DE102013209162A1 - Lichtlaufzeitsensor - Google Patents

Lichtlaufzeitsensor Download PDF

Info

Publication number
DE102013209162A1
DE102013209162A1 DE102013209162.1A DE102013209162A DE102013209162A1 DE 102013209162 A1 DE102013209162 A1 DE 102013209162A1 DE 102013209162 A DE102013209162 A DE 102013209162A DE 102013209162 A1 DE102013209162 A1 DE 102013209162A1
Authority
DE
Germany
Prior art keywords
light
read
transit time
readout
fingers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102013209162.1A
Other languages
English (en)
Inventor
Tobias Möller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PMDtechnologies AG
Original Assignee
PMDtechnologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PMDtechnologies AG filed Critical PMDtechnologies AG
Priority to DE102013209162.1A priority Critical patent/DE102013209162A1/de
Priority to PCT/EP2014/058622 priority patent/WO2014183983A1/de
Publication of DE102013209162A1 publication Critical patent/DE102013209162A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Abstract

Lichtlaufzeitsensor (22) mit Modulationsgates (Gam, Gbm) in lichtempfindlichen und Auslesefinger (Ga, Gb) in lichtunempfindlichen Bereichen, wobei die Modulationsgates (Gam, Gbm, G0) und Auslesefinger (Ga, Gb) in parallelen Streifen angeordnet sind, die gruppenweise ein Lichtlaufzeitpixel (23) bilden, mit einer Ausleseeinheit (400), die eine elektrische Größe (U) an den Auslesefinger (Ga, Gb) erfasst und mit einer Auswerteeinheit (420), die ausgehend von den erfassten elektrischen Größen (U) einen entfernungsrelevanten Wert (d, ∆q) ermittelt, wobei der Lichtlaufzeitsensor (23) mindestens eine Lichtlaufzeitpixelzeile (23z) mit mindestens drei Lichtlaufzeitpixel (23) aufweist, und die Auslesefinger (Ga, Gb), die nicht am Rand der (23Z) Zeile angeordneten sind, an zwei Seiten an einem Modulationsgate (Gam, Gbm) angrenzen, und die Auswerteeinheit (420) derart ausgebildet ist, dass für jeden Auslesefinger (Ga, Gb) einzelnd eine elektrische Größe erfasst wird und aus diesen Größen für alle benachbarter Auslesefinger-Paare (Ga, Gb) ein entfernungsrelevanter Wert (∆q) ermittelt wird.

Description

  • Die Erfindung betrifft einen Lichtlaufzeitsensor nach Gattung des unabhängigen Anspruchs.
  • Der Lichtlaufzeitsensor betrifft insbesondere Lichtlaufzeit-Kamerasysteme insbesondere Lichtlaufzeit- bzw. 3D-TOF-Kamerasysteme, die eine Laufzeitinformation aus der Phasenverschiebung einer emittierten und empfangenen Strahlung gewinnen. Als Lichtlaufzeit- bzw. 3D-TOF-Kameras sind insbesondere PMD-Kameras mit Photomischdetektoren (PMD) geeignet, wie sie u.a. in den Anmeldungen EP 1 777 747 B1 , US 6 587 186 B2 und auch DE 197 04 496 C2 beschrieben und beispielsweise von der Firma ‚ifm electronic GmbH’ oder 'PMD-Technologies GmbH' als Frame-Grabber O3D bzw. als CamCube zu beziehen sind. Die PMD-Kamera erlaubt insbesondere eine flexible Anordnung der Lichtquelle und des Detektors, die sowohl in einem Gehäuse als auch separat angeordnet werden können.
  • Ferner ist aus der DE 198 21 974 A1 eine Vorrichtung zur Erfassung von Phase und Amplitude elektromagnetischer Wellen bekannt, bei der lichtdurchlässige Modulationsgates im fotoempfindlichen Bereich und Ladung sammelnde Akkumulationsgates in Streifenform angeordnet sind.
  • Aufgabe der Erfindung ist es, den Füllfaktor auf einem Lichtlaufzeitsensors zu verbessern.
  • Die Aufgabe wird in vorteilhafter Weise durch den erfindungsgemäßen Lichtlaufzeitsensor nach Gattung des unabhängigen Anspruchs gelöst.
  • Vorteilhaft ist ein Lichtlaufzeitsensor vorgesehen, mit Modulationsgates in lichtempfindlichen und Auslesefinger in lichtunempfindlichen Bereichen, wobei die Modulationsgates und Auslesefinger in parallelen Streifen angeordnet sind, die gruppenweise ein Lichtlaufzeitpixel bilden, mit einer Ausleseeinheit, die eine elektrische Größe an den Auslesefingern erfasst und mit einer Auswerteeinheit, die ausgehend von den erfassten elektrischen Größen einen entfernungsrelevanten Wert ermittelt, wobei der Lichtlaufzeitsensor mindestens eine Lichtlaufzeitpixelzeile mit mindestens drei Lichtlaufzeitpixel aufweist, und die Auslesefinger, die nicht am Rand der Zeile angeordneten sind, an zwei Seiten an einem Modulationsgate angrenzen. Ferner ist die Auswerteeinheit derart ausgebildet, dass für jeden Auslesefinger einzelnd eine elektrische Größe erfasst wird und aus diesen Größen für alle benachbarter Auslesefinger-Paare ein entfernungsrelevanter Wert oder eine Entfernung ermittelt wird.
  • Dieses Vorgehen hat zum einen den Vorteil, dass aufgrund der durchlaufenden Struktur der Füllfaktor des Lichtlaufzeitsensors erhöht werden kann und zum anderen, dass durch die einzelne Auslese der Auslesefinger die Pixelgröße bedarfsabhängig virtuell verändert werden kann.
  • Vorteilhaft ist es auch vorgesehen, jeweils vier benachbarte Lichtlaufzeitpixel mit unterschiedlichen Phasenlagen zu betreiben, um so insbesondere Bewegungsartefakte zu vermeiden.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Es zeigen schematisch:
  • 1 das Grundprinzip einer Lichtlaufzeitkamera nach dem PMD-Prinzip,
  • 2 eine modulierte Integration der laufzeitverschobenen erzeugten Ladungsträger,
  • 3 einen Querschnitt eines PMD-Pixel,
  • 4 eine Draufsicht auf ein PMD-Pixel,
  • 5 eine Draufsicht auf ein PMD-Pixel mit Ausleseknoten,
  • 6 eine Draufsicht auf ein PMD-Pixel mit gegabelten Auslesefingern,
  • 7 einen Querschnitt durch einen erfindungsgemäßen PMD-Pixel mit zwei Modulationsgates,
  • 8 eine schematische Draufsicht eines erfindungsgemäßen PMD-Pixel,
  • 9 ein Querschnitt und eine Draufsicht auf eine durchlaufende PMD-Pixelzeile,
  • 10 eine Draufsicht auf eine durchlaufende PMD-Pixelzeile mit minimaler Pixelgröße,
  • 11 eine Anordnung mehrerer durchlaufender PMD-Pixelzeilen,
  • 12 eine Ausbildung einer PMD-Pixelzeile mit RGB-Filtern,
  • 13 eine PMD-Pixelzeile mit jeweils drei Modulationsgates,
  • 14 zwei PMD-Pixelzeilen mit unterschiedlicher Phasenlage.
  • Bei der nachfolgenden Beschreibung der bevorzugten Ausführungsformen bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.
  • 1 zeigt eine Messsituation für eine optische Entfernungsmessung mit einer Lichtlaufzeit-Kamera, wie sie beispielsweise aus der DE 197 04 496 C2 bekannt ist.
  • Das Lichtlaufzeit-Kamerasystem 1 umfasst eine Sendeeinheit bzw. ein Beleuchtungsmodul 10 mit einer Beleuchtungslichtquelle 12 und einer dazugehörigen Strahlformungsoptik 15 sowie eine Empfangseinheit bzw. Lichtlaufzeitkamera 20 mit einer Empfangsoptik 25 und einem Lichtlaufzeitsensor 22. Der Lichtlaufzeitsensor 22 weist mindestens ein Pixel, vorzugsweise jedoch ein Pixel-Array, auf und ist insbesondere als PMD-Sensor ausgebildet. Die Empfangsoptik 25 besteht typischerweise zur Verbesserung der Abbildungseigenschaften aus mehreren optischen Elementen. Die Strahlformungsoptik 15 der Sendeeinheit 10 ist vorzugsweise als Reflektor ausgebildet. Es können jedoch auch diffraktive Elemente oder Kombinationen aus reflektierenden und diffraktiven Elementen eingesetzt werden.
  • Das Messprinzip dieser Anordnung basiert im Wesentlichen darauf, dass ausgehend von der Phasenverschiebung des emittierten und empfangenen Lichts die Laufzeit des emittierten und reflektierten Lichts ermittelt werden kann. Zu diesem Zwecke werden die Lichtquelle 12 und der Lichtlaufzeitsensor 22 über einen Modulator 30 gemeinsam mit einer bestimmten Modulationsfrequenz bzw. Modulationssignal mit einer ersten Phasenlage a beaufschlagt. Entsprechend der Modulationsfrequenz sendet die Lichtquelle 12 ein amplitudenmoduliertes Signal mit der Phase a aus. Dieses Signal bzw. die elektromagnetische Strahlung wird im dargestellten Fall von einem Objekt 40 reflektiert und trifft aufgrund der zurückgelegten Wegstrecke entsprechend phasenverschoben mit einer zweiten Phasenlage b auf den Lichtlaufzeitsensor 22. Im Lichtlaufzeitsensor 22 wird das Signal der ersten Phasenlage a des Modulators 30 mit dem empfangenen Signal, das die laufzeitbedingte zweiten Phasenlage b aufweist, gemischt, wobei aus dem resultierenden Signal die Phasenverschiebung bzw. die Objektentfernung d ermittelt wird.
  • Zur genaueren Bestimmung der zweiten Phasenlage b und somit der Objektentfernung d kann es vorgesehen sein, die Phasenlage a mit der der Lichtlaufzeitsensor 22 betrieben wird, um vorgestimmte Phasenverschiebungen ∆φ zu verändern. Gleichwirkend kann es auch vorgesehen sein, die Phase, mit der die Beleuchtung angetrieben wird, gezielt zu verschieben.
  • Das Prinzip der Phasenmessung ist schematisch in 2 dargestellt. Die obere Kurve zeigt den zeitlichen Verlauf des Modulationssignals mit der die Beleuchtung 12 und der Lichtlaufzeitsensor 22, hier ohne Phasenverschiebung, angesteuert werden. Das vom Objekt 40 reflektierte Licht b trifft entsprechend seiner Lichtlaufzeit tL phasenverschoben auf den Lichtlaufzeitsensor 22. Der Lichtlaufzeitsensor 22 sammelt die photonisch erzeugten Ladungen q während der ersten Hälfte der Modulationsperiode in einem ersten Auslesefinger Ga und in der zweiten Periodenhälfte in einem zweiten Auslesefinger Gb. Die Ladungen werden typischerweise über mehrere Modulationsperioden gesammelt bzw. integriert. Aus dem Verhältnis der im ersten und zweiten Gate Ga, Gb gesammelten Ladungen qa, qb lässt sich die Phasenverschiebung und somit eine Entfernung des Objekts bestimmen.
  • Wie aus der DE 197 04 496 C2 bereits bekannt, kann die Phasenverschiebung des vom Objekt reflektierten Lichts und somit die Distanz, beispielsweise durch ein so genanntes IQ-(Inphase-Quadratur)-Verfahren ermittelt werden. Zur Bestimmung der Distanz werden vorzugsweise zwei Messungen mit Modulationssignalen durchgeführt, deren Phasenlagen um 90° verschobenen sind. Also beispielsweise φmod + φ0 und φmod + φ90, wobei aus der in diesen Phasenlagen ermittelte Ladungsdifferenz ∆q(0°), ∆q(90°) die Phasenverschiebung des reflektierten Lichts über die bekannte arctan- bzw. arctan2-Beziehung ermittelt werden kann. φ = arctan ∆q(90°) / ∆q(0°)
  • Zur Verbesserung der Genauigkeit können ferner weitere Messungen mit um beispielsweise 180° verschobenen Phasenlagen durchgeführt werden. φ = arctan ∆q(90°) – ∆q(270°) / ∆(0°) – ∆q(180°)
  • Selbstverständlich sind auch Messungen mit mehr als vier Phasen und deren Vielfachen und einer entsprechend angepassten Auswertung denkbar.
  • 3 zeigt einen Querschnitt durch einen Pixel eines Photomischdetektors wie er beispielsweise aus der DE 197 04 496 C2 bekannt ist. Die Modulationsphotogates Gam, G0, Gbm bilden den lichtsensitiven Bereich eines PMD-Pixels. Entsprechend der an den Modulationsgates Gam, G0, Gbm angelegten Spannung werden die photonisch erzeugten Ladungen q entweder zum einen oder zum anderen Auslesefinger Ga, Gb gelenkt. Der Auslesefinger ist im dargestellten Beispiel als pn-Übergang bzw. Diode ausgebildet.
  • 3b zeigt einen Potenzialverlauf, bei dem die Ladungen q in Richtung des ersten Auslesefingers Ga abfließen, während das Potenzial gemäß 3c die Ladung q in Richtung des zweiten Auslesefingers Gb fließen lässt. Die Potenziale werden entsprechend der anliegenden Modulationssignale vorgegeben. Je nach Anwendungsfall liegen die Modulationsfrequenzen vorzugsweise in einem Bereich von 1 bis 100 MHz. Bei einer Modulationsfrequenz von beispielsweise 1 MHz ergibt sich eine Periodendauer von einer Mikrosekunde, so dass das Modulationspotenzial dementsprechend alle 500 Nanosekunden wechselt.
  • In 3a ist ferner eine Ausleseeinheit 400 dargestellt, die gegebenenfalls bereits Bestandteil eines als CMOS ausgebildeten PMD-Lichtlaufzeitsensors sein kann. Die im Auslesefinger Ga, Gb erfassten photonisch erzeugten Ladungen werden über eine Vielzahl von Modulationsperioden gesammelt. In bekannter Weise kann die dann an den Auslesefingern Ga, Gb anliegende Spannung beispielsweise über die Ausleseeinheit 400 hochohmig abgegriffen werden. Die Integrationszeiten sind vorzugsweise so zu wählen, dass für die zu erwartende Lichtmenge der Lichtlaufzeitsensor bzw. die Auslesefinger bzw. deren Kapazitäten und/oder die lichtsensitiven Bereiche nicht in Sättigung geraten.
  • 4 zeigt eine Draufsicht auf einen Lichtlaufzeitpixel 23 mit typischen Längenangaben. Der Abstand bzw. die Längenausdehnung zwischen den beiden Auslesefingern Ga, Gb wird als Kanalabstand LK und der Abstand zwischen den Längs-Symmetrieachsen der beiden Auslesefinger Ga, Gb als Fingerpitch LFP bezeichnet. Erfindungsgemäß ist es vorgesehen die Pixel untereinander nicht durch ein Feldoxid zu trennen, so dass an dem Auslesefinger unmittelbar ein weiteres Modulationsgate anschließt.
  • Die Ausdehnung der Gates bzw. der Auslesefinger parallel zum Kanalabstand LK ist die Gatelänge LG und die hierzu senkrechte Ausdehnung die Gatebreite BG. Während die Gates in ihren Breiten BG im Wesentlichen gleich lang sind, werden die Gatelängen typischerweise abhängig vom Anwendungsfall variiert. Im dargestellten Fall ist beispielsweise das mittlere Modulationsgate G0 länger als die beiden äußeren Modulationsgates Gam, Gbm, um beispielsweise einen Modulationskontrast zu beeinflussen.
  • Die Auslesefingers Ga, Gb können in unterschiedlicher Art und Weise aufgebaut und strukturiert werden. Aus der DE 197 04 496 C2 ist es beispielsweise bekannt, die Auslesefinger als pn-Übergänge bzw. Dioden auszubilden. Bevorzugt erstreckt sich die Diode über die gesamte Breite der Auslesefinger. Vorzugsweise sind die Auslesefinger lichtundurchlässig ausgebildet oder mit einer lichtundurchlässigen Schicht, vorzugsweise eine Metallisierung abgedeckt. Die Metallisierung kann ggf. auch gleichzeitig die Kontaktierung der Diode bilden.
  • 5 zeigt eine bevorzugte erfindungsgemäße Ausgestaltung, in der die Auslesefinger Ga, Gb eine Gatestruktur und einen Integrations- bzw. Ausleseknoten aufweisen. Im dargestellten Fall erstreckt sich ein Auslesegate AGa, AGb über die gesamte Breite BG des Auslesefingers Ga, Gb. In einem Endbereich des Auslesefingers Ga, Gb befindet sich ein Ausleseknoten AKa, AKb. Wie bereits in 3 gezeigt, liegt an dem Auslesegate AGa, AGb eine Spannung an, die unterhalb des Gates ein Potentialtopf für die Ladungsträger q bildet. Die dort gesammelten Ladungsträger fließen vornehmlich aufgrund von Diffusionsprozessen zum jeweiligen Ausleseknoten AKa, AKb ab und können dort von der Ausleseeinheit 400 beispielsweise als Spannung abgegriffen werden.
  • Bevorzugt sind die Auslesefinger Ga, Gb mit einer lichtundurchlässigen Schicht, vorzugsweise einer Metallschicht abgedeckt. Die Metallschicht kann ggf. auch zur Kontaktierung des Ausleseknotens dienen. In einer weiteren Ausgestaltung ist es auch denkbar, das Auslesegate selbst in der Transparenz zu beeinflussen, beispielsweise durch Silizidieren.
  • Ferner sind auch Variationen der Größe und Position der Ausleseknoten AKa, AKb denkbar. Beispielsweise können die Ausleseknoten AKa, AKb die gleich Länge wie die Auslesegates AGa, AGb aufweisen. Auch können mehrere Ausleseknoten über die Struktur des Gates verteilt sein. Insbesondere können an beiden Enden des Gates Ausleseknoten angeordnet sein. Auch ist ein zentraler Ausleseknoten denkbar. Die Ausleseknoten sind vorzugsweise als pn-Übergang bzw. als Diode ausgebildet.
  • 6 zeigt eine weitere Variante bei der die Auslesefinger bzw. die Gatestruktur im Bereich der Ausleseknoten erweitert ist. Durch diese Aufgabelung sind die Ausleseknoten AKa, AKb von einer Gatestruktur umgeben und mit einem Mindestabstand vom benachbarten Modulationsgate Gam, Gbm getrennt. Durch ein derartiges Vorgehen werden vorteilhaft elektrische Durchgriffe vom Modulationsgate auf die Ausleseknoten reduziert oder gehemmt.
  • Wie bereits erwähnt, wird ein PMD-Pixel typischerweise mit Hilfe von einem Feldoxid und einer optischen Abdeckung vom benachbarten Matrixpixel getrennt. Dadurch wird typischerweise ein Übersprechen der einzelnen Matrixpixel untereinander minimiert. Bei sehr kleinen Pixeln spielt der Füllfaktor jedoch eine immer wichtigere Rolle. Insbesondere ist es nachteilig, wenn die separierende Feldoxidmatrix eine größere Dimension aufweist als die Auslesefinger. Liegt der Pixelpitch in einer Größenordnung des Fingerpitch, spielt das Randgebiet bzw. Separationsgebiet in Bezug auf den Füllfaktor eine immer wichtigere Rolle. Der typische Fingerpitch LFP, d.h. Auslesefinger plus Modulationsgates, liegt in der Größenordnung von ca. 7–10 µm. Die Höhe bzw. Breite der Finger und die Kanallänge, sind bei PMD-Strukturen, ähnlich wie bei Transistoren, in einem sehr weiten Bereich skalierbar.
  • Durch den Einsatz kleinerer Herstellungsprozesse und der Miniaturisierung der Ausleseelektronik ist es möglich, den Pixelpitch LPP oder die Größe eines Pixels in die Größenordnung des Fingerpitches LFP zu bringen. Des Weiteren besteht der Wunsch nach Sensoren mit möglichst hoher Auflösung bei geringen Abmessungen.
  • Zur Lösung dieser technischen Erfordernisse wird eine durchlaufende PMD-Pixelstruktur ohne separierende Feldoxide vorgeschlagen.
  • 7 und 8 zeigen eine solche durchlaufende Pixel-Struktur.
  • 7a zeigt einen Querschnitt einer solchen Struktur mit vier Auslesefinger Ga, Gb und jeweils zwei Modulationsgates Gam, Gbm zwischen zwei Auslesefinger Ga, Gb. Die Modulationsgates Gam, Gbm sind wie bereits in 3 dargestellt lichtdurchlässig und bilden einen lichtempfindlichen Bereich 26 des Lichtlaufzeitpixels 23. Die Auslesefinger Ga, Gb sind mit einer Maske abgedeckt und bilden einen lichtunempfindlichen Bereich 27. Unterhalb der Auslesefinger Ga, Gb sind Dotierungsbereiche angedeutet, die entsprechend des Grundmaterials des Halbleiters n- oder p-dotiert sein können. Wie bereits in den obigen Beispielen dargestellt, kann es sich hier auch um eine Gate-Struktur mit Ausleseknoten handeln.
  • In 7b zeigt einen möglicher Potenzialverlauf für die in 7a dargestellte Struktur, analog zu der Darstellung gemäß 3c.
  • 8 zeigt eine Draufsicht auf die Pixel-Struktur gemäß 7a. Die Auslesefinger Ga, Gb werden von einer Ausleseeinheit 400 ausgelesen, wobei gleichnamige Auslesefinger gemeinsam auf eine Auswerteeinheit 420 geführt werden, die beispielsweise die Ladungsdifferenzen ∆q oder die Ladungssummen Σq der Auslesefinger Ga, Gb ermittelt. Das vom Modulator 30 stammende Modulationssignal wird über eine Potenzialzuleitung 35 auf die Modulationsgates Gam, Gbm entsprechend gegenphasig zugeführt. Die Modulationsgates Gam, Gbm in unmittelbarer Nachbarschaft eines Auslesefingers Ga, Gb befinden sich jeweils auf gleichem Potenzial. Die Ausleseeinheit 400 und die Potentialzuleitung 35 sind wie auch die Auslesefinger Ga, Gb mit einer lichtundurchlässigen Maske abgedeckt.
  • Das in 7 und 8 gezeigte Lichtlaufzeitpixel wird erfindungsgemäß, wie in 9 dargestellt, durchlaufend und ohne Separation in einer Pixel-Zeile angeordnet. Die in 9 dargestellte Pixelzeile in vier Einzelpixel 23.123.4 aufgeteilt. Die Pixelgrenzen sind jeweils mit Strichpunktlinien gekennzeichnet. Die Auslesefinger, die am Rande des Lichtlaufzeitpixels liegen haben einen lichtempfindlichen Bereich 26a mit dem benachbarten Pixel gemeinsam. Die dort generierten Ladungsträger fließen somit je nach Potenziallage einmal zum Nachbarpixel und das andere Mal zum eigenen Auslesefinger. Da sich dieser Vorgang jedoch an beiden äußeren Auslesefinger mit entgegengesetztem Vorzeichen wiederholt, gleicht sich dieser Ladungstransfer im Mittel wieder aus, so dass effektiv, wie in 9 dargestellt, nur der halbe gemeinsame lichtempfindliche Bereich 26a für das jeweilige Pixel aktiv ist.
  • 10 zeigt eine kleinstmögliche Pixelstruktur mit nur zwei Auslesefinger Ga, Gb und vier Modulationsgates Gam, Gbm, wobei, wie auch in den bislang dargestellten Pixeln, die Auslesefinger mit zwei im Potential gleichwirkenden Modulationsgates umgeben ist. Der Pixelpitch LPP ist in diesem Fall nur geringfügig größer als der Fingerpitch LFP.
  • 11 zeigt eine Anordnung mit mehreren PMD-Pixelzeilen 23z, bei der sich für eine platzsparende Anordnung jeweils zwei Pixelzeilen einen Flächenbereich für die Potenzialzuleitungen 35 und Ausleseeinheiten 400 teilen.
  • 12 bzw. 12a zeigt eine Variante mit drei Modulationsgates Gam, Gbm, G0 die unterschiedliche optische Filter aufweisen, um so beispielsweise eine visuelle Farbinformation zu generieren.
  • Zur Erfassung einer Farbinformation kann beispielsweise ein Potenzial gemäß 12b an die Pixelstruktur angelegt werden. Durch Aufbringen von Farbfiltern Rot R, Grün G und Blau B über den Modulationsgates in Kombination mit einer geeigneten Ansteuerung der Gates ist es möglich, Farb-Informationen aus dem Sensor zu extrahieren, deren Auflösung höher ist als die physikalische Auflösung in Bezug auf die 3D-Werte.
  • Die Modulationsgates an den Seiten der Auslesefinger werden auf beiden Seiten mit dem gleichen Filtern versehen, die zusätzlich zu einer Transparenz in einer der drei Grundfarben auch im Infraroten durchlässig sind. Das mittlere Gate ist nur im Infraroten durchlässig.
  • Im Farb- bzw. RGB-Modus werden die mittleren Gates G0 vorzugsweise mit 0 Volt angesteuert, während die äußeren Modulationsgates Ga, Gb mit einer Spannung zwischen den Auslese- oder Separationsgates beaufschlagt werden. Die unterhalb der Farbfilter generierten Ladungsträger werden an dem nächst gelegenen Auslesefinger Ga, Gb gesammelt. Die unter dem mittleren Modulationsgate G0 anliegende Potentialbarriere kann von den Ladungsträgern nicht überwunden werden.
  • Für eine Photonenmischung wird vorzugsweise ein Potenzial gemäß 12c an die Modulationsgates angelegt, wobei die modulierte Beleuchtung im Infraroten IR erfolgt.
  • 13 zeigt einen Aufbau bzw. Verschaltung, bei der eine gegenüber der physikalischen Pixelauflösung eine höhere virtuelle Pixelauflösung realisiert werden kann. Typischerweise sind die verwendeten Pixel quadratisch, dies ist aber nicht zwingend notwendig. Ein Pixel besteht mindestens aus zwei Auslesefinger Ga, Gb und den Modulationsgates Gam, Gbm, G0 bzw. MOD. Im hier gezeigten Beispiel hat die eigentliche Pixelzelle ein Format von 2:1 im Verhältnis von Breite zu Höhe. Durch die Realisierung der Pixel als durchlaufende Matrixpixel ist es möglich, durch eine Berechnung von Entfernungswerten aus den Ladungsdifferenzen aller Auslesefingern Ga, Gb mit dem jeweilig benachbarten Auslesefinger Ga, Gb, eine virtuell höhere Pixelauflösung zu erreichen. Der resultierende virtuelle Pixelpitch LVPP beträgt im dargestellten Beispiel dann 1:1 während der physikalische Pixelpitch LPP 2:1 beträgt.
  • Typischerweise werden bei einem PMD-Sensor vier Frames zeitlich hintereinander mit vier unterschiedlichen Phasenlagen aufgenommen. Dies ermöglicht zwar eine hohe örtliche Auflösung bedingt aber eine geringe zeitliche Auflösung.
  • 14 zeigt einen Aufbau in dem durch eine gemeinsame Nutzung der Auslesefinger vier unterschiedliche Phasen in einem engen räumlichen Gebiet realisiert werden können. Über den Modulator 30 werden die obere und untere Pixelzeile mit einem Modulationssignal beaufschlagt, wobei die untere Pixelzeile mit einem um 90° verschobenen Modulationssignal beaufschlagt wird. Durch geeignete Verschaltung können jeweils benachbarte Pixel in einer Pixelzeile mit einer um 180° verschobenen Phasenlage beaufschlagt werden. Durch dieses Vorgehen können in einem Frame durch Verrechnung von zwei mal zwei benachbarten Pixeln ein Entfernungswert ermittelt werden. Hierdurch ist es möglich, die Bewegungsartefakte deutlich zu minimieren, ohne dass die räumliche Auflösung stark beeinträchtigt wird.
  • Bezugszeichenliste
  • 10
    Sendeeinheit
    12
    Beleuchtungslichtquelle
    15
    Strahlformungsoptik
    20
    Empfangseinheit, TOF-Kamera
    22
    Lichtlaufzeitsensor
    23
    Lichtlaufzeitpixel
    23Z
    Lichtlaufzeitpixelzeile
    25
    Empfangsoptik
    26
    lichtempfindlicher Bereich
    26a
    gemeinsamer lichtempfindlicher Bereich
    27
    lichtunempfindlicher Bereich
    28a
    aktiver Bereich für Auslesefinger Ga
    28b
    aktiver Bereich für Auslesefinger Gb
    30
    Modulator
    35
    Potentialzuleitung
    40
    Objekt
    400
    Ausleseeinheit
    420
    Auswerteeinheit
    Gam, G0, Gbm, MOD
    Modulationsgates
    Ga, Gb
    Auslesefinger
    AGa, AGb
    Auslesegates
    AKa, AKb
    Ausleseknoten
    q
    Ladungen
    qa, qb
    Ladungen am Auslesefinger Ga, Gb
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 1777747 B1 [0002]
    • US 6587186 B2 [0002]
    • DE 19704496 C2 [0002, 0026, 0031, 0034, 0039]
    • DE 19821974 A1 [0003]

Claims (2)

  1. Lichtlaufzeitsensor (22) mit Modulationsgates (Gam, Gbm) in lichtempfindlichen und Auslesefinger (Ga, Gb) in lichtunempfindlichen Bereichen, wobei die Modulationsgates (Gam, Gbm, G0) und Auslesefinger (Ga, Gb) in parallelen Streifen angeordnet sind, die gruppenweise ein Lichtlaufzeitpixel (23) bilden, mit einer Ausleseeinheit (400), die eine elektrische Größe (U) an den Auslesefinger (Ga, Gb) erfasst und mit einer Auswerteeinheit (420), die ausgehend von den erfassten elektrischen Größen (U) einen entfernungsrelevanten Wert (d, ∆q) ermittelt, dadurch gekennzeichnet, dass der Lichtlaufzeitsensor (23) mindestens eine Lichtlaufzeitpixelzeile (23z) mit mindestens drei Lichtlaufzeitpixel (23) aufweist, und dass die Auslesefinger (Ga, Gb), die nicht am Rand der (23Z) Zeile angeordneten sind, an zwei Seiten an einem Modulationsgate (Gam, Gbm) angrenzen, und dass die Auswerteeinheit (420) derart ausgebildet ist, dass für jeden Auslesefinger (Ga, Gb) einzelnd eine elektrische Größe erfasst wird und aus diesen Größen für alle benachbarter Auslesefinger-Paare (Ga, Gb) ein entfernungsrelevanter Wert (∆q) ermittelt wird.
  2. Lichtlaufzeitsensor (22) nach Anspruch 1, bei dem jeweils vier benachbarte Lichtlaufzeitpixel (23) mit unterschiedlichen Phasenlagen (0, 90°, 180°, 270°) betrieben werden.
DE102013209162.1A 2013-05-16 2013-05-16 Lichtlaufzeitsensor Pending DE102013209162A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102013209162.1A DE102013209162A1 (de) 2013-05-16 2013-05-16 Lichtlaufzeitsensor
PCT/EP2014/058622 WO2014183983A1 (de) 2013-05-16 2014-04-28 Lichtlaufzeitsensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013209162.1A DE102013209162A1 (de) 2013-05-16 2013-05-16 Lichtlaufzeitsensor

Publications (1)

Publication Number Publication Date
DE102013209162A1 true DE102013209162A1 (de) 2014-11-20

Family

ID=50639490

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013209162.1A Pending DE102013209162A1 (de) 2013-05-16 2013-05-16 Lichtlaufzeitsensor

Country Status (2)

Country Link
DE (1) DE102013209162A1 (de)
WO (1) WO2014183983A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821974A1 (de) 1998-05-18 1999-11-25 Rudolf Schwarte Vorrichtung und Verfahren zur Erfassung von Phase und Amplitude elektromagnetischer Wellen
DE19704496C2 (de) 1996-09-05 2001-02-15 Rudolf Schwarte Verfahren und Vorrichtung zur Bestimmung der Phasen- und/oder Amplitudeninformation einer elektromagnetischen Welle
US6587186B2 (en) 2000-06-06 2003-07-01 Canesta, Inc. CMOS-compatible three-dimensional image sensing using reduced peak energy
EP1777747B1 (de) 2005-10-19 2008-03-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Einrichtung und Verfahren zur Demodulation von modulierten elektromagnetischen Wellenfeldern

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109548A1 (de) * 2012-10-08 2014-06-12 Pmdtechnologies Gmbh Auslesegate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704496C2 (de) 1996-09-05 2001-02-15 Rudolf Schwarte Verfahren und Vorrichtung zur Bestimmung der Phasen- und/oder Amplitudeninformation einer elektromagnetischen Welle
DE19821974A1 (de) 1998-05-18 1999-11-25 Rudolf Schwarte Vorrichtung und Verfahren zur Erfassung von Phase und Amplitude elektromagnetischer Wellen
US6587186B2 (en) 2000-06-06 2003-07-01 Canesta, Inc. CMOS-compatible three-dimensional image sensing using reduced peak energy
EP1777747B1 (de) 2005-10-19 2008-03-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Einrichtung und Verfahren zur Demodulation von modulierten elektromagnetischen Wellenfeldern

Also Published As

Publication number Publication date
WO2014183983A1 (de) 2014-11-20

Similar Documents

Publication Publication Date Title
DE112012006401B4 (de) Bereichssensor und Bereichsbildsensor
DE112010004288T5 (de) Optimierte Lichtleiteranordnung für einen Bildsensor
DE102019101752B4 (de) Pixelarray für eine Kamera, Kamera und Lichtlaufzeitkamerasystem mit einer derartigen Kamera
DE102014108310B4 (de) Optisches Laufzeitsystem
DE102011089629A1 (de) Lichtlaufzeitkamera
DE102016209319A1 (de) Pixelzelle für einen Sensor sowie entsprechender Sensor
EP2210073B1 (de) Schaltungsanordnung zum erzeugen von licht- und temperaturabhängigen signalen, insbesondere für ein bildgebendes pyrometer
DE112017000381T5 (de) Eine Detektorvorrichtung mit Majoritätsstrom und Isolationsmittel
DE102012204512A1 (de) Vorrichtung und Verfahren zur Phasenmessung eines modulierten Lichts
DE102018108794B3 (de) Lichtlaufzeitpixel und Lichtlaufzeitsensor mit entsprechenden Pixel
DE102019113597B3 (de) Pixelarray für eine Kamera, Kamera und Lichtlaufzeitkamerasystem mit einer derartigen Kamera
WO2013087608A1 (de) Halbleiterbauelement mit trench gate
DE2025476A1 (de) Photodiode
DE2640832C3 (de) Elektroakustische Vorrichtung zum Lesen eines eindimensionalen optischen Bildes
DE102018113096A1 (de) Lichtlaufzeitpixel und Lichtlaufzeitsensor mit entsprechenden Pixel
DE102013209161A1 (de) Lichtlaufzeitsensor
DE102015218484A1 (de) Referenzpixelarray für einen Bildsensor
DE102013209162A1 (de) Lichtlaufzeitsensor
WO2022122891A1 (de) Entfernungsmesssystem
DE102015204124A1 (de) Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor
DE112015001877T5 (de) Entfernungsabbildungssensor
DE102012203596B4 (de) Lichtlaufzeitsensor
DE102012109548A1 (de) Auslesegate
DE102021112402A1 (de) Lichtlaufzeitsensor
DE102013102061A1 (de) Subpixel

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: PMDTECHNOLOGIES AG, DE

Free format text: FORMER OWNER: PMDTECHNOLOGIES GMBH, 57076 SIEGEN, DE

R082 Change of representative

Representative=s name: SCHUHMANN, JOERG, DIPL.-PHYS. DR. RER. NAT., DE

R081 Change of applicant/patentee

Owner name: PMDTECHNOLOGIES AG, DE

Free format text: FORMER OWNER: PMDTECHNOLOGIES AG, 57076 SIEGEN, DE

R082 Change of representative

Representative=s name: SCHUHMANN, JOERG, DIPL.-PHYS. DR. RER. NAT., DE

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: G01J0009000000

Ipc: G01S0017360000

R016 Response to examination communication