DE102013022037A1 - Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine - Google Patents

Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine Download PDF

Info

Publication number
DE102013022037A1
DE102013022037A1 DE102013022037.8A DE102013022037A DE102013022037A1 DE 102013022037 A1 DE102013022037 A1 DE 102013022037A1 DE 102013022037 A DE102013022037 A DE 102013022037A DE 102013022037 A1 DE102013022037 A1 DE 102013022037A1
Authority
DE
Germany
Prior art keywords
cylinder
exhaust valve
time
piston
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013022037.8A
Other languages
English (en)
Inventor
Dipl.-Ing. Wagner Marc Oliver
Alexander Zink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to DE102013022037.8A priority Critical patent/DE102013022037A1/de
Priority to JP2016540537A priority patent/JP6254705B2/ja
Priority to US15/106,188 priority patent/US10598099B2/en
Priority to EP14809594.6A priority patent/EP3084197B1/de
Priority to CN201480069402.5A priority patent/CN105829683B/zh
Priority to PCT/EP2014/003244 priority patent/WO2015090522A2/de
Publication of DE102013022037A1 publication Critical patent/DE102013022037A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/06Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine in einem Motorbremsbetrieb, bei welchem in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels zumindest ein Auslassventil wenigstens eines Zylinders ein erstes Mal geschlossen (1S1, 1S1'', 1S1'''), daran anschließend ein erstes Mal geöffnet (1O1, 1O1'', 1O1'''), daran anschließend ein zweites Mal geschlossen (2S1, 2S1', 2S1'', 2S1''') und daran anschließend ein zweites Mal geöffnet (2O1, 2O1'', 2O1''') wird, um dadurch mittels eines Kolbens des Zylinders in dem Zylinder verdichtetes Gas aus dem Zylinder abzulassen, wobei das Auslassventil nach dem ersten Öffnen (1O1, 1O1'', 1O1'') und vor dem zweiten Schließen (2S1, 2S1', 2S1'', 2S1''') so lange offen gehalten wird, dass der Zylinder mit Gas, das über wenigstens einen Auslasskanal aus wenigstens einem zweiten Zylinder der Hubkolben-Verbrennungskraftmaschine ausströmt, gefüllt wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine gemäß dem Oberbegriff von Patentanspruch 1.
  • Ein solches Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine in einem Motorbremsbetrieb ist der US 4 592 319 als bekannt zu entnehmen. Im Motorbremsbetrieb wird die Hubkolben-Verbrennungskraftmaschine als Bremse, das heißt als Motorbremse beispielsweise zum Abbremsen eines Kraftwagens verwendet. Bei einer Bergabfahrt zum Beispiel wird die Hubkolben-Verbrennungskraftmaschine im Motorbremsbetrieb dazu verwendet, eine Geschwindigkeit des Kraftwagens zumindest im Wesentlichen konstant zu halten beziehungsweise um zu vermeiden, dass die Geschwindigkeit des Kraftwagens übermäßig zunimmt. Durch die Verwendung der Hubkolben-Verbrennungskraftmaschine als Motorbremse kann eine Betriebsbremse des Kraftwagens geschont werden. Mit anderen Worten kann durch die Verwendung der Hubkolben-Verbrennungskraftmaschine als Motorbremse der Einsatz der Betriebsbremse vermieden oder gering gehalten werden.
  • Hierzu ist es bei dem Verfahren vorgesehen, dass die Hubkolben-Verbrennungskraftmaschine als Dekompressionsbremse genutzt beziehungsweise betrieben wird. Mit anderen Worten wird die Hubkolben-Verbrennungskraftmaschine im Motorbremsbetrieb nach Art einer hinreichend aus dem allgemeinen Stand der Technik bekannten Dekompressionsbremse betrieben. Im Rahmen des Motorbremsbetriebs wird innerhalb eines Arbeitsspiels zumindest ein Auslassventil wenigstens eines Brennraums in Form eines Zylinders der Hubkolben-Verbrennungskraftmaschine ein erstes Mal geschlossen. Dadurch kann mittels eines in dem Zylinder angeordneten Kolbens sich im Zylinder befindendes Gas, beispielsweise Frischluft, verdichtet werden. Im Anschluss an das erste Schließen wird das Auslassventil geöffnet, so dass die mittels des Kolbens verdichtete Luft aus dem Zylinder insbesondere schlagartig abgelassen wird. Durch dieses Ablassen der verdichteten Luft kann in der verdichteten Luft gespeicherte und vom Kolben aufgebrachte Verdichtungsenergie nicht mehr genutzt werden, um den Kolben aus seinem oberen Totpunkt in seinen unteren Totpunkt zu bewegen beziehungsweise bei einer solchen Bewegung zu unterstützen. Mit anderen Worten wird die Verdichtungsenergie zumindest überwiegend ungenutzt aus dem Zylinder abgelassen. Dadurch, dass der Kolben beziehungsweise die Hubkolben-Verbrennungskraftmaschine Arbeit zum Verdichten des Gases im Zylinder aufwenden muss, wobei diese Arbeit infolge des Öffnen des Auslassventils nicht zum Bewegen des Kolbens aus dem oberen Totpunkt in den unteren Totpunkt genutzt werden kann, kann der Kraftwagen abgebremst werden.
  • An das erste beziehungsweise erstmalige Öffnen des Auslassventils schließt sich ein zweites Schließen an. Mit anderen Worten wird das Auslassventil nach dem ersten Öffnen ein zweites Mal geschlossen. Dadurch kann beispielsweise sich noch im Zylinder befindendes Gas mittels des Kolbens erneut verdichtet werden. Im Anschluss an das zweite Schließen wird das Auslassventil ein zweites Mal geöffnet, so dass auch ein zweites Mal das verdichtete Gas aus dem Zylinder abgelassen werden kann, ohne dass im Gas gespeicherte Verdichtungsenergie zum Bewegen des Kolbens aus seinem oberen Totpunkt in seinen unteren Totpunkt genutzt werden könnte. Dieses zumindest zweimalige Öffnen und zweimalige Schließen wird innerhalb eines Arbeitsspiels durchgeführt und dient dazu, mittels des Kolbens des Zylinders in dem Zylinder verdichtetes Gas aus dem Zylinder abzulassen.
  • Der Kolben ist über ein Pleuel gelenkig mit einer Kurbelwelle der Hubkolben-Verbrennungskraftmaschine gekoppelt. Der Kolben ist in dem Zylinder translatorisch relativ zu dem Zylinder bewegbar, wobei sich der Kolben von seinem unteren Totpunkt zu seinem oberen Totpunkt bewegt. Infolge der gelenkigen Kopplung mit der Kurbelwelle werden die translatorischen Bewegungen des Kolbens in eine rotatorische Bewegung der Kurbelwelle umgewandelt, so dass diese Kurbelwelle sich um eine Drehachse dreht. Als „Arbeitsspiel” werden bei einem Vier-Takt-Motor genau zwei vollständige Umdrehungen der Kurbelwelle bezeichnet. Dies bedeutet, dass ein Arbeitsspiel der Kurbelwelle genau 720 Grad Kurbelwinkel umfasst. Innerhalb dieser 720 Grad Kurbelwinkel [°KW] bewegt sich der Kolben zweimal in seinen oberen Totpunkt und zweimal in seinen unteren Totpunkt. Bei einem Zwei-Takt-Motor wird als „Arbeitsspiel” genau eine Umdrehung der Kurbelwelle, also 360 Grad Kurbelwinkel [°KW] verstanden.
  • Der Motorbremsbetrieb unterscheidet sich insbesondere dadurch von einem Normalbetrieb, dass die Hubkolben-Verbrennungskraftmaschine in dem Motorbremsbetrieb ohne Kraftstoffeinspritzung betrieben wird, in dem die Hubkolben-Verbrennungskraftmaschine von Rädern des Kraftwagens angetrieben wird. Im Normalbetrieb jedoch wird die Hubkolben-Verbrennungskraftmaschine in einem sogenannten Zugbetrieb betrieben, in dem die Räder von der Hubkolben-Verbrennungskraftmaschine angetrieben werden. Darüber hinaus erfolgt in dem Normalbetrieb ein gefeuerter Betrieb, in welchem nicht nur Luft, sondern auch Kraftstoff in den Zylinder eingebracht wird. Hieraus entsteht im Normalbetrieb ein Kraftstoff-Luft-Gemisch, welches gezündet und dadurch verbrannt wird.
  • Im Motorbremsbetrieb jedoch wird kein Kraftstoff in den Zylinder eingebracht, so dass die Hubkolben-Verbrennungskraftmaschine im Motorbremsbetrieb in einem ungefeuerten Betrieb betrieben wird.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren der eingangs genannten Art derart weiterzuentwickeln, dass sich eine besonders hohe Bremsleistung realisieren lässt.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
  • Um ein Verfahren der im Oberbegriff des Patentanspruchs 1 angegebenen Art derart weiterzuentwickeln, dass sich eine besonders hohe Bremsleistung im Motorbremsbetrieb realisieren lässt, ist es erfindungsgemäß vorgesehen, dass das Auslassventil nach dem ersten Öffnen und vor dem zweiten Schließen so lange offen gehalten wird, dass der Zylinder mit Gas, das insbesondere auf einer Abgasseite der Hubkolben-Verbrennungskraftmaschine über wenigstens einen Auslasskanal aus wenigstens einem von dem Zylinder unterschiedlichen, zweiten Zylinder der Hubkolben-Verbrennungskraftmaschine ausströmt, gefüllt wird. Mit anderen Worten ist es erfindungsgemäß vorgesehen, das Gas aus wenigstens einem zweiten Zylinder in den ersten Zylinder einzuleiten und dadurch den ersten Zylinder mit dem Gas aus dem zweiten Zylinder aufzuladen. Hierdurch kann wenigstens eine sogenannte Rückwärtsaufladung nach einem ersten Dekompressionszyklus des ersten Zylinders realisiert werden. Das Auslassventil des ersten Zylinders schließt dann rechtzeitig das zweite Mal, so dass das sich nun in dem ersten Zylinder befindendes und aus dem zweiten Zylinder stammendes Gas mittels des Kolbens des ersten Zylinders verdichtet wird. Im Anschluss daran kann dann das Auslassventil des ersten Zylinders das zweite Mal geöffnet werden, so dass der erste Zylinder einen zweiten Dekompressionszyklus ausführt und im verdichteten Gas gespeicherte Verdichtungsenergie nicht genutzt werden kann, um den Kolben des ersten Zylinders aus seinem oberen Totpunkt in seinen unteren Totpunkt zurückzubewegen.
  • Das Auslassventil des ersten Zylinders führt somit innerhalb eines Arbeitsspiels wenigstens zwei zeitlich aufeinanderfolgende Dekompressionshübe durch, wodurch die zwei Dekompressionszyklen des ersten Zylinders bewirkt werden. Hierbei ist der zweite Dekompressionszyklus einfach oder mehrfach aufgeladen, da sich beim zweiten Dekompressionszyklus das Gas aus dem zweiten Zylinder in dem ersten Zylinder befindet. Durch diese Aufladung des zweiten Dekompressionszyklus kann eine besonders hohe Motorbremsleistung im Motorbremsbetrieb realisiert werden. Vorzugsweise ist der zweite Dekompressionszyklus beziehungsweise der zweite Dekompressionshub so ausgestaltet, dass der in dem ersten Zylinder herrschende Druck nicht über den Wert ansteigt, gegen den wenigstens ein Einlassventil des ersten Zylinders dauerhaltbar öffnen kann.
  • Gegenüber herkömmlichen Ventilsteuerungen bei Vier-Takt-Motoren im Motorbremsbetrieb kann eine deutliche Anhebung der Motorbremsleistung durch das erfindungsgemäße Verfahren realisiert werden, insbesondere in einem unteren Drehzahlbereich.
  • Eine weitere Ausführungsform zeichnet sich dadurch aus, dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels zumindest ein zweites Auslassventil des zweiten Zylinders ein erstes Mal geschlossen, daran anschließend ein erstes Mal geöffnet, daran anschließend ein zweites Mal geschlossen und daran anschließend ein zweites Mal geöffnet wird, um dadurch mittels eines zweiten Kolbens des zweiten Zylinders in dem zweiten Zylinder verdichtetes Gas aus dem zweiten Zylinder abzulassen. Dies bedeutet, dass der zweite Zylinder beziehungsweise das zweite Auslassventil des zweiten Zylinders nach Art des ersten Zylinders beziehungsweise nach Art des ersten Auslassventils des ersten Zylinders betrieben wird.
  • Dabei wird der erste Zylinder mit zumindest einem Teil des aus dem zweiten Zylinder abgelassenen Gases gefüllt, während das zweite Auslassventil des zweiten Zylinders nach seinem zweiten Öffnen und vor seinem ersten Schließen oder nach seinem ersten Öffnen und vor seinem zweiten Schließen zumindest teilweise geöffnet ist. Dadurch, dass das zweite Auslassventil und das erste Auslassventil zumindest teilweise geöffnet sind, kann das mittels des zweiten Kolbens verdichtete Gas auf der Auslass – beziehungsweise Abgasseite der Hubkolben-Verbrennungskraftmaschine aus dem zweiten Zylinder ausströmen und über wenigstens einen Auslasskanal des ersten Zylinders in den ersten Zylinder einströmen. Somit wird ein Dekompressionszyklus beziehungsweise ein Dekompressionshub des zweiten Zylinders beziehungsweise des zweiten Auslassventils genutzt, um den ersten Zylinder für dessen zweiten Dekompressionszyklus aufzuladen. Durch diese Aufladung befindet sich eine besonders hohe Luftmenge im ersten Zylinder bei dessen zweiten Dekompressionshub, so dass eine besonders hohe Motorbremsleistung realisiert werden kann.
  • Eine besonders hohe Aufladung des ersten Zylinders lässt sich dadurch realisieren, dass das Auslassventil des ersten Zylinders nach dem ersten Öffnen und vor dem zweiten Schließen so lange offen gehalten wird, dass der erste Zylinder mit jeweiligem Gas, das auf der Abgasseite über wenigstens einen jeweiligen Auslasskanal aus dem zweiten Zylinder und aus wenigstens einem dritten Zylinder der Hubkolben-Verbrennungskraftmaschine ausströmt, gefüllt wird. Dies bedeutet, dass der erste Zylinder nicht mehr mit Gas aus dem zweiten Zylinder, sondern auch mit Gas aus dem dritten Zylinder aufgeladen wird, so dass sich eine besonders hohe Motorbremsleistung realisieren lässt.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung ist es vorgesehen, dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels zumindest ein zweites Auslassventil des zweiten Zylinders ein erstes Mal geschlossen, daran anschließend ein erstes Mal geöffnet, daran anschließend ein zweites Mal geschlossen und daran anschließend ein zweites Mal geöffnet wird, um dadurch mittels eines zweiten Kolbens des zweiten Zylinders in dem zweiten Zylinder verdichtetes Gas aus dem zweiten Zylinder abzulassen. Wie bereits erwähnt, ist es hierbei vorgesehen, dass der zweite Zylinder und dessen zweites Auslassventil nach Art des ersten Zylinders und des ersten Auslassventils betrieben werden. Darüber hinaus ist es vorgesehen, dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels zumindest ein drittes Auslassventil des dritten Zylinders ein erstes Mal geschlossen, daran anschließend ein erstes Mal geöffnet, daran anschließend ein zweites Mal geschlossen und daran anschließend ein zweites Mal geöffnet wird, um dadurch mittels eines dritten Kolbens des dritten Zylinders in dem dritten Zylinder verdichtetes Gas aus dem dritten Zylinder abzulassen. Dies bedeutet, dass auch der dritte Zylinder und dessen drittes Auslassventil nach Art des ersten Zylinders und des ersten Auslassventils betrieben werden. Hierdurch wird bei den drei Zylindern eine Dekompressionsbremse realisiert, so dass sich eine besonders hohe Motorbremsleistung realisieren lässt.
  • Der erste Zylinder wird mit zumindest einem Teil des aus dem zweiten Zylinder abgelassenen Gases gefüllt, während das zweite Auslassventil nach seinem zweiten Öffnen und vor seinem ersten Schließen geöffnet ist. Ferner wird der erste Zylinder mit zumindest einem Teil des aus dem dritten Zylinder abgelassenen Gases gefüllt, während das dritte Auslassventil nach seinem ersten Öffnen und vor seinem zweiten Schließen zumindest teilweise geöffnet ist. Hierbei ist es also vorgesehen, den zweiten Dekompressionszyklus des zweiten Zylinders und den ersten Dekompressionszyklus des dritten Zylinders zu nutzen, um den ersten Zylinder für seinen zweiten Dekompressionszyklus aufzuladen. Hierdurch befindet sich beim zweiten Dekompressionszyklus eine besonders hohe Luftmenge im ersten Zylinder, so dass sich eine besonders hohe Motorbremsleistung realisieren lässt.
  • Ferner ist es beispielsweise vorgesehen, dass der erste Zylinder für seinen ersten Dekompressionszyklus mit Gas in Form von Frischluft über wenigstens einen Einlasskanal gefüllt wird. Hierbei befindet sich ein dem Einlasskanal zugeordnetes Einlassventil zumindest teilweise in seiner Offenstellung, so dass bei einer Bewegung des Kolbens des ersten Zylinders aus dem oberen Totpunkt in den unteren Totpunkt Gas in Form von Frischluft über den Einlasskanal in den ersten Zylinder eingesaugt werden kann. Diese Frischluft kann dann im ersten Dekompressionszyklus mittels des ersten Kolbens verdichtet werden. Die verdichtete Frischluft strömt nach dem ersten Dekompressionszyklus aus dem ersten Zylinder aus. Für den zweiten Dekompressionszyklus wird der erste Zylinder mit Gas aufgeladen, das aus dem zweiten Dekompressionszyklus des zweiten Zylinders und aus dem ersten Dekompressionszyklus des dritten Zylinders stammt.
  • Das jeweilige Gas kann auf der Abgasseite der Hubkolben-Verbrennungskraftmaschine über wenigstens einen jeweiligen Auslasskanal aus dem zweiten Zylinder und dem dritten Zylinder ausströmen und über den wenigstens einen Auslasskanal des ersten Zylinders in den ersten Zylinder einströmen.
  • Hierzu sind die drei Zylinder beispielsweise über einen Abgaskrümmer fluidisch miteinander verbunden, welcher auf der Abgasseite angeordnet ist und zum Führen von Abgas beziehungsweise von aus den Zylindern strömendem Gas dient. Zu einem Zeitpunkt, zu dem die drei Auslassventile der drei Zylinder geöffnet sind, sind die drei Zylinder über den Abgaskrümmer fluidisch miteinander verbunden, so dass der geschilderte Übergang des Gases aus dem zweiten Zylinder und dem dritten Zylinder in den ersten Zylinder stattfinden kann.
  • Eine weitere Ausführungsform zeichnet sich dadurch aus, dass das Auslassventil des ersten Zylinders nach dem ersten Öffnen mindestens bis 210 Grad Kurbelwinkel nach dem oberen Totpunkt, insbesondere nach dem oberen Zündtotpunkt, des Kolbens des ersten Zylinders offen gehalten wird. Der obere Zündtotpunkt des ersten Kolbens ist dabei der obere Totpunkt des Kolbens, in dessen Bereich im gefeuerten Betrieb der Hubkolben-Verbrennungskraftmaschine eine Zündung des Kraftstoff-Luft-Gemisches erfolgt. Diese Zündung bleibt im Motorbremsbetrieb selbstverständlich aus, wobei der Begriff „oberer Zündtotpunkt” lediglich dazu dient, um diesen oberen Zündtotpunkt vom oberen Ladungswechseltotpunkt (OT) zu unterscheiden, den der erste Kolben beim Ausschieben von Abgas aus dem ersten Zylinder erreicht.
  • Dadurch, dass das Auslassventil des ersten Zylinders mindestens bis 210 Grad Kurbelwinkel nach dem oberen Zündtotpunkt offen gehalten wird, kann der erste Zylinder mit einer besonders hohen Gasmenge aufgeladen werden, so dass sich eine besonders hohe Motorbremsleistung realisieren lässt.
  • Als besonders vorteilhaft hat es sich gezeigt, wenn die Auslassventile im Motorbremsbetrieb einen geringeren Hub ausführen als in einem vom Motorbremsbetrieb unterschiedlichen Normalbetrieb, insbesondere Zugbetrieb, der Hubkolben-Verbrennungskraftmaschine. Dies bedeutet, dass im Motorbremsbetrieb die Auslassventile nicht wie im Normalbetrieb (gefeuerter Betrieb beziehungsweise Verbrennungsbetrieb) mit vollem Hub geöffnet werden. Dieser volle Hub unterbleibt im Motorbremsbetrieb. Vielmehr wird das Auslassventil mit einem demgegenüber geringeren Hub geöffnet, und zwar sowohl beim ersten Öffnen als auch beim zweiten Öffnen. Dabei kann vorgesehen sein, dass die Hübe beim ersten Öffnen und beim zweiten Öffnen gleich sind, oder dass das Auslassventil des ersten Zylinders beim ersten Öffnen und beim zweiten Öffnen mit voneinander unterschiedlichen Hüben geöffnet wird.
  • Zur Erfindung gehört auch eine Hubkolben-Verbrennungskraftmaschine für einen Kraftwagen, welche zum Durchführen eines erfindungsgemäßen Verfahrens ausgebildet ist. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind als vorteilhafte Ausgestaltungen der erfindungsgemäßen Hubkolben-Verbrennungskraftmaschine anzusehen und umgekehrt.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Ausführungsbeispiele sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in den Figurenbeschreibungen genannten und/oder in den Figuren gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
  • Die Zeichnungen zeigen in
  • 1 ein Diagramm zur Veranschaulichung eines Verfahrens zum Betreiben einer Hubkolben-Verbrennungskraftmaschine in einem Motorbremsbetrieb, bei welchem drei Auslassventile von jeweiligen Zylindern der Hubkolben-Verbrennungskraftmaschine innerhalb eines Arbeitsspiels jeweils zwei aufeinanderfolgende Dekompressionshübe durchführen, um dadurch eine Dekompressionsbremse mit einer besonders hohen Motorbremsleistung zu realisieren;
  • 2 eine alternative Ausführungsform zu 1 und in
  • 3 ein Diagramm zur Veranschaulichung bevorzugter Bereiche der jeweiligen Öffnungs- und Schließzeitpunkte der zwei aufeinanderfolgenden Dekompressionshübe anhand eines ersten Auslassventils.
  • Die Figuren dienen zur Veranschaulichung eines Verfahrens zum Betreiben einer Hubkolben-Verbrennungskraftmaschine eines Kraftwagens. Die Hubkolben-Verbrennungskraftmaschine dient zum Antreiben des Kraftwagens und umfasst insgesamt beispielsweise sechs Brennräume in Form von Zylindern. Die Zylinder sind in Reihe angeordnet. Drei erste dieser Zylinder sind in einer ersten Zylinderbank angeordnet, wobei drei zweite dieser Zylinder in einer zweiten Zylinderbank angeordnet sind. Die Zylinderbänke weisen jeweils einen gemeinsamen Abgaskrümmer auf. Das Verfahren wird anhand einer der Zylinderbänke, das heißt anhand von drei der sechs Zylinder, beschrieben, wobei die folgenden Ausführungen ohne weiteres auch auf die anderen Zylinder und die andere Zylinderbank übertragen werden können.
  • In einem ersten der drei Zylinder ist ein erster Kolben angeordnet, wobei der erste Kolben translatorisch bewegbar ist. In einem zweiten der Zylinder ist ein zweiter Kolben angeordnet, wobei der zweite Kolben translatorisch bewegbar ist. Im dritten Zylinder ist ebenfalls ein dritter Kolben angeordnet, welcher translatorisch bewegbar ist. Die drei Kolben sind über ein jeweiliges Pleuel gelenkig mit einer Kurbelwelle der Hubkolben-Verbrennungskraftmaschine gekoppelt. Die Kurbelwelle ist an einem Kurbelgehäuse der Hubkolben-Verbrennungskraftmaschine um eine Drehachse relativ zum Kurbelgehäuse drehbar gelagert. Durch die gelenkige Kopplung der Kolben mit der Kurbelwelle werden die translatorischen Bewegungen der Kolben in eine rotatorische Bewegung der Kurbelwelle um ihre Drehachse umgewandelt.
  • In einem Normalbetrieb der Verbrennungskraftmaschine wird ein gefeuerter Betrieb der Hubkolben-Verbrennungskraftmaschine durchgeführt. Im Rahmen dieses gefeuerten Betriebs (Normalbetrieb) werden flüssiger Kraftstoff und Luft in die jeweiligen Zylinder eingebracht. Daraus resultiert im jeweiligen Zylinder ein Kraftstoff-Luft-Gemisch, welches verdichtet wird.
  • Den Zylindern ist jeweils wenigstens ein Einlasskanal zugeordnet, über welchen Luft in den jeweiligen Zylinder einströmen kann. Dem Einlasskanal des ersten Zylinders ist ein erstes Einlassventil zugeordnet, welches zwischen wenigstens einer den Einlasskanal des ersten Zylinders fluidisch versperrenden Schließstellung und wenigstens einer den Einlasskanal des ersten Zylinders fluidisch freigebenden Offenstellung bewegbar ist. Dementsprechend ist dem Einlasskanal des zweiten Zylinders ein zweites Einlassventil zugeordnet, welches zwischen einer den Einlasskanal des zweiten Zylinders fluidisch versperrenden Schließstellung und wenigstens einer den Einlasskanal des zweiten Zylinders zumindest teilweise fluidisch freigebenden Offenstellung bewegbar ist. Auch dem Einlasskanal des dritten Zylinders ist ein Einlassventil zugeordnet, welches zwischen einer den Einlasskanal des dritten Zylinders fluidisch versperrenden Schließstellung und wenigstens einer den Einlasskanal des dritten Zylinders zumindest teilweise fluidisch freigebenden Offenstellung bewegbar ist. Befindet sich das jeweilige Einlassventil in seiner Offenstellung, so kann die Luft über den Einlasskanal in den jeweiligen Zylinder einströmen.
  • Aus einer Zündung und Verbrennung des Kraftstoff-Luft-Gemisches resultiert im jeweiligen Zylinder Abgas. Den Zylindern ist dabei jeweils wenigstens ein Auslasskanal zugeordnet, über welchen das Abgas aus dem jeweiligen Zylinder ausströmen kann. Dem Auslasskanal des ersten Zylinders ist ein erstes Auslassventil zugeordnet, welches zwischen einer den Auslasskanal des ersten Zylinders fluidisch versperrenden Schließstellung und wenigstens einer den Auslasskanal des ersten Zylinders zumindest teilweise fluidisch freigebenden Offenstellung bewegbar ist. Demzufolge ist dem Auslasskanal des zweiten Zylinders ein zweites Auslassventil zugeordnet, welches zwischen einer den Auslasskanal des zweiten Zylinders fluidisch versperrenden Schließstellung und wenigstens einer den Auslasskanal des zweiten Zylinders zumindest teilweise fluidisch freigebenden Offenstellung bewegbar ist. Auch dem Auslasskanal des dritten Zylinders ist ein drittes Auslassventil zugeordnet, welches zwischen einer den Auslasskanal des dritten Zylinders fluidisch versperrenden Schließstellung und wenigstens einer den Auslasskanal des dritten Zylinders zumindest teilweise fluidisch freigebenden Offenstellung bewegbar ist. Befindet sich das jeweilige Auslassventil in seiner Offenstellung, so kann das Abgas aus dem jeweiligen Zylinder über den jeweiligen Auslasskanal ausströmen.
  • Die Luft strömt dabei auf einer sogenannten Einlassseite in die Zylinder ein. Das Abgas strömt auf einer sogenannten Auslass- oder Abgasseite aus den Zylindern aus. Auf der Auslassseite ist der den drei Zylindern der Zylinderbank gemeinsamer Abgaskrümmer angeordnet, welcher zum Führen des aus den Zylindern ausströmenden Abgases dient. Wie im Folgenden noch erläutert wird, können sich die drei Auslassventile zu wenigstens einem Zeitpunkt, das heißt gleichzeitig in der jeweiligen Offenstellung befinden, so dass die Zylinder über den Abgaskrümmer fluidisch miteinander verbunden sind.
  • Die Einlassventile und die Auslassventile werden beispielsweise mittels wenigstens einer Nockenwelle betätigt und dadurch aus der jeweiligen Schließstellung in die jeweilige Offenstellung bewegt und gegebenenfalls in der Offenstellung gehalten. Dies wird auch als Ventilsteuerung bezeichnet. Durch die Nockenwellen werden die Einlassventile und die Auslassventile zu vorgebbaren Zeitpunkten oder Stellungen der Kurbelwelle geöffnet. Ferner wird durch die Nockenwellen zu vorgebbaren Zeitpunkten beziehungsweise Drehstellungen der Kurbelwelle ein jeweiliges Schließen der Einlassventile und Auslassventile zugelassen.
  • Die jeweiligen Drehstellungen der Kurbelwelle um ihre Drehachse werden üblicherweise auch als „Grad Kurbelwinkel” [°KW] bezeichnet. Die Figuren zeigt nun Diagramme, auf dessen Abszisse 10 die Drehstellungen, das heißt Grad Kurbelwinkel der Kurbelwelle aufgetragen ist.
  • Die Hubkolben-Verbrennungskraftmaschine ist dabei als Vier-Takt-Motor ausgebildet, wobei ein sogenanntes Arbeitsspiel der Kurbelwelle genau zwei Umdrehungen der Kurbelwelle umfasst. Mit anderen Worten umfasst ein Arbeitsspiel genau 720 [°KW]. Innerhalb eines solchen Arbeitsspiels, das heißt innerhalb von 720 [°KW], bewegt sich der jeweilige Kolben zweimal in seinen jeweiligen oberen Totpunkt (OT) und zweimal in seinen jeweiligen unteren Totpunkt (UT).
  • Der Totpunkt, in dessen Bereich im gefeuerten Betrieb der Hubkolben-Verbrennungskraftmaschine das verdichtete Kraftstoff-Luft-Gemisch gezündet wird, wird als oberer Zündtotpunkt (ZOT) bezeichnet. Um eine gute Lesbarkeit des in der Figur gezeigten Diagramms zu realisieren, ist der obere Zündtotpunkt ZOT zweimal eingetragen, nämlich einmal bei 720 Grad Kurbelwinkel und einmal bei 0 Grad Kurbelwinkel, wobei dies die gleiche Drehstellung der Kurbelwelle und der Nockenwelle ist.
  • Die in die in den Figuren gezeigten Diagramme eingetragenen Bezeichnungen „UT” für den unteren Totpunkt, „OT” für den oberen Totpunkt und „ZOT” für den oberen Zündtotpunkt beziehen sich auf die Stellungen des ersten Kolbens. Die in den Diagrammen gezeigten 720 [°KW] beziehen sich somit auf ein Arbeitsspiel des ersten Zylinders und des ersten Kolbens. Bezogen auf dieses Arbeitsspiel des ersten Kolbens erreichen der zweite Kolben und der dritte Kolben ihren jeweiligen unteren Totpunkt und ihren jeweiligen oberen Totopunkt beziehungsweise oberen Zündtotpunkt zu unterschiedlichen Drehstellungen der Kurbelwelle. Die folgenden Ausführungen zum ersten Auslassventil und zum ersten Einlassventil beziehen sich auf den jeweiligen unteren Totpunkt UT bei 180 [°KW] und 540 [°KW], den oberen Totpunkt OT (oberer Ladungswechseltotpunkt) bei 360 [°KW] und den oberen Zündtotpunkt ZOT des ersten Kolbens bei 0 [°KW] bzw. 720 [°KW] und können ohne weiteres auch auf das zweite Auslassventil des zweiten Zylinders, jedoch bezogen auf den jeweiligen unteren Totpunkt, den oberen Totpunkt und den oberen Zündtotpunkt des zweiten Kolbens sowie auf das dritte Auslassventil, jedoch bezogen auf den jeweiligen unteren Totpunkt, den oberen Totpunkt und den oberen Zündtotpunkt des dritten Kolbens bezogen werden.
  • Bezogen auf das jeweilige Arbeitsspiel des jeweiligen Zylinders werden die Zylinder und somit die Auslassventile und die Einlassventile in gleicher Weise betrieben.
  • Die Diagramme weisen auch eine Ordinate 12 auf, auf der ein jeweiliger Hub des jeweiligen Einlassventils und des jeweiligen Auslassventils aufgetragen ist. In diesen Hub wird das jeweilige Auslassventil beziehungsweise jeweilige Einlassventil bewegt, das heißt geöffnet und geschlossen.
  • In das Diagramm in 1 ist mit einer gestrichelten Linie ein Verlauf 14 eingetragen. Der Verlauf 14 charakterisiert die Bewegung, das heißt das Öffnen und Schließen des ersten Einlassventils des ersten Zylinders. Der Übersichtlichkeit halber ist in dem Diagramm lediglich der Verlauf des ersten Einlassventils des ersten Zylinders dargestellt. In das Diagramm ist auch mit einer durchgezogenen Linie ein Verlauf 16 eingetragen, welcher das Öffnen und Schließen des ersten Auslassventils des ersten Zylinders im Motorbremsbetrieb charakterisiert. Ein mit Kreisen versehener Verlauf 18 charakterisiert das Öffnen und Schließen des zweiten Auslassventils des zweiten Zylinders, bezogen auf das Arbeitsspiel des ersten Zylinders und des ersten Kolbens. Ein mit Kreuzen versehener Verlauf 20 charakterisiert das Öffnen und Schließen des dritten Auslassventils des dritten Zylinders, bezogen auf das Arbeitsspiel des ersten Zylinders. Damit ist der Verlauf 18 des zweiten Auslassventils des zweiten Zylinders entsprechend einer Zündreihenfolge 1-5-3-6-2-4 eines Sechs-Zylinder-Reihenmotors um 480 Grad Kurbelwinkel bezogen auf das Arbeitsspiels des ersten Zylinders nach spät versetzt dargestellt und entsprechend der Verlauf 20 des dritten Auslassventils des dritten Zylinders um 240 Grad Kurbelwinkel. Je höher der jeweilige Verlauf 14, 16, 18, 20 ist, desto weiter ist das Einlassventil beziehungsweise das jeweilige Auslassventil bei einer zugeordneten Drehstellung (Grad Kurbelwinkel) der Kurbelwelle geöffnet. Befindet sich der jeweilige Verlauf 14, 16, 18, 20 auf dem auf der Ordinate aufgetragenen Wert „Null”, so ist das Einlassventil beziehungsweise das jeweilige Auslassventil geschlossen. Mit anderen Worten stellen die Verläufe 14, 16, 18, 20 jeweilige Ventilerhebungskurven des Einlassventils beziehungsweise der jeweiligen Auslassventile dar.
  • Das im Folgenden beschriebene Verfahren wird in einem Motorbremsbetrieb der Hubkolben-Verbrennungskraftmaschine durchgeführt. Aus 1 ist anhand des Verlaufs 14 erkennbar, dass das erste Einlassventil des ersten Zylinders im Bereich des oberen Totpunkts OT des ersten Kolbens geöffnet und im Bereich des unteren Totpunkts UT des ersten Kolbens geschlossen wird. Dadurch führt das erste Einlassventil einen Einlasshub 22 aus, so dass Gas in Form von Frischluft über den Einlasskanal des ersten Zylinders in diesen einströmen kann, wobei dieses Gas von dem sich vom oberen Totpunkt OT in den unteren Totpunkt UT bewegenden Kolben angesaugt wird.
  • Wie anhand des Verlaufs 16 erkennbar ist, wird das erste Auslassventil innerhalb eines Arbeitsspiels des ersten Zylinders beziehungsweise des ersten Kolbens zweimal geschlossen und zweimal geöffnet.
  • Bezogen auf den Einlasshub 22 des ersten Einlassventils wird das erste Auslassventil des ersten Zylinders innerhalb des Arbeitsspiels des ersten Zylinders beziehungsweise des ersten Kolbens bei einer mit 1S1 bezeichneten Drehstellung kurz vor 480 [°KW] der Kurbelwelle ein erstes Mal geschlossen. Diese Drehstellung 1S1 befindet sich dabei innerhalb des Einlasshubs 22. Innerhalb des Arbeitsspiels des ersten Zylinders beziehungsweise ersten Kolbens wird das erste Auslassventil im Anschluss an das erste Schließen bei einer mit 1O1 bezeichneten Drehstellung kurz vor 660 [°KW] der Kurbelwelle ein erstes Mal geöffnet. Daran anschließend wird das erste Auslassventil bei einer mit 2S1 bezeichneten Drehstellung kurz nach 240 [°KW] der Kurbelwelle ein zweites Mal geschlossen. Daran anschließend wird das erste Auslassventil bei einer mit 2O1 bei etwa 270 [°KW] bezeichneten Drehstellung der Kurbelwelle ein zweites Mal geöffnet.
  • Durch das erste Schließen wird die sich im ersten Zylinder befindende Frischluft mittels des ersten Kolbens verdichtet. Durch das erste Öffnen und das zweite Schließen führt das erste Auslassventil einen ersten Dekompressionshub 24 innerhalb des Arbeitsspiels des ersten Zylinders durch, so dass der erste Zylinder einen ersten Dekompressionszyklus durchführt. Dabei wird durch das erste Öffnen (bei 1O1) die zuvor mittels des ersten Kolbens verdichtete Frischluft beziehungsweise das durch den ersten Kolben zuvor verdichtete Gas aus dem ersten Zylinder über den Auslasskanal des ersten Zylinders abgelassen, ohne dass in dem verdichteten Gas gespeicherte Verdichtungsenergie genutzt werden kann, um den ersten Kolben aus seinem oberen Totpunkt in seinen unteren Totpunkt zu bewegen. Da die Hubkolben-Verbrennungskraftmaschine zuvor Arbeit zum Verdichten des Gases aufwenden musste, geht damit eine Abbremsung der Hubkolben-Verbrennungskraftmaschine und somit des Kraftwagens einher. Durch das zweite Öffnen bei der Drehstellung 2O1 und das erste Schließen 1S1 führt das erste Auslassventil einen zweiten Dekompressionshub 26 innerhalb des Arbeitsspiels des ersten Zylinders durch, so dass der erste Zylinder einen zweiten Dekompressionszyklus durchführt.
  • Im Rahmen dieses zweiten Dekompressionshubs 26 beziehungsweise des zweiten Dekompressionszyklus wird innerhalb des Arbeitsspiels des ersten Zylinders beziehungsweise des ersten Kolbens mittels des ersten Kolbens im ersten Zylinder verdichtetes Gas ein zweites Mal aus dem ersten Zylinder über den Auslasskanal des ersten Zylinders abgelassen, ohne dass in diesem Gas gespeicherte Verdichtungsenergie zum Bewegen des Kolbens aus dem oberen Totpunkt in den unteren Totpunkt genutzt werden könnte. Hierdurch kann im Motorbremsbetrieb eine besonders hohe Bremsleistung, das heißt eine besonders hohe Motorbremsleistung, realisiert werden.
  • In dem Motorbremsbetrieb führt das erste Auslassventil, sowie das zweite und dritte Auslassventil, einen wesentlich geringeren Hub aus als im Normalbetrieb, das heißt im gefeuerten Betrieb der Hubkolben-Verbrennungskraftmaschine.
  • Aus der Figur ist anhand des Verlaufs 18 ferner erkennbar, dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels des zweiten Zylinders beziehungsweise des zweiten Kolbens das zweite Auslassventil des zweiten Zylinders bei einer mit 1S2 bezeichneten Drehstellung der Kurbelwelle ein erstes Mal geschlossen wird. Bezogen auf den in der Figur nicht dargestellten Einlasshub des zweiten Einlassventils des zweiten Zylinders erfolgt dieses erste Öffnen ebenfalls im Bereich des Einlasshubs des zweiten Einlassventils und insbesondere innerhalb des Einlasshubs des zweiten Einlassventils. Innerhalb des Arbeitsspiels des zweiten Zylinders wird im Anschluss an das erste Schließen das zweite Auslassventil bei einer mit 1O2 bezeichneten Drehstellung der Kurbelwelle ein erstes Mal geöffnet. Daran anschließend wird innerhalb des Arbeitsspiels des zweiten Zylinders das zweite Auslassventil bei einer mit 2S2 bezeichneten Drehstellung der Kurbelwelle in zweites Mal geschlossen und daran anschließend bei einer mit 2O2 bezeichneten Drehstellung der Kurbelwelle ein zweites Mal geöffnet. Durch das erste Öffnen (bei Drehstellung 1O2) und das zweite Schließen (bei Drehstellung 2S2) des zweiten Auslassventils führt das zweite Auslassventil einen ersten Dekompressionshub 28 durch. Durch das zweite Öffnen und das erste Schließen führt das zweite Auslassventil innerhalb des Arbeitsspiels des zweiten Zylinders einen zweiten Dekompressionshub durch. Durch das erste Schließen des zweiten Auslassventils wird Gas in Form von Frischluft, welches infolge des Öffnens des zweiten Einlassventils vom zweiten Kolben in den zweiten Zylinder eingesaugt wurde, verdichtet. Im Zuge des ersten Dekompressionshubs 28 des zweiten Auslassventils, das heißt im Zuge eines ersten Dekompressionszyklus des zweiten Zylinders wird das verdichtete Gas über den zweiten Auslasskanal aus dem zweiten Zylinder abgelassen, so dass in dem verdichteten Gas gespeicherte Verdichtungsenergie nicht genutzt werden kann, um den zweiten Kolben aus seinem oberen Totpunkt zurück in seinen unteren Totpunkt zu bewegen. Dieser Vorgang wiederholt sich im Rahmen des zweiten Dekompressionshubs 30, so dass auch der zweite Zylinder innerhalb des einen Arbeitsspiels des zweiten Zylinders zwei Dekompressionszyklen durchführt.
  • Analoges trifft auf den dritten Zylinder zu. In dem Motorbremsbetrieb wird innerhalb eines Arbeitsspiels des dritten Zylinders beziehungsweise des dritten Kolbens – wie anhand des Verlaufs 20 zu erkennen ist – bei einer mit 1S3 bezeichneten Drehstellung der Kurbelwelle ein erstes Mal geschlossen. Daran anschließend wird – innerhalb des Arbeitsspiels des dritten Zylinders – das dritte Auslassventil bei einer mit 1O3 bezeichneten Drehstellung der Kurbelwelle ein erstes Mal geöffnet. Daran anschließend wird das dritte Auslassventil bei einer mit 2S3 bezeichneten Drehstellung der Kurbelwelle ein zweites Mal geschlossen. Daran anschließend wird das dritte Auslassventil bei einer mit 2O3 bezeichneten Drehstellung der Kurbelwelle ein zweites Mal geöffnet. Durch das erste Öffnen (bei Drehstellung 1O3) und das zweite Schließen (bei Drehstellung 2S3) führt das dritte Auslassventil innerhalb eines Arbeitsspiels einen ersten Dekompressionshub 32 durch, so dass der dritte Zylinder einen ersten Dekompressionszyklus durchführt. Wie bei dem ersten Zylinder und dem zweiten Zylinder liegt die Drehstellung 1S3, bei der das dritte Auslassventil innerhalb des Arbeitsspiels des dritten Zylinders beziehungsweise dritten Kolbens das erste Mal geschlossen wird, ebenfalls im Bereich und vorzugsweise innerhalb des Einlasshubs des Einlassventils des dritten Zylinders. Infolge des ersten Schließens des dritten Auslassventils wird – wie beim ersten Zylinder und beim zweiten Zylinder – Gas in Form von Frischluft, das beziehungsweise die durch das Öffnen des dritten Einlassventils in den dritten Zylinder mittels des dritten Kolbens eingesaugt wurde, mittels des dritten Kolbens verdichtet. Durch das erste Öffnen (bei Drehstellung 1O3) des dritten Auslassventils wird das verdichtete Gas aus dem dritten Zylinder abgelassen, so dass in dem verdichteten Gas gespeicherte Verdichtungsenergie nicht genutzt werden kann, um den dritten Kolben aus seinem oberen Totpunkt in seinen unteren Totpunkt zu bewegen.
  • Durch das zweite Öffnen (bei Drehstellung 2O3) und das erste Schließen (bei Drehstellung 1S3) führt das dritte Auslassventil innerhalb des Arbeitsspiels des dritten Zylinders einen zweiten Dekompressionshub 34 durch, wobei im Zuge des zweiten Dekompressionshubs 34 des dritten Auslassventils der dritte Zylinder einen zweiten Dekompressionszyklus durchführt. Auch im Rahmen des zweiten Dekompressionszyklus wird verdichtetes Gas über den dritten Auslasskanal aus dem dritten Zylinder abgelassen, so dass im verdichteten Gas gespeicherte Verdichtungsenergie nicht genutzt werden kann, um den dritten Kolben aus dem oberen Totpunkt in den unteren Totpunkt zu bewegen. Wie auch das erste Auslassventil innerhalb des Arbeitsspiels des ersten Zylinders und das zweite Auslassventil innerhalb des Arbeitsspiels des zweiten Zylinders führt das dritte Auslassventil des dritten Zylinders innerhalb des Arbeitsspiels des dritten Zylinders zwei Dekompressionshübe 32, 34 durch, welche innerhalb des Arbeitsspiels des dritten Zylinders aufeinander folgen. Somit führen die drei Zylinder innerhalb des jeweiligen Arbeitsspiels jeweils zwei aufeinanderfolgende Dekompressionszyklen durch, wodurch eine besonders hohe Motorbremsleistung im Motorbremsbetrieb realisiert werden kann.
  • Die Grad Kurbelwinkel, bei denen das zweite und dritte Auslassventil jeweils Öffnen und Schließen sind entsprechend um 240 [°KW] bzw. 480 [°KW] bezogen auf den ersten Zylinder versetzt.
  • Um nun eine besonders hohe Motorbremsleistung im Motorbremsbetrieb zu realisieren, ist es vorgesehen, dass das erste Auslassventil des ersten Zylinders nach dem ersten Öffnen (bei Drehstellung 1O1) und vor dem zweiten Schließen (bei Drehstellung 2S1) so lange nach der zunächst erfolgten Dekompression offen gehalten wird, dass der erste Zylinder mit Gas, das auf der Abgasseite über den zweiten Auslasskanal aus dem zweiten Zylinder ausströmt, und mit Gas, das auf der Abgasseite aus dem dritten Zylinder über den dritten Auslasskanal ausströmt, wieder gefüllt wird. Anhand des Verlaufs 16 ist erkennbar, dass das erste Auslassventil bis kurz nach 240 Grad Kurbelwinkel nach dem oberen Zündtotpunkt ZOT des ersten Kolbens offen gehalten wird beziehungsweise erst kurz nach 240 Grad Kurbelwinkel nach dem oberen Zündtotpunkt ZOT vollständig geschlossen ist. Bezogen auf das Arbeitsspiel des ersten Zylinders liegt – wie aus der Figur erkennbar ist – der zweite Dekompressionshub 30 des zweiten Auslassventils noch vollständig innerhalb des ersten Dekompressionshubs 24 des ersten Auslassventils. Darüber hinaus liegt der erste Dekompressionshub 32 des dritten Auslassventils teilweise sowohl innerhalb des zweiten Dekompressionshubs 30 als auch teilweise innerhalb des ersten Dekompressionshubs 24, da das dritte Auslassventil – bezogen auf das Arbeitsspiel des ersten Zylinders – bereits vor 180 Grad Kurbelwinkel nach dem oberen Zündtotpunkt ZOT des ersten Kolbens geöffnet wird. Dies bedeutet, dass alle drei Auslassventile durch das erste Öffnen des dritten Auslassventils bei der Drehstellung 1O3 vorübergehend gleichzeitig geöffnet sind, so dass die Zylinder über den Abgaskrümmer fluidisch miteinander verbunden sind. Dadurch kann der erste Zylinder mit Gas aus dem zweiten Zylinder und dem dritten Zylinder für den sich an den ersten Dekompressionszyklus (Dekompressionshub 24) anschließenden, zweiten Dekompressionszyklus (Dekompressionshub 26) aufgeladen werden, wodurch eine besonders hohe Motorbremsleistung darstellbar ist. Der erste Zylinder wird dabei für seinen zweiten Dekompressionszyklus mit Gas aus dem zweiten Dekompressionszyklus des zweiten Zylinders und mit Gas aus dem ersten Dekompressionszyklus des dritten Zylinders gefüllt.
  • Das erste Auslassventil sollte nach dem ersten Öffnen 1O1 und vor dem zweiten Schließen 2S1 mindesten so lange offen gehalten werden, dass der erste Zylinder mit Gas, das über wenigstens einen Auslasskanal aus wenigstens einem zweiten Zylinder der Hubkolben-Verbrennungskraftmaschine ausströmt, gefüllt wird. Dies bedeutet, dass der erste Zylinder zumindest mit Gas des zweiten oder dritten Zylinders gefüllt werden sollte und somit der erste Zylinder lediglich von einem weiteren Zylinder mit Gas gefüllt wird.
  • Dieses Prinzip kann auch ohne weiteres auf den zweiten Zylinder und den dritten Zylinder übertragen werden. Dies bedeutet, dass beispielsweise der zweite Zylinder für seinen zweiten Dekompressionszyklus innerhalb des Arbeitsspiels des zweiten Zylinders mit Gas aus dem ersten Zylinder und mit Gas aus dem dritten Zylinder gefüllt, das heißt aufgeladen wird. Der dritte Zylinder wird innerhalb des Arbeitsspiels des dritten Zylinders für den zweiten Dekompressionszyklus mit Gas aus dem ersten Zylinder und mit Gas aus dem zweiten Zylinder aufgeladen. Dies ist vorteilhaft, da – wie beispielsweise aus der Figur anhand des ersten Zylinders erkennbar ist – nach dem Einlasshub 22 des ersten Einlassventils und vor dem zweiten Dekompressionszyklus beziehungsweise vor dem zweiten Dekompressionshub 26 kein Einlasshub des ersten Einlassventils mehr durchgeführt wird. Dies bedeutet, dass der erste Zylinder nach dem Einlasshub 22 und vor dem zweiten Dekompressionszyklus nicht über den Einlasskanal des ersten Zylinders mit Gas gefüllt werden kann. Daher ist es vorgesehen, den ersten Zylinder für seinen zweiten Dekompressionszyklus über den Auslasskanal des zweiten Zylinders mit Gas zu füllen, wobei dieses Gas sowohl aus dem zweiten Zylinder als auch aus dem dritten Zylinder stammt.
  • Es findet also eine Überschneidung zwischen dem zweiten Schließen des ersten Auslassventils und dem – bezogen auf das Arbeitsspiel des dritten Zylinders – ersten Öffnen des dritten Auslassventils statt. Vorteilhafterweise können durch die Überscheidung des jeweiligen ersten Öffnens eines ersten Auslassventils und des zweiten Schließens eines dritten Auslassventils und/oder des ersten Schließens eines zweite Auslassventils Druckspitzen im Abgaskrümmer durch Überströmen des Gases aus dem ersten Zylinder in den dritten und/oder zweiten Zylinder abgebaut werden. Ebenso können durch die Überschneidung des jeweiligen zweiten Öffnens eines ersten Auslassventils mit dem ersten Dekompressionshub des dritten Auslassventils Druckspitzen im Abgaskrümmer durch Überströmen des Gases aus dem ersten Zylinder in den dritten Zylinder vermeiden werden. Ferner findet eine Überschneidung zwischen dem ersten Öffnen des dritten Auslassventils und dem – bezogen auf das Arbeitsspiel des zweiten Zylinders – ersten Schließen des zweiten Auslassventils statt. Ferner erfolgt das zweite Schließen des ersten Auslassventils nach dem ersten Schließen des zweiten Auslassventils, so dass sowohl Gas aus dem zweiten Zylinder als auch Gas aus dem dritten Zylinder in den ersten Zylinder einströmen kann. Somit wird der erste Zylinder zweifach, das heißt mit Gas aus dem zweiten Zylinder und mit Gas aus dem dritten Zylinder, aufgeladen.
  • In 2 ist eine alternative Ausführungsform zu 1 dargestellt. Gleiche Linien und gleiche Punkte sind dabei in 2 mit denselben Bezugszeichen wie in 1 versehen. In das Diagramm der 2 ist der zu 1 unveränderte Verlauf 14 eingetragen. Die Verläufe 16', 18' und 20' weisen im Unterschied zu 1 jeweils früher schließende erste Dekompressionshübe 24', 28' und 32' auf. Das zweite Schließen 2S1', 2S2' und 2S3' der ersten Dekompressionshübe 24', 28' und 32' findet jeweils ca. 30 Grad Kurbelwinkel früher statt, Damit schließt beispielsweise das erste Auslassventil bei etwa 210 Grad Kurbelwinkel und die ersten Schließzeitpunkte 1S1, 1S2 und 1S3 der zweiten, unveränderten Dekompressionshübe 26, 30, 34 liegen zeitlich nach dem zweiten Schließen 2S1', 2S2' und 2S3' der ersten Dekompressionshübe 24', 28' und 32'.
  • In 3 ist ein Diagramm zur Veranschaulichung bevorzugter Bereiche der jeweiligen Öffnungs- und Schließzeitpunkte der zwei aufeinanderfolgenden Dekompressionshübe anhand des ersten Auslassventils dargestellt. Die folgenden Ausführungen sind ohne weiteres auch auf die anderen Zylinder und die andere Zylinderbank übertragbar. Gleiche Linien und gleiche Punkte sind dabei in 3 mit denselben Bezugszeichen wie in 1 und 2 versehen. In das Diagramm der 2 ist der zu 1 unveränderte Verlauf 14 eingetragen. Des Weiteren sind in der 3 zwei Verläufe 16'' (durchgezogene Linie) und 16''' (gestrichelte Linie) des ersten Auslassventils aufgetragen, die mit dem Verlauf 16'' die frühesten möglichen Öffnungszeitpunkte 1O1'' bei etwa 610 Grad Kurbelwinkel und 2O1'' bei etwa 250 Grad Kurbelwinkel und Schließzeitpunkte 1S1'' bei etwa 400 Grad Kurbelwinkel und 2O1'' bei etwa 210 Grad Kurbelwinkel angeben. Dementsprechend gibt der Verlauf 16''' die spätesten möglichen Öffnungszeitpunkte 1O1''' bei etwa 680 Grad Kurbelwinkel und 2O1''' bei etwa 320 Grad Kurbelwinkel und Schließzeitpunkte 1S1''' bei etwa 680 Grad Kurbelwinkel und 2O1''' bei etwa 320 Grad Kurbelwinkel an. Die sich daraus ergebenden Bereiche möglicher erster und zweiter Öffnungszeitpunkte und erster und zweiter Schließzeitpunkte sind beliebig miteinander kombinierbar.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 4592319 [0002]

Claims (7)

  1. Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine in einem Motorbremsbetrieb, bei welchem in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels zumindest ein Auslassventil wenigstens eines Zylinders ein erstes Mal geschlossen (1S1, 1S1'', 1S1''', daran anschließend ein erstes Mal geöffnet (1O1, 1O1'', 1O1'''), daran anschließend ein zweites Mal geschlossen (2S1, 2S1', 2S1'', 2S1''') und daran anschließend ein zweites Mal geöffnet (2O1, 2O1'', 2O1''') wird, um dadurch mittels eines Kolbens des Zylinders in dem Zylinder verdichtetes Gas aus dem Zylinder abzulassen, dadurch gekennzeichnet, dass das Auslassventil nach dem ersten Öffnen (1O1, 1O1'', 1O1'') und vor dem zweiten Schließen (2S1, 2S1', 2S1'', 2S1''') so lange offen gehalten wird, dass der Zylinder mit Gas, das über wenigstens einen Auslasskanal aus wenigstens einem zweiten Zylinder der Hubkolben-Verbrennungskraftmaschine ausströmt, gefüllt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels des zweiten Zylinders zumindest ein zweites Auslassventil des zweiten Zylinders ein erstes Mal geschlossen (1S2, 1S2'', 1S2'''), daran anschließend ein erstes Mal geöffnet (1O2, 1O2'', 1O2'''), daran anschließend ein zweites Mal geschlossen (2S2, 2S2', 2S2'', 2S2''') und daran anschließen ein zweites Mal geöffnet (2O2, 2O2'', 2O2''') wird, um dadurch mittels eines zweiten Kolbens des zweiten Zylinders in dem zweiten Zylinder verdichtetes Gas aus dem zweiten Zylinder abzulassen, wobei der erste Zylinder mit zumindest einem Teil des aus dem zweiten Zylinder abgelassenen Gases gefüllt wird, während das zweite Auslassventil nach seinem zweiten Öffnen (2O2, 2O2', 2O2''') und vor seinem ersten Schließen (1S2, 1S2'', 1S2''') oder nach seinem ersten Öffnen (1O2, 1O2'', 1O2''') und vor seinem zweiten Schließen (2S2, 2S2', 2S2'', 2S2''') zumindest teilweise geöffnet ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Auslassventil des ersten Zylinders nach dem ersten Öffnen (1O1, 1O1'', 1O1''') und vordem zweiten Schließen (2S1, 2S1', 2S1'', 2S1''') so lange offen gehalten wird, dass der erste Zylinder mit jeweiligem Gas, das über wenigstens einen jeweiligen Auslasskanal aus dem zweiten Zylinder und aus wenigstens einem dritten Zylinder der Hubkolben-Verbrennungskraftmaschine ausströmt, gefüllt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels des zweiten Zylinders zumindest ein zweites Auslassventil des zweiten Zylinders ein erstes Mal geschlossen (1S2, 1S2'', 1S2'''), daran anschließend ein erstes Mal geöffnet (1O2, 1O2'', 1O2'''), daran anschließend ein zweites Mal geschlossen (2S2, 2S2', 2S2'', 2S2''') und daran anschließend ein zweites Mal geöffnet (2O2, 2O2'', 2O2''') wird, um dadurch mittels eines zweiten Kolbens des zweiten Zylinders in dem zweiten Zylinder verdichtetes Gas aus dem zweiten Zylinder abzulassen, und dass in dem Motorbremsbetrieb innerhalb eines Arbeitsspiels des dritten Zylinders zumindest ein drittes Auslassventil des dritten Zylinders ein erstes Mal geschlossen (1S3, 1S3'', 1S3'''), daran anschließend ein erstes Mal geöffnet (1O3, 1O3'', 1O3'''), daran anschließend ein zweites Mal geschlossen (2S3, 2S3', 2S3'', 2S3''') und daran anschließend ein zweites Mal geöffnet (2O3, 2O3'', 2O3''') wird, um dadurch mittels eines dritten Kolbens des dritten Zylinders in dem dritten Zylinder verdichtetes Gas aus dem dritten Zylinder abzulassen, wobei der erste Zylinder mit zumindest einem Teil des aus dem zweiten Zylinder abgelassenen Gases gefüllt wird, während das zweite Auslassventil nach seinem zweiten Öffnen (2O2, 2O2'', 2O2''') und vor seinem ersten Schließen (1S2, 1S1'', 1S1''') geöffnet ist und wobei der erste Zylinder mit zumindest einem Teil des aus dem dritten Zylinder abgelassenen Gases gefüllt wird, während das dritte Auslassventil nach seinem ersten Öffnen (1O3, 1O3'', 1O3''') und vor seinem zweiten Schließen (2S3, 2S3', 2S3'', 2S3''') zumindest teilweise geöffnet ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Auslassventil des ersten Zylinders nach dem ersten Öffnen (1O1, 1O2'', 1O1''') mindestens bis 210 Grad Kurbelwinkel nach dem oberen Totpunkt (OT), insbesondere nach dem oberen Zündtotpunkt (ZOT), des Kolbens des ersten Zylinders offen gehalten wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auslassventile im Motorbremsbetrieb einen geringeren Hub ausführen als in einem vom Motorbremsbetrieb unterschiedlichen Normalbetrieb, insbesondere Zugbetrieb, der Hubkolben-Verbrennungskraftmaschine.
  7. Hubkolben-Verbrennungskraftmaschine für einen Kraftwagen, welche zum Durchführen eines Verfahrens nach einem der vorhergehenden Ansprüche ausgebildet ist.
DE102013022037.8A 2013-12-20 2013-12-20 Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine Withdrawn DE102013022037A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102013022037.8A DE102013022037A1 (de) 2013-12-20 2013-12-20 Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine
JP2016540537A JP6254705B2 (ja) 2013-12-20 2014-12-04 往復燃焼機関の作動方法
US15/106,188 US10598099B2 (en) 2013-12-20 2014-12-04 Method for operating a reciprocating internal combustion engine
EP14809594.6A EP3084197B1 (de) 2013-12-20 2014-12-04 Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine
CN201480069402.5A CN105829683B (zh) 2013-12-20 2014-12-04 用于汽车的往复活塞式内燃机及其运行方法
PCT/EP2014/003244 WO2015090522A2 (de) 2013-12-20 2014-12-04 Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013022037.8A DE102013022037A1 (de) 2013-12-20 2013-12-20 Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine

Publications (1)

Publication Number Publication Date
DE102013022037A1 true DE102013022037A1 (de) 2015-06-25

Family

ID=52016562

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013022037.8A Withdrawn DE102013022037A1 (de) 2013-12-20 2013-12-20 Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine

Country Status (6)

Country Link
US (1) US10598099B2 (de)
EP (1) EP3084197B1 (de)
JP (1) JP6254705B2 (de)
CN (1) CN105829683B (de)
DE (1) DE102013022037A1 (de)
WO (1) WO2015090522A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017102042A1 (de) * 2015-12-19 2017-06-22 Daimler Ag Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016015457A1 (de) * 2016-12-22 2018-06-28 Daimler Ag Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine
DE102018005457B4 (de) * 2018-07-10 2020-02-06 Daimler Ag Verfahren zum Betrieb einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, in einem Motorbremsbetrieb
US20230392559A1 (en) * 2022-06-02 2023-12-07 GM Global Technology Operations LLC Engine exhaust braking system for equalizing pressures across exhaust valves during intake strokes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592319A (en) 1985-08-09 1986-06-03 The Jacobs Manufacturing Company Engine retarding method and apparatus
DE3900739C2 (de) * 1989-01-12 1991-03-14 Man Nutzfahrzeuge Ag, 8000 Muenchen, De
DE69718115T2 (de) * 1996-09-05 2004-07-08 Caterpillar Inc., Peoria Motorbremsverfahren mit von Auslassimpulsen verstärkter Verdichtung
DE69629782T2 (de) * 1995-06-06 2004-07-15 Caterpillar Inc., Peoria Kompressionsmotorbremseinrichtung und verfahren
DE102010008928A1 (de) * 2010-02-23 2011-08-25 Schaeffler Technologies GmbH & Co. KG, 91074 Hubkolbenbrennkraftmaschine mit Motorbremsung durch Öffnen der Auslassventile

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741307A (en) * 1987-02-17 1988-05-03 Pacific Diesel Brave Co. Apparatus and method for compression release retarding of an engine
SE466320B (sv) * 1989-02-15 1992-01-27 Volvo Ab Foerfarande och anordning foer motorbromsning med en fyrtakts foerbraenningsmotor
US5526784A (en) * 1994-08-04 1996-06-18 Caterpillar Inc. Simultaneous exhaust valve opening braking system
US8215292B2 (en) * 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
WO1998032961A1 (fr) * 1997-01-29 1998-07-30 Hino Jidosha Kogyo Kabushiki Kaisha Dispositif de respiration de gaz d'echappement
KR100596053B1 (ko) * 1997-10-03 2006-07-05 자콥스 비히클 시스템즈, 인코포레이티드. 내연 기관에서의 배기 가스 재순환을 제어하는 방법 및 시스템
US6000374A (en) * 1997-12-23 1999-12-14 Diesel Engine Retarders, Inc. Multi-cycle, engine braking with positive power valve actuation control system and process for using the same
US6321717B1 (en) * 2000-02-15 2001-11-27 Caterpillar Inc. Double-lift exhaust pulse boosted engine compression braking method
US6732685B2 (en) * 2002-02-04 2004-05-11 Caterpillar Inc Engine valve actuator
SE521189C2 (sv) * 2002-02-04 2003-10-07 Volvo Lastvagnar Ab Anordning för att tillföra EGR-gas
US6805093B2 (en) * 2002-04-30 2004-10-19 Mack Trucks, Inc. Method and apparatus for combining exhaust gas recirculation and engine exhaust braking using single valve actuation
WO2004025109A1 (en) * 2002-09-12 2004-03-25 Diesel Engine Retarders, Inc. System and method for internal exhaust gas recirculation
DE10349641A1 (de) * 2003-10-24 2005-05-19 Man Nutzfahrzeuge Ag Motorstaubremsvorrichtung einer 4-Takt-Hubkolbenbrennkraftmaschine
DE102004031502B4 (de) * 2004-06-30 2013-12-05 Daimler Ag Verfahren zum Betreiben einer Brennkraftmaschine
US7500475B2 (en) * 2006-09-13 2009-03-10 Perkins Engines Company Limited Engine and method for operating an engine
JP4512080B2 (ja) * 2006-11-10 2010-07-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7568465B1 (en) * 2008-04-18 2009-08-04 Caterpillar Inc. Engine retarder having multiple modes
US8800531B2 (en) * 2010-03-12 2014-08-12 Caterpillar Inc. Compression brake system for an engine
AT510529B1 (de) * 2010-09-23 2012-10-15 Avl List Gmbh Viertakt-brennkraftmaschine mit einer motorbremse
JP5351233B2 (ja) * 2011-10-14 2013-11-27 日野自動車株式会社 内燃機関の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592319A (en) 1985-08-09 1986-06-03 The Jacobs Manufacturing Company Engine retarding method and apparatus
DE3900739C2 (de) * 1989-01-12 1991-03-14 Man Nutzfahrzeuge Ag, 8000 Muenchen, De
DE69629782T2 (de) * 1995-06-06 2004-07-15 Caterpillar Inc., Peoria Kompressionsmotorbremseinrichtung und verfahren
DE69718115T2 (de) * 1996-09-05 2004-07-08 Caterpillar Inc., Peoria Motorbremsverfahren mit von Auslassimpulsen verstärkter Verdichtung
DE102010008928A1 (de) * 2010-02-23 2011-08-25 Schaeffler Technologies GmbH & Co. KG, 91074 Hubkolbenbrennkraftmaschine mit Motorbremsung durch Öffnen der Auslassventile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017102042A1 (de) * 2015-12-19 2017-06-22 Daimler Ag Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine
US11378020B2 (en) 2015-12-19 2022-07-05 Daimler Ag Method for operating a reciprocating internal combustion engine

Also Published As

Publication number Publication date
US20160319753A1 (en) 2016-11-03
EP3084197B1 (de) 2018-03-14
CN105829683B (zh) 2019-03-01
WO2015090522A2 (de) 2015-06-25
EP3084197A2 (de) 2016-10-26
US10598099B2 (en) 2020-03-24
WO2015090522A3 (de) 2015-08-13
JP6254705B2 (ja) 2017-12-27
JP2017502200A (ja) 2017-01-19
CN105829683A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
AT509394B1 (de) Verfahren zum betrieb eines kolbenexpanders eines dampfmotors
EP3084197B1 (de) Verfahren zum betreiben einer hubkolben-verbrennungskraftmaschine
DE102015016526A1 (de) Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine
DE102010007071A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102017120512B4 (de) Verfahren zum Betreiben eines Wasserstoffmotors für ein Kraftfahrzeug
DE102014206305B4 (de) Verbrennungsmotor mit alternierender Zylinderabschaltung
DE102013220637B4 (de) Verfahren und Vorrichtung zum Einstellen einer definierten Kurbelwellenabstellposition im Motorauslauf
DE102018005457B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, in einem Motorbremsbetrieb
DE102015009898A1 (de) Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine
DE3024812C2 (de) Viertakt-Brennkraftmaschine mit Ein- und Auslaßventilen
DE102020006622A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
DE102016219101B4 (de) Hubkolben-verbrennungskraftmaschine mit vorrichtung zum steigern ihres drehmomentes
DE102016015457A1 (de) Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine
DE102019005128A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
DE102006033482A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Zylindern
DE102014017303A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug und Antriebseinrichtung
WO2018192821A1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine, insbesondere eines kraftfahrzeugs
DE102021002758A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug
DE4036537C1 (en) IC engine toxics reduction system - involves mixing off-gas from previous cycle to fresh air content
DE10309730B4 (de) Verfahren zur Impulsaufladung einer Brennkraftmaschine
DE102005059403A1 (de) Im Zweitaktverfahren durchzuführendes Motorbremsverfahren für eine Brennkraftmaschine
DE102021004053A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
DE102013215764A1 (de) Hubkolbenbrennkraftmaschine sowie Verfahren zur Steuerung der Einlassseite einer Hubkolbenbrennkraftmaschine
DE102004027474B4 (de) Viertakt-Verbrennungsmotor mit Abgasturbolader und Verfahren zur Optimierung seines Betriebs
DE102022110795A1 (de) Viertakt-Brennkraftmaschine und Verfahren zum Betrieb einer Viertakt-Brennkraftmaschine

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: DAIMLER AG, DE

Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE

R005 Application deemed withdrawn due to failure to request examination