren Bewegungsachsen beispielsweise hinsichtlich Orientierung, Position und Arbeitsablauf programmierbar sind. Industrieroboter weisen üblicherweise einen Manipulatorarm mit mehreren über Gelenke verbundene Glieder und programmierbare Robotersteuerungen (Steuervorrichtungen) auf, die während des Betriebs die Bewegungsabläufe des Manipulatorarms automatisch steuern bzw. regeln. Die Glieder werden über Antriebe, insbesondere elektrische Antriebe, die von der Robotersteuerung angesteuert werden, insbesondere bezüglich der Bewegungsachsen des Industrieroboters, welche die Bewegungsfreiheitsgrade der Gelenke repräsentieren, bewegt.
  • Ein mehrere über Gelenke verbundene Glieder aufweisender Manipulatorarm kann als ein Knickarmroboter mit mehreren seriell nacheinander angeordneten Gliedern und Gelenken konfiguriert sein, insbesondere kann der redundante Industrieroboter einen Manipulatorarm mit sieben oder mehr Gelenken aufweisen.
  • Manipulatorarme mit zugehörigen Robotersteuerungen, wie Industrieroboter können aber insbesondere sogenannte Leichtbauroboter sein, die sich zunächst von üblichen Industrierobotern dadurch unterscheiden, dass sie eine für die Mensch-Maschine-Kooperation günstige Baugröße aufweisen und dabei eine zu ihrem Eigengewicht relativ hohe Tragfähigkeit aufweisen. Daneben können Leichtbauroboter insbesondere auch kraft- und/oder momentengeregelt statt lediglich positionsgeregelt betrieben werden, was beispielsweise eine Mensch-Roboter-Kooperation sicherer macht. Außerdem kann dadurch eine solche sichere Mensch-Maschine-Kooperation erreicht werden, dass beispielsweise unbeabsichtigte Kollisionen des Manipulatorarmes mit Personen, wie beispielsweise Monteure in einer Fließfertigung von Kraftfahrzeugen entweder verhindert oder zumindest derart abgeschwächt werden können, so dass den Personen bzw. Monteuren kein Schaden entsteht. Ein solcher Manipulatorarm bzw. ein solcher Leichtbauroboter weist üblicherweise mehr als sechs Freiheitsgrade auf, so dass insoweit ein überbestimmtes System geschaffen wird, wodurch derselbe Punkt im Raum in gleicher Orientierung in mehreren, insbesondere sogar unendlich vielen verschiedenen Posen des Manipulatorarms erreicht werden kann. Der Leichtbauroboter kann auf externe Krafteinwirkungen in geeigneten Weisen reagieren. Zur Kraftmessung können Kraftsensoren verwendet werden, die in allen drei Raumrichtungen Kräfte und Drehmomente messen können. Alternativ oder ergänzend können die externen Kräfte auch sensorlos, beispielsweise anhand der gemessenen Motorströme der Antriebe an den Gelenken des Leichtbauroboters abgeschätzt werden. Als Regelungskonzepte kann beispielsweise eine indirekte Kraftregelung durch Modellierung des Leichtbauroboters als mechanischer Widerstand (Impedanz) oder eine direkte Kraftregelung verwendet werden.
  • Bei dem Industrieroboter kann es sich insbesondere um einen redundanten Industrieroboter handeln, unter dem ein mittels einer Robotersteuerung bewegbarer Manipulatorarm verstanden wird, der mehr manipulatorische Freiheitsgrade aufweist, als zur Erfüllung einer Aufgabe notwendig sind. Der Grad der Redundanz ergibt sich aus der Differenz der Anzahl von Freiheitsgraden des Manipulatorarms und der Dimension des Ereignisraums, in dem die Aufgabe zu lösen ist. Es kann sich dabei um eine kinematische Redundanz oder um eine aufgabenspezifische Redundanz handeln. Bei der kinematischen Redundanz ist die Anzahl der kinematischen Freiheitsgrade, im Allgemeinen die Anzahl der Gelenke des Manipulatorarms, größer als der Ereignisraum, welcher in einer realen Umgebung bei einer Bewegung im Raum durch die drei translatorischen und die drei rotatorischen Freiheitsgrade, also von sechs Freiheitsgrade gebildet wird. Ein redundanter Industrieroboter kann also beispielsweise ein Leichtbauroboter mit sieben Gelenken, insbesondere sieben Drehgelenken sein. Bei der aufgabenspezifischen Redundanz ist die Dimension der Aufgabenstellung hingegen kleiner als die Anzahl der kinematischen Freiheitsgrade des Manipulatorarms. Dies ist beispielsweise dann der Fall, wenn der Manipulatorarm an seinem Handflansch ein sich um eine Werkzeug-Antriebsachse drehbares Schraubwerkzeug trägt und eine der Drehgelenke des Manipulatorarms entlang dieser Werkzeug-Antriebsachse ausgerichtet ist.
  • Bei einem kraft- und/oder momentengeregelten Ansteuern der Gelenke des Manipulatorarms können die Gelenke des Manipulatorarms hinsichtlich ihrer Steifigkeit parametriert sein. In allen Ausführungen kann dazu das kraft- und/oder momentengeregelten Ansteuern von Antrieben des Manipulatorarms mittels Impedanzregelung oder Admittanzregelung erfolgen.
  • Die Steuervorrichtung kann eingerichtet sein, die Nachgiebigkeit des Manipulatorarms insbesondere mittels Impedanzregelung zu erzeugen.
  • Eine Impedanzregelung basiert im Gegensatz zu einer Admittanzregelung auf einer vorhandenen Drehmomentenregelung auf Gelenkebene. Es werden die Abweichung der tatsächlichen Lage von einer definierten Solllage gemessen und entsprechend des gewünschten dynamischen Verhaltens eine gewünschte verallgemeinerte Kraft, bzw. Kräfte und Momente, bestimmt. Diese Kraft kann über die bekannte Kinematik des Manipulatorarms auf entsprechende Gelenkdrehmomente abgebildet werden. Die Drehmomente können schließlich über die unterlagerte Drehmomentenregelung eingestellt werden.
  • Die Steuervorrichtung kann aber auch eingerichtet sein, die Nachgiebigkeit des Manipulatorarms mittels Admittanzregelung zu erzeugen.
  • Eine Admittanzregelung basiert auf einer vorhandenen Positionsregelung des Manipulatorarms auf Gelenkebene. Hier müssen die von außen auf den Manipulatorarm einwirkenden verallgemeinerten Kräften gemessen werden. Ausgehend von diesen Kräften wird eine, dem gewünschten dynamischen Verhalten entsprechende, Bewegung des Manipulatorarms bestimmt, die über eine inverse Kinematik und die unterlagerte Positionsregelung an den Manipulatorarm kommandiert wird.
  • Die Realisierung dieser Regelungen können durch die Integration von Momentensensorik in die Gelenke des Industrieroboters erreicht werden. Der Sensor erfasst dabei das am Abtrieb eines Getriebes wirkende eindimensionale Drehmoment. Diese Größe kann für die Regelung als Messgröße herangezogen werden und ermöglicht somit die Berücksichtigung der Elastizität der Gelenke im Rahmen der Regelung. Insbesondere werden durch eine Drehmomentsensorik, im Gegensatz zur Verwendung eines Kraftmomentensensors an einem Endeffektor des Manipulatorarms, auch diejenigen Kräfte gemessen, die nicht auf den Endeffektor, sondern auf die Glieder des Manipulatorarms und/oder insbesondere auf ein von dem Manipulatorarm gehaltenes Werkzeug ausgeübt werden.
  • Bei dem an dem Werkstück zu montierenden Bauteil kann es sich um eine Schraube handeln, die in eine Gewindebohrung in dem Werkstück automatisiert durch den Manipulatorarm einzuschrauben ist. Dabei kann durch die Schraube ein erstes Werkstück mit einem zweiten Werkstück verschraubt werden. Die Fügestelle kann insoweit von der Gewindebohrung in einem der Werkstücke gebildet werden. Das Werkstück kann eine Komponente eines zu fertigenden Kraftfahrzeugs, insbesondere eine Motor-/Getriebeeinheit sein. Das Werkstück, insbesondere die Motor-/Getriebeeinheit kann dem Montagearbeitsplatz in einem Fließbetrieb zugeführt, durch den Montagearbeitsplatz in einem Fließbetrieb hindurchgeführt und/oder von dem Montagearbeitsplatz in einem Fließbetrieb abgeführt werden.
  • Ein hängendes Halten des von dem Werkstückträger gehaltenen Werkstücks kann in einer ersten Ausführung bedeuten, dass das Werkstück zwar starr mit dem Werkstückträger verbunden ist, jedoch der Werkstückträger beispielsweise an einer Einschienen-Hängebahn pendelnd aufgehängt ist. Dies kann bedeuten, dass bei einer ortsfesten Positionierung des Manipulatorarms das Werkstück bezüglich eines Grundgestells des Manipulatorarms eine Relativbewegung ausführt. In einer zweiten Ausführung kann das Werkstück selbst pendelnd an dem Werkstückträger aufgehängt sein. Dabei kann der Werkstückträger pendelfrei, insbesondere bestimmt gelagert sein, oder auch der Werkstückträger, wie in der ersten Ausführung beispielsweise an einer Einschienen-Hängebahn pendelnd aufgehängt sein. Eine pendelnde Aufhängung des Werkstücks an dem Werkstückträger kann beispielsweise dann vorliegen, wenn das Werkstück teilweise oder vollständig mittels Seilen oder Ketten an dem Werkstückträger eingehängt ist.
  • Aufgrund einer hängenden Lagerung des Werkstücks an dem Werkstückträger kann insbesondere im Rahmen einer Serienfertigung nicht sichergestellt werden, dass sämtliche, mitunter identische Werkstück stets in einer eindeutigen Position und Lage an dem Werkstückträger gelagert ist, auch wenn keine Pendelbewegungen auftreten. Insoweit stellt sich das Problem, dass die an dem Werkstückträger hängend gehaltenen Werkstücke an dem Montagearbeitsplatz ankommend keine exakt vorbestimmte Position und Lage im Montagearbeitsplatz einnehmen. Deshalb ist in einem ersten Verfahrensschritt vorgesehen, dass erfindungsgemäß ein automatisches Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks innerhalb des Montagearbeitsplatzes mittels einer mit dem Werkstück verbundenen Gebereinrichtung erfolgt, durch welche Positions- und/oder Lagewerte des Werkstücks über eine Aufnehmereinrichtung erfasst werden. Die Position und Lage der Aufnehmereinrichtung bezüglich des Manipulatorarms ist dabei fest, d.h. vorbekannt. Die Aufnehmereinrichtung kann dazu insbesondere an einem auch den Manipulatorarm tragenden Grundträger befestigt sein.
  • Der erste Verfahrensschritt des Erfassens der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks kann vor dem zweiten Verfahrensschritt des Bewegens des Manipulatorarms aus einer Grundstellung in eine Montageanfangsstellung abgeschlossen sein, insbesondere dann, wenn das Werkstück vor dem zweiten Verfahrensschritt zumindest weitgehend oder sogar vollständig ausgependelt ist. Alternativ kann ein Erfassens der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks während des zweiten Verfahrensschritts fortgeführt werden, insbesondere dann, wenn das Werkstück während des Bewegens des Manipulatorarms aus der Grundstellung in die Montageanfangsstellung zumindest merklich oder sogar deutlich weiterpendelt.
  • Der Manipulatorarm kann vor Beginn eines erfindungsgemäßen Verfahrensablaufes sich in einer Verwahrungsposition befinden. Aus der Verwahrungsposition kann der Manipulatorarm mit den an sich bekannten Steuerungsarten in die Grundstellung bewegt werden. Ein Bewegen des Manipulatorarms aus der Verwahrungsposition in die Grundstellung kann insbesondere ohne ein erfindungsgemäßes Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks erfolgen.
  • Die Grundstellung kann sich durch eine Pose des Manipulatorarms kennzeichnen, in welcher der Manipulatorarm, insbesondere ein von dem Manipulatorarm getragenes, insbesondere geführtes Werkzeug aus einer beliebigen Verwahrungsposition in den Arbeitsraum innerhalb des Montagearbeitsplatzes hineinbewegt ist. Die Grundstellung kann beispielsweise eine Pose des Manipulatorarms sein, in welcher ein Werkzeugbezugspunkt beispielsweise in einen quaderförmigen Arbeitsraum von ca. 500 Millimeter, insbesondere 300 Millimeter Kantenlänge hineinbewegt ist, der die Montageanfangsstellung beinhaltet.
  • Die Verwahrungsposition des Manipulatorarms kann sich durch eine Pose des Manipulatorarms kennzeichnen, in welcher der Manipulatorarm zumindest weitgehend oder sogar vollständig aus einem Arbeitsraum innerhalb des Montagearbeitsplatzes herausbewegt ist.
  • Hingegen kann die Grundstellung für alle Werkstücke und insbesondere für alle verschiedenen Arten von Werkstücken dieselbe Grundstellung sein, die insbesondere auch als feste Größe in der Steuervorrichtung des Industrieroboters gespeichert sein kann. Erst ab Erreichen der Grundstellung erfolgt ein erfindungsgemäßes Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks.
  • Die Montageanfangsstellung kann sich für jede Art von Werkstücke und/oder für jede Art von Montageaufgabe unterscheiden. Insbesondere kann sich die Montageanfangsstellung für jedes einzelne Werkstück in Abhängigkeit seiner Position und/oder Lage unterscheiden.
  • Generell kann das Roboterzustellprogramm einen vorprogrammierten Pfad enthalten, welchen beispielsweise einen Werkzeugbezugspunkt des Manipulatorarms aus der Grundstellung in eine Standard-Montageanfangsstellung führen würde. Unter Hinzuziehen der durch den ersten Verfahrensschritt erfassten Position und/oder der Lage des hängenden Werkstücks kann dieser vorprogrammierte Pfad, beispielsweise durch hinzurechnen eines Offsetwertes abgewandelt werden, um eine angepasste, d.h. abweichende Montageanfangsstellung zu erhalten, die dann auch von dem Manipulatorarm angefahren wird.
  • Weder das automatische Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks gemäß dem ersten Verfahrensschritt, noch das Bewegen des Manipulatorarms aus der Grundstellung in die Montageanfangsstellung gemäß dem zweiten Verfahrensschritt muss mit einer Positioniergenauigkeit erfolgen, die für das aufgabengemäße Montieren des Bauteils an der Fügestelle des Werkstücks hinreichend genau ist, um das Bauteil an der Fügestelle positionsgesteuert montieren zu können. Vielmehr reicht eine Positioniergenauigkeit des Bauteils an der Fügestelle aus, die von der idealen Fügeposition um bis zu 15 Millimeter, insbesondere um 5 bis 10 Millimeter, abweichen kann. Dadurch können insbesondere Gebereinrichtungen und Aufnehmereinrichtungen verwendet werden, die nur ein entsprechend geringes Auflösungsvermögen von beispielsweise maximal 0,1 Millimeter aufweisen. So können aufwändige und teure, mitunter individuell entwickelte Präzisions-Messeinrichtungen durch einfache, kostengünstige Messeinrichtungen, die gängige Sensoren aus einer allgemeinen Serienfertigung aufweisen können, ersetzt werden. Außerdem müssen die Werkstücke nicht hoch positionsgenau vorpositioniert sein.
  • Die dadurch tolerierte Positionsungenauigkeit des vom Manipulatorarm geführten Werkzeugs bezüglich des Werkzeugs an der Montageanfangsstellung wird erfindungsgemäß in dem dritten Schritt des Verfahrens kompensiert, durch ein kraftund/oder momentengeregeltes Ansteuern der Gelenke des Manipulatorarms auf Grundlage eines auf der Steuervorrichtung des Industrieroboters gespeicherten Robotermontageprogramms, welches Bewegungsbefehle zum Durchführen einer aus der Montageanfangsstellung heraus erfolgenden Montage des Bauteils an die Fügestelle des Werkstück enthält.
  • In einer Weiterbildung des erfindungsgemäßen Verfahrens kann nach dem Starten des Roboterzustellprogramms während des Bewegens des Manipulatorarms aus seiner Grundstellung in die Montageanfangsstellung ein wiederholtes Anpassen der Montageanfangsstellung erfolgen, durch fortlaufendes Erfassen der momentanen Position und/oder der momentanen Lage des Werkstücks während der Manipulatorarm bewegt wird.
  • Das Roboterzustellprogramm kann dazu programmierte, insbesondere in einer Offline-Programmierung vorbestimmte Stützpunkte und/oder Bahnen, oder in einer Online-Programmierung beispielsweise durch eine Lernfahrt (Tech-In-Verfahren) in dem Montagearbeitsplatz generierte Stützpunkte und/oder Bahnen umfassen, welche eine vorgegebene Grundbewegung des Manipulatorarms, insbesondere eines Werkzeugbezugspunktes des Manipulatorarms aus der Grundstellung in eine zunächst pauschal vorgegebene Montageanfangsstellung beschreibt. Bei einem fortlaufenden Erfassen der momentanen Position und/oder der momentanen Lage des Werkstücks während der Manipulatorarm bewegt wird, können der im Roboterzustellprogramm zunächst pauschal vorgegebenen Montageanfangsstellung Offsetwerte hinzugefügt werden, welche eine in Abhängigkeit der momentanen Position und/oder der momentanen Lage des Werkstücks eine veränderte Montageanfangsstellung ergeben. Folglich kann der Manipulatorarm insoweit einer gewissen Bewegung des Werkstücks während des Heranfahrens an das Werkstück folgen. Die Bewegungen der Gelenke des Manipulatorarms können dabei entweder positionsgesteuert oder kraft-/momentengeregelt ausgeführt werden. Die Montageanfangsstellung des Manipulatorarms darf dabei von einer idealen Relativstellung von Manipulatorarm zu Werkstück um bis zu 15 Millimeter, insbesondere um 5 bis 10 Millimeter, abweichen. Erst nach Erreichen der realen Montageanfangsstellung wird der Manipulatorarm in den insbesondere ausschließlichen kraft-/momentengeregelten Betrieb geschalten, um das Robotermontageprogramm auszuführen.
  • In einer ersten Ausführungsvariante können die Gebereinrichtung und die Aufnehmereinrichtung ausgebildet sein, die momentane Position und/oder momentane Lage des Werkstücks durch Laufzeitmessung eines Schallsignals zwischen Gebereinrichtung und Aufnehmereinrichtung zu bestimmen.
  • Übliche, positionsgeregelte Roboterprozesse benötigen eine feste Position des Manipulatorarms sowie eine definierte Lage der Prozessumgebung, insbesondere des Werkstücks, sowie der Prozesswerkzeuge. Für einen reproduzierbaren Betrieb sind hohe Genauigkeitsanforderungen an die Anlagenkomponenten zu stellen. Dabei ist der Einsatz von präzisen Messsystemen erforderlich, die der Anzahl der Freiheitsgrade des Manipulatorarms entsprechende Relativbewegungen von Manipulatorarm und Werkstück aufnehmen und dem Robotersystem mitteilen.
  • Wegen der hohen Genauigkeitsanforderung von wenigen Zehntel Millimetern, die bei positionsgeregelten Industrierobotern notwendig sind, ist meist eine teuere Messtechnik erforderlich. Dies ist außerdem aufwendig zu kalibrieren bzw. zu integrieren und eng auf die Prozessstation begrenzt konfigurierbar.
  • Durch den erfindungsgemäßen kraft-/momentengeregelten Betrieb des Manipulatorarms, um das Robotermontageprogramm auszuführen, können die Anforderungen an die Genauigkeit der Prozesskomponenten zueinander reduziert werden. Dies ermöglicht den Einsatz von kostengünstigen Messsystemen, insbesondere 3D-Messsystemen, die insbesondere mittels Ultraschall arbeiten können. Insbesondere sogenannte "Plug and Play"-Messsysteme zeichnen sich dadurch aus, dass Sender und Empfänger aufeinander abgestimmt sind und diese auch sofort nach Sichtbarkeit im definierten Arbeitsbereich des Empfängers Daten bezüglich der Position liefern. Solche Sender sind im allgemeinen vorkonfektioniert, können aber auch bei Bedarf individuell angepasst bzw. konstruiert werden. Die Ausgabe der Daten, insbesondere Koordinaten der Punkte oder eines berechneten Koordinatensystems, kann online in einer systembedingten Abtastrate, beispielsweise von 70 Hertz erfolgen. Wird der Empfänger des Messsystems mit dem Industrieroboter zueinander eingemessen, kann die Lage bzw. auch die Lageveränderung des Senders online an das Robotersystem weitergegeben werden und die geplante Bahn entsprechend online korrigiert werden, um große Messungenauigkeiten, wie Abstand der Zielmarken auf dem Sender, Entfernung Sender zu Empfänger, Abstand Empfänger zu Manipulatorarm, geplanter Arbeitspunkt des TCP usw., von mehreren Millimetern ausgleichen zu können. Verbleibende Positionsungenauigkeiten werden anschließend durch einen kraft-/momentengeregelten Betrieb des Industrieroboters kompensiert.
  • Alternativ kann die Gebereinrichtung und die Aufnehmereinrichtung ausgebildet sein, die momentane Position und/oder momentane Lage des Werkstücks durch optische Mittel zu erfassen.
  • Dazu kann die Aufnehmereinrichtung von einer Bilderfassungsvorrichtung gebildet werden, die Gebereinrichtung wenigstens eine an dem Werkstück oder dem Werkstückträger befestigte Marke aufweisen und die momentane Position und/oder momentane Lage des Werkstücks durch Auswerten der von der Bilderfassungsvorrichtung aufgenommenen Bilder der Marken bestimmt werden.
  • Die Eigenschaft, dass mehrere Sender von einem Empfänger erkannt werden können, eröffnet die Möglichkeit am Werkstück oder am Werkstückträger beispielsweise in einem Fliessbetrieb einer Serienfertigungsstätte Sender anzubringen, die dann an verschiedenen Roboterarbeitsstationen verwendet werden können. Ist ein Verfolgen an mehreren Stationen in der Produktion nötig, so können sinnvoller Weise die Marker am Beginn der Produktion an das Werkstück oder dem Werkstückträger angebracht werden und über mehrere Stationen verwendet werden. Bei der Verwendung von sehr kostengünstigen Markern können diese auch in das Werkstück eingearbeitet, beispielsweise eingegossen werden und dort sogar verbleiben. In einer Anlage mit Fließbetrieb kann so ein Sender mit aktiven oder passiven Zielmarken auf dem Werkstück aufgebracht werden und durch mehrere nacheinander folgende automatisierte Montagearbeitsplätze mitgeführt werden. In jedem Montagearbeitsplätze kann der Sender erkannt und der dortige Industrieroboter für den jeweiligen Arbeitsprozess korrigiert werden.
  • Alternativ können auch Vorrichtungskomponenten mit diesen kostengünstigen Sendern ausgerüstet werden, beispielsweise ein C-Gehänge im Rohbau oder in der Montage. Durch Verwendung von Empfängern in beliebig vielen Arbeitsstationen kann die Position und die Geschwindigkeit der Karosse ermittelt werden. Diese Information kann für weitere Arbeitsprozesse im Fließbetrieb verwendet werden, die mit einem sensitiven, d.h. kraft-/momentengeregelten Industrieroboter durchgeführt werden können. Dies ist auch als günstige Voraussetzung für Arbeitsprozesse mit einer Mensch-Roboter-Kooperation im Fließbetrieb zu sehen. Das Robotersystem bekommt durch die Positions- und Bewegungserkennung des Werkstücks eine ausreichend genaue Lokalisierung für den Start seiner Such- und Arbeitsprozesse.
  • In einer weiterführenden Ausgestaltung des erfindungsgemäßen Verfahrens kann vor dem Bewegen des Manipulatorarms aus der Grundstellung in die Montageanfangsstellung ein automatisches Erfassen des Werkstücks, insbesondere der Art, des Typs und/oder der Gestalt des Werkstücks erfolgen und der jeweiligen Art, des Typs und/oder der Gestalt des Werkstücks zugeordnete vorgespeicherte geometrische Werte über das Werkstück zum Anpassen der Montageanfangsstellung mit herangezogen werden.
  • In einer speziellen Ausgestaltung des erfindungsgemäßen Verfahrens kann der Manipulatorarm auf Grundlage des Robotermontageprogramms mittels einer darin hinterlegten Suchstrategie die Fügestelle aus der Montageanfangsstellung heraus durch kraft- und/oder momentengeregeltes Verstellen der Gelenke des Manipulatorarms finden, insbesondere ohne weitere Berücksichtigung der automatisch erfassten momentanen Position und/oder momentanen Lage des Werkstücks finden, indem der Manipulatorarm das Bauteil berührend an dem Werkstück entlangführt.
  • Ein erfindungsgemäßes Robotermontageprogramm kann das Anbringen und Festziehen einer Schraube an dem Werkstück betreffen. Das Werkstück kann beispielsweise eine Motor-Getriebeeinheit eines zu fertigenden Kraftfahrzeugs sein. Dazu kann es erforderlich sein, einen Flansch, insbesondere an einer Wandlereingangswelle an einem Sitz, insbesondere an einer Motorausgangswelle mittels mehrere über einen Umfang verteilt festzuziehender Schrauben zu befestigen. Die Schrauben sind mittels eines von dem Manipulatorarm geführten Werkzeugs in Form eines Schraubers aus einem Magazin nacheinander aufzunehmen, zunächst im Rahmen eines Voranzugs in Gewindebohrungen des Sitzes nacheinander einzuschrauben und dann im Rahmen eines Endanzugs mit einem vorgegebenen Drehmoment nochmals nacheinander anzuziehen.
  • Die Montageanfangsstellung wird dabei durch eine Startposition des vom Manipulatorarm geführten Schraubers nahe einer ersten, bereits in eine Gewindebohrung des Sitzes eingeschraubte Schraube definiert. Aus eines solchen nahe an der Schraube liegenden Startposition heraus kann der Manipulatorarm den Schrauber, d.h. die Werkzeugspitze des Schraubers auf Grundlage des Robotermontageprogramm in einer in Richtung der Drehachse des Schraubers weisenden Stoßrichtung auf die Schraube zu bewegen und durch beispielsweise schwingende, pendelnde, kreis- oder spiralförmige Bewegungen senkrecht zur Stoßrichtung sich eine Bahn ertasten, um die Werkzeugspitze des Schraubers in ein Schrauben-Mitnahmeprofil der Schraube formschlüssig einzustecken.
  • Alternativ kann aus einer nahe an der Schraube liegenden Startposition heraus der Manipulatorarm, nachdem er durch den Schrauber eine Schraube aus dem Magazin aufgenommen hat, die auf dem Schrauber, d.h. auf der Werkzeugspitze des Schraubers aufsitzende Schraube auf Grundlage des Robotermontageprogramm in einer in Richtung der Drehachse des Schraubers weisenden Stoßrichtung auf eine der Gewindebohrungen zu bewegen und durch beispielsweise schwingende, pendelnde, kreis- oder spiralförmige Bewegungen senkrecht zur Stoßrichtung sich eine Bahn ertasten, um den Gewindeschaft der Schraube an eine der Gewindebohrungen des Sitzes formschlüssig anzusetzen.
  • Aufgrund seines kraft- und/oder momentengeregelten Betriebs kann der Manipulatorarm das Werkzeug, insbesondere den Schrauber bzw. die Schraube in einem berührenden, insbesondere eingreifenden Kontakt zum Werkstück halten, so dass eine noch während des Ausführens des Robotermontageprogramms vorhandene Pendelbewegung des Werkstücks kompensiert werden kann.
  • Alternativ oder ergänzend kann der Manipulatorarm in seinem kraft- und/oder momentengeregelten Betrieb einen zusätzlichen berührenden, insbesondere greifenden Kontakt zum Werkstück halten, um eine vorhandene Pendelbewegung des Werkstücks an dem Werkstückträger oder mit dem Werkstückträger zu dämpfen und/oder zu stoppen oder um das Entstehen einer Pendelbewegung des Werkstücks an dem Werkstückträger oder mit dem Werkstückträger zu unterdrücken oder zu verhindern.
  • Dies kann bedeuten, dass der Manipulatorarm einen Greifer aufweist, welcher das Werkstück formschlüssig ergreift. In einer anderen Ausführungsform kann sich der Manipulatorarm mittels einer seiner Glieder, insbesondere mittels seines Flansches oder des Werkzeugs an einer Oberfläche oder Kante des Werkstücks oder an einer Oberfläche oder Kante des Werkstückträgers einseitig berührend abstützen.
  • Die Aufgabe der Erfindung wird auch gelöst durch einen automatisierten Montagearbeitsplatz, aufweisend einen von einer Hängefördereinrichtung im Fließbetrieb bewegten Werkstückträger, ein an dem Werkstückträger aufgehängt gelagertes Werkstück, insbesondere eine Komponente eines zu fertigenden Fahrzeugs, eine mit dem Werkstück und/oder Werkstückträger verbundene Gebereinrichtung, ein Magazin mit an das Werkstück zu fügenden Bauteilen, sowie ein Industrieroboter aufweisend eine Steuervorrichtung, die ausgebildet und/oder eingerichtet ist, ein programmierte Bewegungsabläufe enthaltendes Roboterprogramm auszuführen, sowie aufweisend einen Manipulatorarm mit mehreren aufeinander folgende Glieder und Gelenke, die gemäß des Roboterprogramms automatisiert und/oder in einem Handfahrbetrieb automatisch verstellbar sind, wobei der Manipulatorarm von einem mit dem Werkstückträger mechanisch gekoppelten Grundträger getragen ist, an dem eine der Gebereinrichtung zugeordnete Aufnehmereinrichtung befestigt ist, wobei die Steuervorrichtung ausgebildet und/oder eingerichtet ist, ein Verfahren wie beschrieben durchzuführen.
  • Im Falle der bereits beschriebenen Montageaufgabe kann das Verschrauben mit dem kraft-/momentengeregelten Industrieroboter an einem hängenden Aggregat durchgeführt werden. Das Aggregat bestehend aus Motor und Getriebe ist im Fliesbetrieb und kann sich aufgrund seiner hängenden Lagerung wie ein Pendel bewegen. Die Gebereinrichtung kann am Aggregat an einem eindeutigem Bezugspunkt, wie beispielsweise die Wandleröffnung oder eine Absteckbohrung befestigt sein und liefert die Position und/oder Lage des Aggregats im Raum. Der zum Messsystem referenzierte Manipulatorarm erhält dadurch eine aktuelle Nennposition für den Arbeitspunkt und korrigiert seine Bahn entsprechend. Bewegungen des Aggregats werden erfasst und die Roboterbahn entsprechend nachgeführt. Bei starken Auslenkungen kann die Bewegung des Manipulatorarms unterbrochen werden und das System wartet bis die Schwingung des Aggregats sich beruhigt hat. Wenn der Manipulatorarm mit seinem Werkzeug, insbesondere dem Schrauber im Eingriff mit der Schraube bzw. der Gewindebohrung ist, wird durch die Impedanzregelung des Industrieroboters die Position zusätzlich nachgeführt. Ein aktiver Eingriff des Industrieroboters in die Pendelbewegung ist ebenfalls möglich. Der Manipulatorarm kann sich mit dem Werkzeug in Impedanzregelung an eine Kante des Aggregats anlegen.
  • Der automatisierte Montagearbeitsplatz, kann eine die Gebereinrichtung aufweisende Haltevorrichtung aufweisen, die ausgebildet ist, die Gebereinrichtung manuell lösbar an dem Werkstück zu befestigen. Dazu kann die Haltevorrichtung eine manuell zu betätigende, insbesondere federvorgespannte Haltezange aufweisen, die Zangenbacken aufweist, welche zum formschlüssigen Halten der Haltezange an einer Außenkontur oder Innenkontur, insbesondere einer Öffnung oder Bohrung des Werkstücks ausgebildet sind. Die Haltevorrichtung kann ergänzend ein Magazin tragen, welches die an das Werkstück zu fügenden Bauteile, wie die beschriebenen Schrauben zur automatisierten Entnahme durch den Manipulatorarm bevorratet.
  • Durch die erfindungsgemäße Haltevorrichtung kann die Gebereinrichtung und/oder das Magazin manuell lösbar an dem Werkstück befestigt werden. Aufgrund der formschlüssig angreifenden Zangenbacken kann die Haltevorrichtung positionsgenau an dem Werkstück angebracht werden.
  • Ein konkretes Ausführungsbeispiel eines gemäß dem erfindungsgemäßen Verfahren betreibbaren Industrieroboters ist in der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten 1 bis 7 näher erläutert. Konkrete Merkmale dieses exemplarischen Ausführungsbeispiels können unabhängig davon, in welchem konkreten Zusammenhang sie erwähnt sind, gegebenenfalls auch einzeln oder in Kombination betrachtet, allgemeine Merkmale der Erfindung darstellen.
  • Es zeigen:
  • 1 eine schematische Seitenansicht eines beispielhaften, erfindungsgemäßen automatisierten Montagearbeitsplatz,
  • 2 eine schematische Vorderansicht auf den automatisierten Montagearbeitsplatz gemäß 1,
  • 3 eine vergrößerte perspektivische Teilansicht des automatisierten Montagearbeitsplatzes gemäß 1,
  • 4 eine vergrößerte perspektivische Teilansicht eines von einem Manipulatorarm getragenen Schraub-Werkzeugs und einer Haltevorrichtung,
  • 5 eine vergrößerte perspektivische Ansicht der Haltevorrichtung gemäß 4 in Alleinstellung,
  • 6 eine vergrößerte perspektivische Ansicht der Haltevorrichtung gemäß 4 von der Seite, und
  • 7 ein schematisch dargestellter Ablauf eines erfindungsgemäßen Verfahrens.
  • Die 1 zeigt einen beispielhaften automatisierten Montagearbeitsplatz 1. Dieser umfasst einen von einer Hängefördereinrichtung 2 im Fließbetrieb bewegten Werkstückträger 3. An dem Werkstückträger 3 ist ein Werkstück 4 mittels Seilen oder Ketten 5 aufgehängt gelagert. Im Falle des vorliegenden Ausführungsbeispiels ist das Werkstück 4 eine Komponente eines zu fertigenden Fahrzeugs und umfasst einen Motor 6, an dem ein Getriebe 7 angeordnet ist.
  • Der automatisierte Montagearbeitsplatz 1 umfasst außerdem einen an einem Grundträger 8 in einer Überkopfanordnung befestigten Manipulatorarm 9. Der Manipulatorarm 9 bildet zusammen mit einer zugehörigen Steuervorrichtung 10 einen Industrieroboter 11. Der Industrieroboter 11 ist in der beispielhaften Ausführung als ein so genannter Leichtbauroboter des Typs KUKA LBR iiwa ausgeführt. Der Manipulatorarm 9 umfasst im Falle des vorliegenden Ausführungsbeispiels acht nacheinander angeordnete und mittels sieben Gelenken 12 drehbar miteinander verbundene Glieder 13.
  • Der automatisierte Montagearbeitsplatz weist außerdem eine mit dem Werkstück 4 verbundene Gebereinrichtung 14 auf, ein Magazin 15 in dem an das Werkstück 4 zu fügenden Bauteile 16 gespeichert sind. Die zu fügenden Bauteile 16 werden im Falle des vorliegenden Ausführungsbeispiels von Schrauben 16a gebildet. Eine der Gebereinrichtung 14 zugeordnete Aufnehmereinrichtung 17 ist an dem Grundträger 8 befestigt, an dem auch der Manipulatorarm 9 befestigt ist.
  • Aufgrund der hängenden Anordnung des Werkstücks 4, d.h. des Motors 6 und des Getriebes 7 mittels der Ketten 5 an der Hängefördereinrichtung 2 kann das Werkstück 4, d.h. der Motor 6 und das Getriebe 7 in die in 1 gezeigten Pfeilrichtungen P1 schwingen bzw. pendeln. Ebenso kann das Werkstück 4, d.h. der Motor 6 und das Getriebe 7 auch in die in 2 gezeigten Pfeilrichtungen P2 schwingen bzw. pendeln.
  • Ein hängendes Halten des von dem Werkstückträger 3 gehaltenen Werkstücks 4 kann einerseits bedeuten, dass das Werkstück 4 zwar starr mit dem Werkstückträger 3 verbunden sein kann, jedoch der Werkstückträger 3 beispielsweise an einer Hängefördereinrichtung 2, wie beispielsweise einer Einschienen-Hängebahn pendelnd aufgehängt ist. Andererseits kann, wie in den 1 und 2 dargestellt, das Werkstück 4 selbst pendelnd an dem Werkstückträger 3 aufgehängt sein, da es mittels der Ketten 5 in einem gewissen Umfang beweglich gelagert ist.
  • Wie in der vergrößerten Darstellung der 3 näher gezeigt, trägt der Manipulatorarm 9 an seinem Handflansch 18 ein Werkzeug 19. Das Werkzeug 19 wird im Falle des vorliegenden Ausführungsbeispiels von einem Schrauber 19a gebildet. Die Montageaufgabe besteht im beschriebenen Ausführungsbeispiel darin, einen Flansch 20 an einer Wandlereingangswelle 21 des Getriebes 7 an einen Sitz 22 an einer Motorausgangswelle 23 des Motors 6 mittels mehrere über einen Umfang verteilt festzuziehender Schrauben 16a zu befestigen. Die Schrauben 16a sind mittels des von dem Manipulatorarm 9 geführten Schraubers 19a aus dem Magazin 15 nacheinander aufzunehmen, zunächst im Rahmen eines Voranzugs in Gewindebohrungen 24 des Sitzes 22 nacheinander einzuschrauben und dann im Rahmen eines Endanzugs mit einem vorgegebenen Drehmoment nochmals nacheinander anzuziehen.
  • Eine exemplarische Grundstellung 25 des Manipulatorarms 9 ist in der 3 gestrichelt dargestellt und kann sich durch eine Pose des Manipulatorarms 9 kennzeichnen, in welcher der Manipulatorarm 9 zumindest weitgehend oder sogar vollständig aus dem Arbeitsraum innerhalb des Montagearbeitsplatzes 1 herausbewegt ist. Die Grundstellung 25 kann für alle Werkstücke 4 und insbesondere für alle verschiedenen Arten von Werkstücken 4 dieselbe Grundstellung 25 sein, die insbesondere auch als feste Größe in der Steuervorrichtung 10 des Industrieroboters 11 gespeichert sein kann.
  • Die Montageanfangsstellung kann sich im Wesentlichen durch eine Pose des Manipulatorarms 9 kennzeichnen, wie sie in der 3 in durchgezogenen Linien gezeigt ist und in welcher der Manipulatorarm 9, insbesondere das von dem Manipulatorarm 9 geführte Werkzeug 19, d.h. der Schrauber 19a in den Arbeitsraum innerhalb des Montagearbeitsplatzes 1 hineinbewegt hat. Die Montageanfangsstellung kann sich für jede Art von Werkstücke 4 und/oder für jede Art von Montageaufgabe unterscheiden. Insbesondere kann sich die Montageanfangsstellung für jedes einzelne Werkstück 4 in Abhängigkeit seiner Position und/oder Lage etwas unterscheiden.
  • Im Falle des vorliegenden Ausführungsbeispiels umfasst die Erfindung außerdem eine die Gebereinrichtung 14 aufweisende Haltevorrichtung 26, die ausgebildet ist, die Gebereinrichtung 14 manuell lösbar an dem Werkstück 4 zu befestigen. Die Haltevorrichtung 26 ist zusammen mit dem Schrauber 19a und dem Manipulatorarm 9 in der 4 vergrößert und in der 5 und 6 in Alleinstellung gezeigt.
  • Die Haltevorrichtung 26 weist eine manuell zu betätigende, insbesondere mittels einer Feder 27 federvorgespannte Haltezange 28 auf. Die Haltezange 28 weist zwei Zangenbacken 29a, 29b auf, welche zum formschlüssigen Halten der Haltezange 28 an einer Innenkontur, insbesondere einer Öffnung 30 in einem Gehäuse des Getriebes 7 (3) ausgebildet sind. Die Zangenbacken 29a, 29b weisen dazu Nuten 31a und 31b auf, in welche ein Rand der Öffnung 30 in der am Getriebe 7 befestigten Position der Haltevorrichtung 26 formschlüssig eingreift. Dadurch ist ein definiertes und wiederholgenaues Befestigen der Haltevorrichtung 26 an dem Getriebe 7 möglich.
  • An der insoweit exakt am Werkstück 4 positionierbaren Haltevorrichtung 26 ist die Gebereinrichtung 14 befestigt. Die Gebereinrichtung 14 und die Aufnehmereinrichtung 17 (1) sind ausgebildet, die momentane Position und/oder momentane Lage des Werkstücks 4 durch Laufzeitmessung eines Schallsignals zwischen Gebereinrichtung 14 und Aufnehmereinrichtung 17 zu bestimmen. Durch das erfindungsgemäße automatische Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks 4 innerhalb des Montagearbeitsplatzes 1 mittels der mit dem Werkstück 4 verbundenen Gebereinrichtung 14, durch welche Positions- und/oder Lagewerte des Werkstücks 4 über die Aufnehmereinrichtung 17 erfasst werden, kann die momentanen Position und/oder der momentanen Lage des Werkstücks 4 innerhalb des Montagearbeitsplatzes 1 bestimmt werden.
  • Die Haltevorrichtung 26 trägt außerdem das Magazin 15, welches die an das Werkstück 4 zu fügenden Bauteile 16, d.h. die Schrauben 16a zur automatisierten Entnahme durch den Manipulatorarm 9 bevorratet.
  • Der in 7 schematisch dargestellte Ablauf eines erfindungsgemäßen Verfahrens zum automatisierten Montieren an einem Montagearbeitsplatz 1 eines von einem mehrere aufeinander folgende Glieder 13 und Gelenke 12 aufweisenden Manipulatorarm 9 eines Industrieroboters 11 gehandhabten Bauteils 16 an eine Fügestelle eines Werkstücks 4, das von einem Werkstückträger 3 hängend gehalten dem Montagearbeitsplatz 1 zugeführt ist, umfasst einen ersten Schritt S1 des automatischen Erfassens der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks 4 innerhalb des Montagearbeitsplatzes 1 mittels der mit dem Werkstück 4 verbundenen Gebereinrichtung 14, durch welche Positions- und/oder Lagewerte des Werkstücks 4 über eine Aufnehmereinrichtung 17 erfasst werden.
  • In einem weiteren Schritt S2 erfolgt ein Bewegen des Manipulatorarms 9 aus einer Grundstellung in eine Montageanfangsstellung gemäß eines auf der Steuervorrichtung 10 des Industrieroboters 11 gespeicherten Roboterzustellprogramms unter Anpassen der Montageanfangsstellung aufgrund der erfassten momentanen Position und/oder momentanen Lage des Werkstücks 4.
  • In einem folgenden Schritt S3 werden die Gelenke 12 des Manipulatorarms 9 kraft- und/oder momentengeregelt angesteuert und zwar auf Grundlage eines auf der Steuervorrichtung 10 des Industrieroboters 11 gespeicherten Robotermontageprogramms, welches Bewegungsbefehle zum Durchführen einer aus der Montageanfangsstellung heraus erfolgenden Montage des Bauteils 16 an die Fügestelle des Werkstücks 4 enthält.
  • Nach dem Starten des Roboterzustellprogramms während des Bewegens des Manipulatorarms 9 aus seiner Grundstellung in die Montageanfangsstellung kann im Falle des vorliegenden Ausführungsbeispiels ein wiederholtes Anpassen der Montageanfangsstellung erfolgen, durch fortlaufendes Erfassens der momentanen Position und/oder der momentanen Lage des Werkstücks 4 während der Manipulatorarm 9 bewegt wird.
  • Vor dem Bewegen des Manipulatorarms 9 aus der Grundstellung in die Montageanfangsstellung kann ein automatisches Erfassen des Werkstücks 4, insbesondere der Art, des Typs und/oder der Gestalt des Werkstücks 4 erfolgen und der jeweiligen Art, des Typs und/oder der Gestalt des Werkstücks 4 zugeordnete vorgespeicherte geometrische Werte über das Werkstück 4 zum Anpassen der Montageanfangsstellung mit herangezogen werden.
  • Im Verfahrensschritt S3 findet der Manipulatorarm 9 auf Grundlage des Robotermontageprogramms mittels einer darin hinterlegten Suchstrategie die Fügestelle aus der Montageanfangsstellung heraus durch kraft- und/oder momentengeregeltes Verstellen der Gelenke 12 des Manipulatorarms 9, insbesondere ohne weitere Berücksichtigung der automatisch erfassten momentanen Position und/oder momentanen Lage des Werkstücks 4, indem der Manipulatorarm 9 das Bauteil 16, im Falle des vorliegenden Ausführungsbeispiel die Schraube 16a berührend an dem Werkstück 4 entlangführt.
  • Dabei hält der Manipulatorarm 9 optional auch in einem kraft- und/oder momentengeregelten Betrieb einen berührenden, insbesondere greifenden Kontakt zum Werkstück 4, um eine vorhandene Pendelbewegung des Werkstücks 4 an dem Werkstückträger 3 oder mit dem Werkstückträger 3 zu dämpfen und/oder zu stoppen oder um das Entstehen einer Pendelbewegung des Werkstücks 4 an dem Werkstückträger 3 oder mit dem Werkstückträger 3 zu unterdrücken oder zu verhindern.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 1556190 B1 [0002]
    • DE 10164159 A1 [0003]
    • DE 102011106321 A1 [0004]
  • Zitierte Nicht-Patentliteratur
    • ISO-10218 [0004]

Claims (12)

  1. Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz (1) eines von einem mehrere aufeinander folgende Glieder (13) und Gelenke (12) aufweisenden Manipulatorarm (9) eines Industrieroboters (11) gehandhabten Bauteils (16) an eine Fügestelle eines Werkstücks (4), das von einem Werkstückträger (3) hängend gehalten dem Montagearbeitsplatz (1) zugeführt ist, aufweisend die Schritte: – automatisches Erfassen der momentanen Position und/oder der momentanen Lage des hängenden Werkstücks (4) innerhalb des Montagearbeitsplatzes (1) mittels einer mit dem Werkstück (4) verbundenen Gebereinrichtung (14), durch welche Positions- und/oder Lagewerte des Werkstücks (4) über eine Aufnehmereinrichtung (17) erfasst werden, – Bewegen des Manipulatorarms (9) aus einer Grundstellung in eine Montageanfangsstellung gemäß eines auf der Steuervorrichtung (10) des Industrieroboters (11) gespeicherten Roboterzustellprogramms unter Anpassen der Montageanfangsstellung aufgrund der erfassten momentanen Position und/oder momentanen Lage des Werkstücks (4), – kraft- und/oder momentengeregeltes Ansteuern der Gelenke (12) des Manipulatorarms (9) auf Grundlage eines auf der Steuervorrichtung (10) des Industrieroboters (11) gespeicherten Robotermontageprogramms, welches Bewegungsbefehle zum Durchführen einer aus der Montageanfangsstellung heraus erfolgenden Montage des Bauteils (16) an die Fügestelle des Werkstücks (4) enthält.
  2. Verfahren nach Anspruch 1, bei dem nach dem Starten des Roboterzustellprogramms während des Bewegens des Manipulatorarms (9) aus seiner Grundstellung in die Montageanfangsstellung ein wiederholtes Anpassen der Montageanfangsstellung erfolgt, durch fortlaufendes Erfassens der momentanen Position und/oder der momentanen Lage des Werkstücks (4) während der Manipulatorarm (9) bewegt wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem die Gebereinrichtung (14) und die Aufnehmereinrichtung (17) ausgebildet sind, die momentane Position und/oder momentane Lage des Werkstücks (4) durch Laufzeitmessung eines Schallsignals zwischen Gebereinrichtung (14) und Aufnehmereinrichtung (17) zu bestimmen.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Gebereinrichtung (14) und die Aufnehmereinrichtung (17) ausgebildet sind, die momentane Position und/oder momentane Lage des Werkstücks (4) durch optische Mittel zu erfassen.
  5. Verfahren nach Anspruch 4, bei dem die Aufnehmereinrichtung (17) von einer Bilderfassungsvorrichtung gebildet wird, die Gebereinrichtung (14) wenigstens eine an dem Werkstück (4) oder dem Werkstückträger (3) befestigte Marke aufweist und die momentane Position und/oder momentane Lage des Werkstücks (4) durch Auswerten der von der Bilderfassungsvorrichtung aufgenommenen Bilder der Marken bestimmt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem vor dem Bewegen des Manipulatorarms (9) aus der Grundstellung in die Montageanfangsstellung ein automatisches Erfassen des Werkstücks (4), insbesondere der Art, des Typs und/oder der Gestalt des Werkstücks (4) erfolgt und der jeweiligen Art, des Typs und/oder der Gestalt des Werkstücks (4) zugeordnete vorgespeicherte geometrische Werte über das Werkstück (4) zum Anpassen der Montageanfangsstellung mit herangezogen werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem der Manipulatorarm (9) auf Grundlage des Robotermontageprogramms mittels einer darin hinterlegten Suchstrategie die Fügestelle aus der Montageanfangsstellung heraus durch kraft- und/oder momentengeregeltes Verstellen der Gelenke (12) des Manipulatorarms (9) findet, insbesondere ohne weitere Berücksichtigung der automatisch erfassten momentanen Position und/oder momentanen Lage des Werkstücks (4) findet, indem der Manipulatorarm (9) das Bauteil (16) berührend an dem Werkstück (4) entlangführt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem der Manipulatorarm (9) in seinem kraft- und/oder momentengeregelten Betrieb einen berührenden, insbesondere greifenden Kontakt zum Werkstück (4) hält, um eine vorhandene Pendelbewegung des Werkstücks (4) an dem Werkstückträger (3) oder mit dem Werkstückträger (3) zu dämpfen und/oder zu stoppen oder um das Entstehen einer Pendelbewegung des Werkstücks (4) an dem Werkstückträger (3) oder mit dem Werkstückträger (3) zu unterdrücken oder zu verhindern.
  9. Automatisierter Montagearbeitsplatz aufweisend einen von einer Hängefördereinrichtung (2) im Fließbetrieb bewegten Werkstückträger (3), ein an dem Werkstückträger (3) aufgehängt gelagertes Werkstück (4), insbesondere eine Komponente eines zu fertigenden Fahrzeugs, eine mit dem Werkstück (4) und/oder Werkstückträger (3) verbundene Gebereinrichtung (14), ein Magazin (15) mit an das Werkstück (4) zu fügenden Bauteilen (15), sowie ein Industrieroboter (11) aufweisend eine Steuervorrichtung (10), die ausgebildet und/oder eingerichtet ist, ein programmierte Bewegungsabläufe enthaltendes Roboterprogramm auszuführen, sowie aufweisend einen Manipulatorarm (9) mit mehreren aufeinander folgende Glieder (13) und Gelenke (12), die gemäß des Roboterprogramms automatisiert und/oder in einem Handfahrbetrieb automatisch verstellbar sind, wobei der Manipulatorarm (9) von einem mit dem Werkstückträger (3) mechanisch gekoppelten Grundträger (8) getragen ist, an dem eine der Gebereinrichtung (14) zugeordnete Aufnehmereinrichtung (17) befestigt ist und die Steuervorrichtung (10) ausgebildet und/oder eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 bis 8 durchzuführen.
  10. Automatisierter Montagearbeitsplatz nach Anspruch 9, aufweisend eine die Gebereinrichtung (14) aufweisende Haltevorrichtung (26), die ausgebildet ist, die Gebereinrichtung (14) manuell lösbar an dem Werkstück (4) zu befestigen.
  11. Automatisierter Montagearbeitsplatz nach Anspruch 10, dadurch gekennzeichnet, dass die Haltevorrichtung (26) eine manuell zu betätigende, insbesondere federvorgespannte Haltezange (28) aufweist, die Zangenbacken (29a, 29b) aufweist, welche zum formschlüssigen Halten der Haltezange (28) an einer Außenkontur oder Innenkontur, insbesondere einer Öffnung (30) oder Bohrung des Werkstücks (4) ausgebildet sind.
  12. Automatisierter Montagearbeitsplatz nach Anspruch 11, dadurch gekennzeichnet, dass die Haltevorrichtung (26) das Magazin (15) trägt, welches die an das Werkstück (4) zu fügenden Bauteile (16) zur automatisierten Entnahme durch den Manipulatorarm (9) bevorratet.
DE102013227146.8A 2013-12-23 2013-12-23 Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz Withdrawn DE102013227146A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102013227146.8A DE102013227146A1 (de) 2013-12-23 2013-12-23 Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz
PCT/EP2014/078865 WO2015097102A1 (de) 2013-12-23 2014-12-19 Verfahren zum automatisierten montieren an einem montagearbeitsplatz, sowie zugehöriger automatisierter montagearbeitsplatz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013227146.8A DE102013227146A1 (de) 2013-12-23 2013-12-23 Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz

Publications (1)

Publication Number Publication Date
DE102013227146A1 true DE102013227146A1 (de) 2015-06-25

Family

ID=52292916

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013227146.8A Withdrawn DE102013227146A1 (de) 2013-12-23 2013-12-23 Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz

Country Status (2)

Country Link
DE (1) DE102013227146A1 (de)
WO (1) WO2015097102A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203045A1 (de) * 2018-03-01 2019-09-05 Bayerische Motoren Werke Aktiengesellschaft Robotervorrichtung zum automatischen Durchführen wenigstens einer Manipulation an einem mittels einer Stetigfördereinheit transportierbaren Werkstück und Verfahren zum Betreiben einer solchen Robotervorrichtung
EP3744472A1 (de) 2019-05-27 2020-12-02 Schmitt Prof. Möhlmann & Collegen Wirtschaftskanzlei -Insolvenzverwalter Aktiengesellschaft Einsetzteile-fügestation
CN114750183A (zh) * 2022-04-28 2022-07-15 珠海格力电器股份有限公司 一种空调外机风叶的定位和装配系统及其控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202881A (zh) * 2017-06-29 2019-01-15 沈阳新松机器人自动化股份有限公司 一种工业机器人大臂装配工作站
WO2020209833A1 (en) * 2019-04-08 2020-10-15 Hewlett-Packard Development Company, L.P. Component assembly via on component encoded instructions
CN113977270B (zh) * 2021-11-17 2022-08-30 安费诺汽车连接系统(常州)有限公司 汽车配件自动组装生产方法及应用其的自动组装机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3319169A1 (de) * 1982-05-28 1983-12-08 Nissan Motor Co., Ltd., Yokohama, Kanagawa Industrieroboter mit in mehreren dimensionen beweglichem arbeitskopf
DE19931676C2 (de) * 1999-07-08 2002-07-11 Kuka Schweissanlagen Gmbh Verfahren zum Vermessen von Werkstücken und Bearbeitungsstation
DE10164159A1 (de) 2000-12-30 2002-07-11 Hyundai Motor Co Ltd System zur automatischen Positionierung eines Armaturenbretts für ein Fahrzeug sowie Positionsierungsverfahren dafür
EP1556190B1 (de) 2002-10-28 2005-12-14 KUKA Schweissanlagen GmbH Anlage und verfahren zum bearbeiten von karosserieteilen, wobei roboter mit einem förderband synchronisiert werden
DE102011106321A1 (de) 2011-07-01 2013-01-03 Kuka Laboratories Gmbh Verfahren und Steuermittel zum Steuern eines Roboters

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE519610T1 (de) * 2004-10-11 2011-08-15 Ibg Technology Hansestadt Luebeck Gmbh Vorrichtung zur automatischen montage von rädern und verfahren hierfür
JP4516615B2 (ja) * 2008-03-27 2010-08-04 本田技研工業株式会社 ハブの姿勢検出方法及びその装置
EP2271465A1 (de) * 2008-03-31 2011-01-12 Abb Research Montage von teilen an einem sich auf einer fertigungsstrasse bewegenden werkstück durch einen roboter
JP5508895B2 (ja) * 2010-02-22 2014-06-04 本田技研工業株式会社 加工システム及び加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3319169A1 (de) * 1982-05-28 1983-12-08 Nissan Motor Co., Ltd., Yokohama, Kanagawa Industrieroboter mit in mehreren dimensionen beweglichem arbeitskopf
DE19931676C2 (de) * 1999-07-08 2002-07-11 Kuka Schweissanlagen Gmbh Verfahren zum Vermessen von Werkstücken und Bearbeitungsstation
DE10164159A1 (de) 2000-12-30 2002-07-11 Hyundai Motor Co Ltd System zur automatischen Positionierung eines Armaturenbretts für ein Fahrzeug sowie Positionsierungsverfahren dafür
EP1556190B1 (de) 2002-10-28 2005-12-14 KUKA Schweissanlagen GmbH Anlage und verfahren zum bearbeiten von karosserieteilen, wobei roboter mit einem förderband synchronisiert werden
DE102011106321A1 (de) 2011-07-01 2013-01-03 Kuka Laboratories Gmbh Verfahren und Steuermittel zum Steuern eines Roboters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISO-10218

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203045A1 (de) * 2018-03-01 2019-09-05 Bayerische Motoren Werke Aktiengesellschaft Robotervorrichtung zum automatischen Durchführen wenigstens einer Manipulation an einem mittels einer Stetigfördereinheit transportierbaren Werkstück und Verfahren zum Betreiben einer solchen Robotervorrichtung
EP3744472A1 (de) 2019-05-27 2020-12-02 Schmitt Prof. Möhlmann & Collegen Wirtschaftskanzlei -Insolvenzverwalter Aktiengesellschaft Einsetzteile-fügestation
CN114750183A (zh) * 2022-04-28 2022-07-15 珠海格力电器股份有限公司 一种空调外机风叶的定位和装配系统及其控制方法
CN114750183B (zh) * 2022-04-28 2023-09-19 珠海格力电器股份有限公司 一种空调外机风叶的定位和装配系统及其控制方法

Also Published As

Publication number Publication date
WO2015097102A1 (de) 2015-07-02

Similar Documents

Publication Publication Date Title
EP3302857B1 (de) Verfahren und anordnung zum einbringen von bohrlöchern in eine oberfläche eines stationär gelagerten werkstückes mit einem an einem knickarmroboter angebrachten bohrwerkzeug
EP2883665B1 (de) Verfahren und Vorrichtung zum Steuern eines Manipulators
DE102013227146A1 (de) Verfahren zum automatisierten Montieren an einem Montagearbeitsplatz,sowie zugehöriger automatisierter Montagearbeitsplatz
DE102007010067B3 (de) Singularitätsbasiertes Maschinenprüf- und Kalibrierverfahren
DE102017009939B4 (de) Verfahren und System zum Betreiben eines mobilen Roboters
DE102019102859B4 (de) Arbeitsrobotersystem
DE102015004483B4 (de) Robotersteuerung und Robotersystem zum Bewegen eines Roboters als Reaktion auf eine Kraft
DE102016009438A1 (de) Robotersystem mit Sichtsensor und einer Vielzahl von Robotern
DE102007050232A1 (de) Handhabungsroboter und Verfahren zur Steuerung eines Handhabungsroboters
DE102019102470B4 (de) Einlernvorgang für ein Robotersystem bestehend aus zwei Robotermanipulatoren
EP2392435A2 (de) Werkzeug-Handhabungssystem und Verfahren zum Manipulieren von Werkstücken mittels kooperierender Manipulatoren
EP2359205A1 (de) Verfahren und vorrichtung zur befehlseingabe in eine steuerung eines manipulators
DE102008062622A1 (de) Verfahren und Vorrichtung zur Befehlseingabe in eine Steuerung eines Manipulators
DE102008060052A1 (de) Verfahren und Vorrichtung zur Kompensation einer kinematischen Abweichung
DE102020100803B4 (de) Folgeroboter und Roboterarbeitssystem
EP3037905A1 (de) Vorrichtung und verfahren zum aufnehmen von positionen
DE102019109717A1 (de) Arbeitsrobotersystem und Arbeitsroboter
DE102019109718B4 (de) Arbeitsrobotersystem und Arbeitsroboter
DE102018112370B4 (de) Richtungsabhängige Kollisionsdetektion für einen Robotermanipulator
WO2015158612A1 (de) Robotervorrichtung mit einer linearachse
DE102016013083B4 (de) Kalibrieren eines Modells eines Prozess-Roboters und Betreiben eines Prozess-Roboters
DE102016218180B4 (de) Verlängerte Greifhilfevorrichtung mit erweiterter Reichweite zum Durchführen von Montageaufgaben
DE102019004545B4 (de) Automatische Maschine und Steuervorrichtung für Automatische Maschine
DE102016204258A1 (de) Vorrichtung und Verfahren zum automatisierten Greifen und Handhaben von Werkstücken
WO2015049136A2 (de) Arbeitsvorrichtung und arbeitsverfahren

Legal Events

Date Code Title Description
R083 Amendment of/additions to inventor(s)
R163 Identified publications notified
R082 Change of representative

Representative=s name: EGE LEE & PARTNER PATENTANWAELTE PARTGMBB, DE

Representative=s name: BOESS, DIETER ALEXANDER, DIPL.-ING. (UNIV.), DE

R081 Change of applicant/patentee

Owner name: KUKA SYSTEMS GMBH, DE

Free format text: FORMER OWNERS: DAIMLER AG, 70327 STUTTGART, DE; KUKA SYSTEMS GMBH, 86165 AUGSBURG, DE

R082 Change of representative

Representative=s name: BOESS, DIETER ALEXANDER, DIPL.-ING. (UNIV.), DE

Representative=s name: EGE LEE & PARTNER PATENTANWAELTE PARTGMBB, DE

R082 Change of representative

Representative=s name: BOESS, DIETER ALEXANDER, DIPL.-ING. (UNIV.), DE

R005 Application deemed withdrawn due to failure to request examination