DE102012224031A1 - Datenübertragungsprotokoll mit Protokollausnahmezustand - Google Patents

Datenübertragungsprotokoll mit Protokollausnahmezustand Download PDF

Info

Publication number
DE102012224031A1
DE102012224031A1 DE102012224031.4A DE102012224031A DE102012224031A1 DE 102012224031 A1 DE102012224031 A1 DE 102012224031A1 DE 102012224031 A DE102012224031 A DE 102012224031A DE 102012224031 A1 DE102012224031 A1 DE 102012224031A1
Authority
DE
Germany
Prior art keywords
message
communication protocol
protocol
bit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102012224031.4A
Other languages
English (en)
Inventor
Florian Hartwich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102012224031.4A priority Critical patent/DE102012224031A1/de
Priority to ES13814543T priority patent/ES2733332T3/es
Priority to JP2015548604A priority patent/JP6121563B2/ja
Priority to EP13814543.8A priority patent/EP2936746B1/de
Priority to CN201380073346.8A priority patent/CN104995874B/zh
Priority to KR1020157019546A priority patent/KR102091565B1/ko
Priority to RU2015129337A priority patent/RU2678715C2/ru
Priority to PCT/EP2013/077524 priority patent/WO2014096278A1/de
Publication of DE102012224031A1 publication Critical patent/DE102012224031A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/4013Management of data rate on the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/03Protocol definition or specification 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Verfahren zum Austausch von Daten zwischen Teilnehmern, die mittels eines Bussystems miteinander verbunden sind, wobei Nachrichten, die die Daten enthalten, gemäß einem ersten Kommunikationsprotokoll ausgetauscht werden, wobei die Nachrichten aus einer Sequenz von Bits bestehen, wobei wenigstens ein Steuerbit mit einer vorgegebenen Position innerhalb der Nachricht, die gemäß dem ersten Kommunikationsprotokoll ausgetauscht wird, einen vorgegebenen Wert aufweisen muss, wobei für jede Nachricht ein Teilnehmer die Rolle des Senders innehat und wenigstens ein anderer Teilnehmer als Empfänger die Nachricht empfängt und eine Fehlerüberwachung für die Nachricht durchführt, dadurch gekennzeichnet, dass bei Vorliegen wenigstens eines Steuerbits mit einem von dem vorgegebenen Wert abweichenden Wert wenigstens ein Empfänger einen Protokollausnahmezustand einnimmt, in dem er die Fehlerüberwachung aussetzt, bis eine Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls erfüllt ist.

Description

  • Stand der Technik
  • Die vorliegende Erfindung geht aus von einem Verfahren zum Austausch von Daten zwischen Teilnehmern, die mittels eines Bussystems miteinander verbunden sind, wobei die Nachrichten, die die Daten enthalten, gemäß einem ersten Kommunikationsprotokoll ausgetauscht werden, wobei die Nachrichten aus einer Sequenz von Bits bestehen und wenigstens ein Steuerbit mit einer vorgegebenen Position innerhalb der Nachricht, die gemäß dem ersten Kommunikationsprotokoll ausgetauscht wird, einen vorgegebenen Wert aufweisen muss, wobei für jede Nachricht ein Teilnehmer die Rolle des Senders innehat und wenigstens ein anderer Teilnehmer als Empfänger die Nachricht empfängt und eine Fehlerüberwachung für die Nachricht durchführt.
  • Ein derartiges Verfahren findet sich beispielsweise in Kommunikationscontrollern des Controller Area Network (CAN). Es wird beispielsweise in der BOSCH CAN-Spezifikation 2.0, die von der Robert Bosch GmbH Website http://www.semiconductors.bosch.de heruntergeladen werden kann, beschrieben. Das Bussystem ist hierbei üblicherweise ein Leitungspaar, wie etwa ein verdrilltes Kupferkabel. Das CAN-Protokoll ist beispielsweise in der Automobilindustrie, in der Industrieautomatisierung, oder auch in der Gebäudevernetzung weit verbreitet. Die im CAN-Protokoll zu übertragenden Nachrichten weisen einen Kopfteil, ein Datenfeld und einen Schlussteil auf, wobei die zu übertragenen Daten im Datenfeld enthalten sind. Der Kopfteil der Nachricht enthält ein Start-Of-Frame-Bit, ein Arbitration Field, sowie ein Control Field. Das Arbitration Field umfasst den Identifier, der die Priorität der Nachricht bestimmt. CAN unterstützt Identifier Längen von 11-Bit ("Standard Format" oder „Base Format“) und 29-Bit ("Extended Format"). Das Control Field umfasst einen Data Length Code, der die Länge des Datenfeldes vorgibt. Der Schlussteil der Nachricht weist ein CRC Field, ein Acknowledge Field und ein End-Of-Frame Field auf. Dieses CAN-Protokoll wird im Folgenden als "Norm CAN" bezeichnet. Es werden über Norm CAN Bitraten bis zu 1 Mbit / s erreicht.
  • Die Rollen von Sender und Empfänger für die zu übertragenden Nachrichten werden unter den Teilnehmern durch ein Arbitrierungsverfahren anhand Informationen aus dem Kopfteil der Nachrichten vergeben. Arbitrierungsverfahren bedeutet in diesem Zusammenhang, dass anhand einer in der Nachricht enthaltenen Kennung ausgehandelt wird, welcher Teilnehmer Sendezugriff auf den Bus erhält, wenn mehrere Teilnehmer gleichzeitig versuchen, eine Nachricht zu senden, wobei bei eindeutig vergebenen Kennungen genau einem Teilnehmer der Sendezugriff durch das Arbitrierungsverfahren zuerkannt wird. Das für unsere Erfindung vorausgesetzte wenigstens eine Steuerbit ist bei CAN im Kopfteil enthalten und ist beispielsweise ein reserviertes Bit im Arbitration Field oder im Control Field, welches mit einem vorgegebenen Wert, beispielsweise stets dominant übertragen werden muss.
  • Viele andere Kommunikationssysteme kennen ähnliche reservierte Bits, die stets mit einem festen Wert übertragen werden. Im Folgenden wird die Erfindungsidee ausgehend von CAN dargestellt. Die Erfindung ist dadurch jedoch nicht auf CAN Bussysteme beschränkt, sondern kann ausgehend von allen Bussystemen ausgeführt werden, die die Merkmale des Oberbegriffes des beanspruchten Verfahrens erfüllen.
  • Die Einführung von immer stärker vernetzten Anwendungen, beispielsweise von Assistenzsystemen in Fahrzeugen, oder von vernetzten Steuersystemen in Industrieanlagen, führt zu der allgemeinen Anforderung, dass die Bandbreite für die serielle Kommunikation erhöht werden muss.
  • Zwei Faktoren begrenzen die effektive Datenrate in Norm CAN-Netzwerken, nämlich einerseits die Bitdauer, also die zeitliche Länge eines Bits, die durch die Funktion des CAN Busarbitrierungsverfahren nach unten begrenzt wird, und andererseits die Beziehung zwischen der Anzahl von Datenbits und Steuerbits, also nicht Nutzdaten enthaltenden Bits, in einer CAN-Nachricht.
  • Es ist ein weiteres Protokoll bekannt, das "CAN with Flexible Data-Rate" oder CAN FD genannt wird. Dieses benutzt das vom CAN bekannte Busarbitrierungsverfahren, erhöht aber die Bitrate durch Umschalten auf eine kürzere Bitdauer nach dem Ende der Arbitrierung bis zum Bit CRC Delimiter. Die effektive Datenrate wird außerdem durch Zulassen längerer Datenfelder erhöht. Auch bei CAN FD handelt es sich um ein Verfahren zum Austausch von Daten zwischen Teilnehmern, die mittels eines Bussystems miteinander verbunden sind, wobei die Nachrichten, die die Daten enthalten, gemäß einem ersten Kommunikationsprotokoll ausgetauscht werden, wobei die Nachrichten aus einer Sequenz von Bits bestehen und innerhalb jeder Nachricht, die Daten enthält, wenigstens ein Steuerbit mit einer vorgegebenen Position innerhalb der Sequenz von Bits einen vorgegebenen Wert aufweisen muss.
  • CAN FD kann zur allgemeinen Kommunikation, aber auch in bestimmten Betriebsarten, beispielsweise für Software-Download oder End-of-Line-Programmierung oder für Wartungsarbeiten genutzt werden.
  • CAN FD erfordert zwei Sätze von Bittakt-Konfigurationsregistern, welche eine Bitdauer für die Arbitrierungsphase und eine weitere Bitdauer für die Datenphase definieren. Die Bitdauer zur Arbitrierungsphase hat die gleichen Einschränkungen wie in Norm CAN-Netzwerken, die Bitdauer für die Datenphase kann im Hinblick auf die Leistungsfähigkeit der gewählten Transceiver und die Anforderungen des CAN FD Netzwerks kürzer gewählt werden.
  • Eine CAN FD Nachricht besteht aus den gleichen Elementen wie eine Norm CAN-Nachricht, die sich jedoch im Detail unterscheiden. So können in einer CAN FD-Nachricht das Datenfeld und das CRC-Feld länger sein. Beispiele für Norm CAN- und CAN FD-Nachrichten sind in Abbildung 1 dargestellt.
  • CAN FD unterstützt beide Identifier Längen des CAN-Protokolls, das 11-Bit lange "Standard Format", das auch „Base Format“ genannt wird, und das 29-Bit lange "Extended Format". CAN-FD Nachrichten haben die gleiche Struktur wie Norm CAN-Nachrichten. Die Unterscheidung zwischen Norm CAN-Nachrichten und CAN-FD Nachrichten erfolgt durch ein reserviertes Bit, welches im Norm CAN stets dominant übertragen wird, den Namen "r0" oder "r1" trägt und sich im Control Field vor dem Data Length Code befindet. In einer CAN FD Nachricht wird dieses Bit rezessiv übertragen und heißt EDL. Es folgen in den CAN FD-Nachrichten im Vergleich zu Norm CAN-Nachrichten zusätzliche Control Field Bits, z. B. das Bit BRS, welches die Position angibt, an der, sofern das BRS Bit einen entsprechenden Wert aufweist, die Bitdauer in einer CAN FD-Nachricht auf einen kürzeren Wert umgeschaltet wird. Dies ist in 1a durch Pfeile dargestellt, die die Nachrichten aufteilen in einen Abschnitt mit der Bezeichnung "CAN FD Daten-Phase", in denen die hohe Bitrate bzw. die kurze Bitdauer verwendet wird, und in zwei Abschnitte mit dem Namen "CAN FD Arbitration-Phase", wo die niedrigere Bitrate bzw. die längere Bitdauer verwendet wird.
  • Die Anzahl der Bytes im Datenfeld wird durch den Data Length Code angezeigt. Dieser Code ist 4 Bit breit und wird im Control-Feld übertragen. Die Kodierung ist bei CAN FD anders als im Norm CAN. Die ersten neun Codes (0x0000 bis 0x1000) sind die gleichen, aber die folgenden Codes (0x1001 bis 0x1111) korrespondieren zu größeren Datenfeldern der CAN FD-Nachrichten, beispielsweise 12, 16, 20, 24, 32, 48 und 64 Bit.
  • Norm CAN-Transceiver können für CAN FD verwendet werden, spezielle Transceiver sind optional und können gegebenenfalls zu einer weiteren Steigerung der Bitrate in der Datenphase beitragen.
  • Das CAN FD-Protokoll ist in einer Protokoll-Spezifikation mit dem Titel "CAN with Flexible Data-Rate Specification", im folgenden bezeichnet als die CAN FD Spezifikation, beschrieben, die auf der Robert Bosch GmbH Website http://www.semiconductors.bosch.de heruntergeladen werden kann.
  • Solange unmodifizierte Norm CAN-Controller verwendet werden, kann ein gemischtes Netzwerk von Norm CAN-Teilnehmern und CAN FD-Teilnehmern nur im Norm CAN-Format kommunizieren. Das heißt, alle Teilnehmer im Netzwerk müssen einen CAN-FD-Protokoll-Controller aufweisen, um CAN FD-Kommunikation durchzuführen. Alle CAN FD-Protokoll-Controller sind jedoch in der Lage, sich an Norm CAN-Kommunikation zu beteiligen.
  • Eine Ursache für dieses Zurückfallen auf die langsamere Kommunikation in gemischten Netzwerken ist die Überwachung der Kommunikation durch die Kommunikations-Teilnehmer, die für die hohe Übertragungssicherheit beispielsweise in CAN-Bussystemen mitverantwortlich ist. Da die unmodifizierten Norm CAN-Controller die schnelleren Datenbits der CAN FD-Nachrichten nicht korrekt empfangen können, würden sie diese Nachrichten durch Fehlernachrichten (so genannte Error-Frames) zerstören. In ähnlicher Weise würden CAN FD-Controller Nachrichten durch Error-Frames zerstören, die nach erfolgter Arbitrierung beispielsweise unter Nutzung einer nochmals gegenüber der CAN FD-Spezifikation verkürzten Bitdauer oder unter Nutzung einer anderen Bitcodierung oder eines abweichenden Protokolls zu übertragen versuchen würden. Die Übertragungsrate kann also im Allgemeinen durch einen der langsameren Teilnehmer im Netzwerk, beziehungsweise durch dessen Überwachungsmechanismus, begrenzt werden.
  • Insbesondere dann, wenn eine Datenübertragung zwischen zwei bestimmten Teilnehmern erfolgen soll, welche für ein abweichendes, zum Beispiel schnelleres Kommunikationsprotokoll eingerichtet sind, ist diese Begrenzung nicht immer notwendig und kann nachteilig sein, insbesondere, wenn auf die Überwachungsmechanismen, welche zur Zerstörung der abweichenden oder schnelleren Nachrichten führen würden, bei diesem abweichenden Kommunikationsprotokoll verzichtet werden kann.
  • Zumindest in bestimmten Anwendungsfällen können also wesentlich höhere Übertragungsraten erzielt werden, wenn der Überwachungsmechanismus, der die Zerstörung der Nachrichten durch Error-Frames bewirkt, unter bestimmten Voraussetzungen durch geeignete Mechanismen ausgesetzt wird.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung stellt ein Verfahren bereit, das diesen Nachteil behebt, indem ein Umschalten auf eine schnellere oder anderweitig modifizierte Kommunikation unter Nutzung der Leitungen eines vorhandenen Bussystems ermöglicht wird, ohne dass die schneller übertragenen Nachrichten durch andere Busteilnehmer zerstört werden.
  • Vorteile der Erfindung
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Austausch von Daten zwischen Teilnehmern, die mittels eines Bussystems miteinander verbunden sind, wobei Nachrichten, die die Daten enthalten, gemäß einem ersten Kommunikationsprotokoll ausgetauscht werden, wobei die Nachrichten aus einer Sequenz von Bits bestehen, wobei wenigstens ein Steuerbit mit einer vorgegebenen Position innerhalb der Nachricht, die gemäß dem ersten Kommunikationsprotokoll ausgetauscht wird, einen vorgegebenen Wert aufweisen muss, wobei für jede Nachricht ein Teilnehmer die Rolle des Senders innehat und wenigstens ein anderer Teilnehmer als Empfänger die Nachricht empfängt und eine Fehlerüberwachung für die Nachricht durchführt. Das Verfahren ist dadurch gekennzeichnet, dass bei Vorliegen wenigstens eines Steuerbits mit einem von dem vorgegebenen Wert abweichenden Wert wenigstens ein Empfänger einen Protokollausnahmezustand einnimmt, in dem er die Fehlerüberwachung aussetzt, bis eine Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls erfüllt ist. Geht man davon aus, dass das Steuerbit mit abweichendem Wert signalisiert, dass die Kommunikation auf der Busleitung nicht gemäß dem ersten Kommunikationsprotokoll abläuft, sondern die Busleitung für einen anderen Zweck genutzt werden soll, so kann durch das erfindungsgemäße Verhalten der Vorteil erzielt werden, dass die Fehlerüberwachung des wenigstens einen Empfängers nicht die Verwendung für einen anderen Zweck stört oder verhindert.
  • In einer vorteilhaften Ausführungsform zeigt das Vorliegen des wenigstens einen Steuerbits mit einem von dem vorgegebenen Wert abweichenden Wert an, dass der Sender die von ihm übertragene Nachricht unter Nutzung eines abweichenden Kommunikationsprotokolls sendet. Durch das Einnehmen des Protokollausnahmezustands durch den wenigstens einen Empfänger wird dann verhindert, dass dieser Empfänger die Nachricht, die gemäß dem abweichendem Kommunikationsprotokoll übertragen wird, durch seine Fehlerüberwachung oder daraus abgeleitete Maßnahmen wie z.B. Error-Frames zerstört.
  • In einer besonders vorteilhaften Ausführungsform weist das abweichende Kommunikationsprotokoll in einem Teil der übertragenen Nachricht eine gegenüber dem ersten Kommunikationsprotokoll kürzere Bitdauer auf. Dies kann beispielsweise dann der Fall sein, wenn es sich bei der übertragenen Nachricht um eine gemäß CAN FD-Protokoll übertragene Nachricht handelt. Diese Ausführungsform ermöglicht die Übertragung von Daten durch den Sender mit einer höheren Datenrate, beziehungsweise in kürzerer Zeit.
  • Vorteilhaft ist es auch, wenn der wenigstens eine Empfänger den Protokollausnahmezustand einnimmt, indem er einen Neustart einer Protokollsteuereinheit oder einer Protokollzustandsmaschine durchführt. Ein solcher Mechanismus ist üblicherweise ohnehin in den Protokollimplementierungen vorgesehen und somit kann das erfindungsgemäße Verfahren mit verhältnismäßig geringem Aufwand ausgehend von einer Implementierung, welche das erste Kommunikationsprotokoll beherrscht, dargestellt werden.
  • Als Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls wird vorteilhafterweise eine vorgegebene oder vorgebbare Anzahl von Bits mit vorgegebenen Werten definiert, oder eine vorgegebene oder vorgebbare Dauer ausbleibender Kommunikation auf dem Bus festgelegt. Insbesondere kann der wenigstens eine Empfänger nach dem Neustart das Eintreten der Wiederaufnahmebedingung unter Nutzung einer Flankenerkennung und eines Zählers für das Auftreten von Bits mit einem vorgegebenen Wert überwachen, wobei der Zähler bei Auftreten einer Flanke neu gestartet wird. Dies verringert den Aufwand zur Umsetzung des Verfahrens ausgehend von einer Implementierung, welche das erste Kommunikationsprotokoll beherrscht, weiter, da die Teilnehmer sich üblicherweise auf diese Weise nach einem fehlerbedingten Neustart oder zu Beginn der Datenübertragung auf die Buskommunikation aufsynchronisieren. Vorteilhafterweise weisen die gemäß dem ersten Kommunikationsprotokoll zu übertragenden Nachrichten einen Kopfteil, ein Datenfeld und einen Schlussteil auf, wobei die zu übertragenen Daten im Datenfeld enthalten sind und das wenigstens eine Steuerbit im Kopfteil enthalten ist. Dadurch kann frühzeitig innerhalb der Nachricht nach Lesen des Steuerbits der Protokollausnahmezustand eingenommen werden und gegebenenfalls der Sender auf ein abweichendes Kommunikationsprotokoll umschalten.
  • Sofern die Rollen von Sender und Empfänger unter den Teilnehmern durch ein Arbitrierungsverfahren vergeben werden, wobei anhand einer im Kopfteil der Nachricht enthaltenen Kennung festgelegt wird, welcher Teilnehmer Sendezugriff auf den Bus erhält, wenn mehrere Teilnehmer gleichzeitig versuchen, eine Nachricht zu senden, ist in vorteilhafter Weise sichergestellt, dass keine Kollisionen in der Buskommunikation auftreten. Insbesondere kann dies dadurch erreicht werden, dass das Arbitrierungsverfahren gemäß dem CAN-Standard ISO 11898-1 ausgeführt wird und der Kopfteil der Nachricht ein Start-Of-Frame-Bit, ein Arbitration Field, ein Control Field umfasst und der Schlussteil der Nachricht ein CRC Field, ein Acknowledge Field und ein End-Of-Frame Field aufweist.
  • Eine Vorrichtung, die geeignete Mittel zur Ausführung eines Verfahrens aufweist, wie es Gegenstand von Anspruch 1 oder eines davon abhängigen Unteranspruchs ist, weist die entsprechenden Vorteile auf. Insbesondere kann eine derartige Vorrichtung vorteilhafterweise in gemischten Netzwerken zum Einsatz kommen und dort zur schnellen und reibungslosen Datenübertragung beitragen, indem sie die Nutzung der Busleitungen für einen anderen Zweck nicht stört, beziehungsweise Nachrichten, welche ein Sender unter Nutzung eines abweichenden Kommunikationsprotokolls versendet, nicht durch einen ungerechtfertigten Überwachungsmechanismus stört oder zerstört.
  • Zeichnungen
  • Die 1a stellt die gemeinsame Grundstruktur von Norm CAN- und CAN-FD-Nachrichten dar. Die Abfolge und die Bezeichnungen der Nachrichtenabschnitte (Start-Of-Frame-Bit, Arbitration Field, Control Field, Data Field, CRC Field, ein Ack Field und End-Of-Frame Field) sind angegeben. Vor und nach der Nachricht befindet sich der Bus im Zustand ohne Datenübertragung, was durch den Begriff „Interframe Space“ bezeichnet wird. Es werden in der Regel die englischen Bezeichnungen verwendet, wie sie im Standard ISO 11898 festgelegt sind. Die Bitratenumschaltung, die bei CAN FD-Nachrichten erfolgen kann, ist durch Abschnitte mit „Standard Bit Rate“ und mit „optional High Bit Rate“ eingezeichnet.
  • Die 1b stellt den Kopfteil, umfassend Start-Of-Frame-Bit, Arbitration Field und Control Field, von Nachrichten gemäß Norm CAN-Protokoll und CAN FD-Protokoll dar, jeweils im Standard- bzw. Base-Format und im Extended Format. In der DATA-Phase kann eine Bitratenumschaltung bei CAN FD-Nachrichten erfolgen.
  • 2 zeigt ein gemischtes Netzwerk aus ersten Teilnehmern 200 und zweiten Teilnehmern 250. Die Teilnehmer sind über ein Bussystem 100 verbunden, welches beispielsweise als zweiadrige Kupferleitung ausgebildet sein kann. Die Leitungsenden können beispielsweise durch geeignete Abschlusswiderstände abgeschlossen werden, um Reflexionen der Nachrichten zu vermeiden. Es sind auch andere Leitungstopologien, wie z.B. ringförmige, sternförmige, oder baumartige Topologien denkbar. Die ersten und zweiten Teilnehmer sind durch erste und zweite Schnittstellen 201, 251 mit dem Bussystem verbunden. Die Schnittstellen umfassen beispielsweise Busanschlusseinheiten wie z.B. CAN-Transceiver und Kommunikationseinheiten wie z.B. CAN-Controller oder CAN FD-Controller. Die Schnittstellen können auch ganz oder teilweise mit weiteren Bauelementen der Teilnehmer integriert dargestellt sein. Eine übliche Kombination ist beispielsweise die Integration der Kommunikationseinheit in einen ebenfalls vorhandenen Mikroprozessor des Teilnehmers.
  • Die ersten Teilnehmer zeichnen sich dadurch aus, dass sie erfindungsgemäß den Protokollausnahmezustand einnehmen können, während die zweiten Teilnehmer sich dadurch auszeichnen, dass sie ein zweites Kommunikationsprotokoll verwenden oder auf ein zweites Kommunikationsprotokoll umschalten können. Es können auch weitere Teilnehmer am Netzwerk angeschlossen werden, sofern sie das beschriebene Verfahren nicht stören. Einige der in Figur zwei dargestellten Teilnehmer können auch optionale Teilnehmer sein, die nur in bestimmten Fällen, zum Beispiel bei Wartungsarbeiten oder bei Programmierarbeiten angeschlossen werden.
  • 3 zeigt beispielhaft ein schematisches Blockschaltbild eines ersten Teilnehmers 200, mit einer Schnittstelle 201. Die Schnittstelle umfasst eine Busanschlusseinheit 210, sowie einen Kommunikationscontroller 220, welcher zur Ausführung des erfindungsgemäßen Verfahrens eingerichtet ist. Der Kommunikationscontroller 220 enthält hierzu einen Zähler 221 und eine Flankenerkennung 222.
  • Im Folgenden werden mehrere Ausführungsbeispiele beschrieben, bei welchen die ersten Teilnehmer und die zweiten Teilnehmer jeweils unterschiedliche Kommunikationsprotokolle verwenden.
  • Ausführungsbeispiele der Erfindung
  • Beispiel 1: Toleranz von CAN-Implementierungen gegenüber CAN FD-Nachrichten
  • Ein Beispiel für eine Ausführungsform der vorliegenden Erfindung, die von einem Norm CAN-Netzwerk ausgeht, wird im Folgenden anhand der 2 und 3 dargestellt. In diesem Fall sind die ersten Teilnehmer 200 des in 2 dargestellten Netzwerkes beispielsweise Steuergeräte, welche eine erfindungsgemäße Vorrichtung, also wie in 3 dargestellt als Teil einer Schnittstelle 201 einen Kommunikationscontroller 220 mit einer modifizierten Norm CAN-Implementierung aufweisen. Die Norm CAN-Implementierung ist derartig modifiziert, dass sie das erfindungsgemäße Verfahren ausführt. Die zweiten Teilnehmer 250 des in 2 dargestellten Netzwerkes sind hier beispielsweise Steuergeräte, welche einen Kommunikationscontroller mit einer CAN FD-Implementierung aufweisen.
  • Mit Implementierungen sind hardwaremäßige oder softwaremäßige Realisierungen des Kommunikationsprotokolls gemeint, also beispielsweise CAN-Kommunikationscontroller oder IP-Module, die einen CAN-Kommunikationscontroller beinhalten und in einem größeren Halbleiterbaustein integriert werden können.
  • Durch die erfindungsgemäße Modifikation werden Norm CAN-Implementierungen, die also definitionsgemäß nicht zum Senden und Empfangen von CAN FD-Nachrichten in der Lage sind, in die Lage versetzt, eine nach einem zweiten, abweichenden Kommunikationsprotokoll ausgeführte Kommunikation zu tolerieren. In der hier dargestellten Ausführungsform ist dieses zweite, abweichende Kommunikationsprotokoll CAN FD. Das Tolerieren des abweichenden Kommunikationsprotokolls bedeutet, dass diese erfindungsgemäß modifizierten Norm CAN-Implementierungen die nach dem zweiten Kommunikationsprotokoll, also in diesem Fall CAN FD, ablaufende Kommunikation ignorieren und nicht stören, indem sie beispielsweise Error-Frames erzeugen. Dies hat den Vorteil, dass eine Umschaltung von dem Norm CAN-Protokoll auf das schnellere zweite Protokoll, also CAN FD, ermöglicht wird, und zwar unter Verwendung der gleichen Busadern. Nach Abschluss der schnellen Kommunikation gemäß dem zweiten Kommunikationsprotokoll CAN FD erfolgt eine Rückumschaltung auf das ursprüngliche Norm-CAN Protokoll, sofern eine Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls, also Norm CAN, erfüllt ist.
  • Für die vorliegende Erfindung werden in dem hier beschriebenen Ausführungsbeispiel zwei vorhandene Funktionen des CAN-Protokolls kombiniert, um die so modifizierten Norm CAN-Implementierungen CAN FD tolerant zu machen. Zum einen wird ein Zähler 221 genutzt, der in Norm CAN-Implementierungen vorgesehen ist, um das Auftreten von elf aufeinanderfolgenden rezessiven Bits zu detektieren, wenn eine Norm CAN-Implementierung sich auf die Bus-Kommunikation aufsynchronisiert. Dies geschieht im Norm CAN beispielsweise nach einem Neustart oder beim Durchlaufen einer so genannten „Bus Off Recovery Sequenz“ (siehe Kapitel 7 „Fault Confinement" der CAN Specification 2.0, Regel 12). Zweitens wird die Flankenerkennung 222 benutzt, die den CAN-Bus-seitigen Eingang einmal pro CAN-Bus-Zeiteinheit auf Flanken überprüft, um detektierte Flanken als Grundlage für die Bit-Synchronisation heranzuziehen. (Die Länge eines Bits besteht beim CAN-Bus aus mehreren, beispielsweise zwischen 8 und 25 CAN-Bus-Zeiteinheiten oder „Time Quanta“, deren Länge wiederum vom internen Oszillatortakt des jeweiligen Busteilnehmers abgeleitet wird. Details sind der CAN-Spezifikation 2.0 zu entnehmen.)
  • Eine gemäß dem hier beschriebenen Beispiel der vorliegenden Erfindung modifizierte CAN-Implementierung verwendet folgenden Mechanismus: Die modifizierte CAN-Implementierung beteiligt sich zunächst wie üblich an der Kommunikation, das heißt sie versucht, sofern eine Nachricht zum Versenden vorliegt, durch Senden des Kopfteils der Nachricht im Rahmen der Arbitirierung Zugriff auf den Bus zu erlangen. Gibt es nichts zu senden, oder verliert sie die Arbitirierung, beobachtet sie den Busverkehr als Empfänger. Unmittelbar nach Erkennen eines rezessiven Bits an der Bitposition r0 in einer empfangenen Norm CAN-Nachricht mit Standard-Format, oder nach Erkennen eines rezessiven Bits an der Bitposition r1 in einer empfangenen Norm CAN-Nachricht mit extended Format (entsprechend der Position der EDL Bit einer CAN FD Nachricht, siehe 1a und 1b) startet die modifizierte Norm CAN-Implementierung ihre für die Protokolldekodierung zuständige Zustandsmaschine (Protokollzustandsmaschine) beziehungsweise die dafür vorgesehene Protokollsteuereinheit, beispielsweise ein in Hardware realisiertes Protokollsteuerwerk, neu, ohne ihre Fehler-Zähler zu ändern und ohne einen Error-Frame zu senden. Auf diese Weise nimmt sie einen Protokollausnahmezustand ein, in welchem sie auf das Eintreten einer Wiederaufnahmebedingung wartet. Bei Eintreten der Wiederaufnahmebedingung wird ein Wiederaufnahmeprozess durchlaufen, wie im Folgenden näher beschrieben wird.
  • Alternativ kann an Stelle des r0 Bits bei Standard-Format beziehungsweise an Stelle des r1 Bits bei Extended-Format für die Einleitung des Protokollausnahmezustands auch ein anderes Bit mit festgelegtem Wert innerhalb der Norm CAN-Nachricht verwendet werden, wie z.B. das r0 Bit im Extended Format.
  • Protokollausnahmezustand:
  • Im Protokollausnahmezustand wird zuerst ein Neustart der Protokollzustandsmaschine oder der Protokollsteuereinheit durchgeführt. Nach dem Neustart wartet der Teilnehmer unter Nutzung des dafür vorgesehenen Zählers 221, welcher Bits mit einem vorgegebenen Wert zählt, auf eine Folge von in diesem Beispiel elf aufeinander folgenden rezessiven Bits. Es darf keine rezessiv zu dominant Flanke innerhalb dieser Folge auftreten, andernfalls startet der Zähler 221 neu. Dies wird durch die vorhandene Flankenerkennung 222 überwacht.
  • Wiederaufnahmeprozess:
  • Wenn beispielsweise unter Nutzung des Zählers 221 und der Flankenerkennung 222 die Wiederaufnahmebedingung, im vorliegenden Beispiel also eine Folge von elf aufeinander folgenden rezessiven Bits erkannt wird, verlässt der Teilnehmer den Protokollausnahmezustand und synchronisiert sich auf die Bus-Kommunikation. Damit ist der Teilnehmer wieder bereit für das Senden oder Empfangen von Norm CAN-Nachrichten, deren Beginn durch ein dominantes START OF FRAME-Bit signalisiert wird.
  • Der Vorteil des dargestellten Mechanismus ist, dass so sichergestellt ist, dass die modifizierten Norm CAN-Teilnehmer warten, bis die CAN FD-Nachricht übertragen wurde (oder bis sie durch einen Error-Frame unterbrochen wurde, falls ein Fehler durch einen CAN FD-Teilnehmer erkannt wird). Denn während der Übertragung der CAN FD-Nachricht wird das Erfordernis einer Folge von elf aufeinanderfolgenden rezessiven Bits nie erfüllt und die modifizierten Norm CAN-Teilnehmer durchlaufen keinen Wiederaufnahmeprozess, wie er oben beschrieben wurde. So ermöglicht das beschriebene Verfahren, dass die modifizierten Norm CAN-Implementierungen alle CAN FD-Nachrichten tolerieren.
  • Es ist vorteilhaft, dass die Bitdauer innerhalb der DATA-Phase der CAN FD-Nachricht (siehe ) nicht kürzer als eine CAN-Bus-Zeiteinheit der CAN FD Arbitration-Phase. Sonst könnte es auftreten, dass elf aufeinander folgende rezessive Bits durch den modifizierten Norm CAN-Teilnehmer in einer CAN FD-Nachricht in seltenen Fällen zufällig ausgelesen werden.
  • Die Detektion einer CAN FD-Nachricht verursacht kein Inkrement der Fehlerzähler, so dass wird die modifizierten Norm CAN-Implementierungen unmittelbar nach dem Ende der schnelleren CAN FD-Nachricht die Buskommunikation gemäß Norm-CAN-Protokoll fortsetzen können.
  • Beispiel 2: Toleranz von modifizierten CAN FD-Implementierungen gegenüber Nachrichten gemäß weiterentwickelten Protokollen
  • Ein weiteres Beispiel für eine Ausführungsform der vorliegenden Erfindung, die von einem CAN FD-Netzwerk ausgeht, ist im Folgenden, wiederum unter Bezugnahme auf die 2 und 3, dargestellt. In diesem Fall sind die ersten Teilnehmer 200 des in 2 dargestellten Netzwerkes beispielsweise Steuergeräte, welche eine erfindungsgemäße Vorrichtung, also wie in 3 dargestellt als Teil einer Schnittstelle 201 einen Kommunikationscontroller 220 mit einer modifizierten CAN FD-Implementierung, die ein erfindungsgemäßes Verfahren ausführt, aufweisen. Die zweiten Teilnehmer 250 des in 2 dargestellten Netzwerkes sind in diesem Beispiel Steuergeräte, welche einen Kommunikationscontroller aufweisen, der eine Implementierung eines weiteren Kommunikationsprotokolls enthält. Das weitere Kommunikationsprotokoll kann beispielsweise eine Weiterentwicklung des CAN FD-Protokolls sein, welche beispielsweise in Abhängigkeit vom Inhalt des Data Length Code noch längere Datenfelder zulässt, als im CAN FD vorgesehen sind. Weiterhin sind zusätzliche Steuerbits im Control Field vorstellbar, beispielsweise zum Zweck der Datenabsicherung, oder um zusätzliche Zustandsinformationen unter den Teilnehmern zu übertragen. Alternativ oder zusätzlich kann das weitere Kommunikationsprotokoll eine modifizierte Berechnung für den Inhalt des CRC Field und / oder eine abweichende Größe des CRC Field vorsehen.
  • Auch das CAN FD Protokoll gemäß der veröffentlichten Spezifikation, weist an einigen vorgegebenen Positionen innerhalb der Nachricht Bits mit vorgegebenen Werten auf. Wie in 1b dargestellt enthält beispielsweise eine CAN FD Nachricht im Standard-Format und auch im Extended-Format je ein reserviertes Bit r1 als letztes Bit im Arbitration Field und ein reserviertes Bit r0, welches auf das EDL-Bit folgt, im Control Field.
  • Dementsprechend kann der Mechanismus, der oben für modifizierte Norm CAN-Implementierungen beschrieben wurde, analog auf modifizierte CAN FD-Implementierungen angewendet werden. Die modifizierten CAN FD-Implementierungen müssen hierzu die beiden Mechanismen enthalten, welche hierfür benutzt werden, nämlich einerseits den Zähler 221 für in diesem Beispiel elf aufeinanderfolgende rezessive Bits, und andererseits die Flankenerkennung 222. Dies ist üblicherweise gegeben. In anderen Ausführungsbeispielen können andere Mechanismen verwendet werden, welche für die Wiederaufnahme der Kommunikation nach Neustart oder Fehlererkennung dienen, und welche zur Ausführung des erfindungsgemäßen Verfahrens wiederverwendet werden können.
  • Die gemäß dem hier beschriebenen Beispiel der vorliegenden Erfindung modifizierte CAN FD-Implementierung verwendet nun folgenden Mechanismus: Die modifizierte CAN FD-Implementierung beteiligt sich zunächst wie üblich an der Kommunikation, das heißt sie versucht, sofern eine Nachricht zum Versenden vorliegt, durch Senden des Kopfteils der Nachricht im Rahmen der Arbitirierung Zugriff auf den Bus zu erlangen. Gibt es nichts zu senden, oder verliert sie die Arbitirierung, beobachtet sie den Busverkehr als Empfänger. Unmittelbar nach Erkennen eines rezessiven Bits an der Bitposition r0 in einer CAN FD-Nachricht mit Standard-Format, oder nach Erkennen eines rezessiven Bits an der Bitposition r0 in einer CAN FD-Nachricht mit extended Format (siehe 1a und 1b) startet die modifizierte CAN FD-Implementierung ihre für die Protokolldekodierung zuständige Zustandsmaschine (Protokollzustandsmaschine) beziehungsweise die dafür vorgesehene Protokollsteuereinheit, beispielsweise ein in Hardware realisiertes Protokollsteuerwerk, neu, ohne ihre Fehler-Zähler zu ändern und ohne einen Error-Frame zu senden. Auf diese Weise nimmt sie einen Protokollausnahmezustand ein, in welchem sie auf das Eintreten einer Wiederaufnahmebedingung wartet. Die Wiederaufnahmebedingung und der dadurch eingeleitete Wiederaufnahmeprozess sehen im Wesentlichen gleich aus, wie schon früher für das erste Ausführungsbeispiel beschrieben. CAN FD-Implementierungen weisen üblicherweise die analogen Mechanismen, also insbesondere einen Zähler 221 für rezessive Bits und eine Flankenerkennung 222, auf, welche hierfür verwendet werden können.
  • Alternativ kann an Stelle des r0 Bits bei Standard-Format beziehungsweise Extended-Format für die Einleitung des Protokollausnahmezustands auch ein anderes Bit mit festgelegtem Wert innerhalb der CAN FD-Nachricht verwendet werden, wie z.B. das r1 Bit am Ende des Arbitration Field.
  • Der Vorteil des dargestellten Mechanismus ist, dass so sichergestellt ist, dass die modifizierten CAN FD-Teilnehmer warten, bis die Nachricht gemäß dem weiteren Kommunikationsprotokoll übertragen wurde (oder bis sie gegebenenfalls durch einen entsprechenden Mechanismus unterbrochen wurde, falls ein Fehler erkannt wird). Voraussetzung ist, dass das weitere Kommunikationsprotokoll derart ausgeprägt ist, dass während der Übertragung das Erfordernis einer Folge von elf aufeinanderfolgenden rezessiven Bits nie erfüllt wird und die modifizierten CAN FD-Teilnehmer demnach keinen Wiederaufnahmeprozess durchlaufen, wie er oben beschrieben wurde. So ermöglicht das beschriebene Verfahren, dass die modifizierten CAN FD-Implementierungen die Nachrichten, die gemäß dem weiteren Kommunikationsprotokoll übertragen werden, tolerieren.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • http://www.semiconductors.bosch.de [0002]
    • http://www.semiconductors.bosch.de [0014]
    • ISO 11898-1 [0025]
    • Standard ISO 11898 [0027]
    • Kapitel 7 „Fault Confinement“ der CAN Specification 2.0, Regel 12 [0036]

Claims (16)

  1. Verfahren zum Austausch von Daten zwischen Teilnehmern (200, 250), die mittels eines Bussystems (100) miteinander verbunden sind, wobei Nachrichten, die die Daten enthalten, gemäß einem ersten Kommunikationsprotokoll ausgetauscht werden, wobei die Nachrichten aus einer Sequenz von Bits bestehen, wobei wenigstens ein Steuerbit mit einer vorgegebenen Position innerhalb der Nachricht, die gemäß dem ersten Kommunikationsprotokoll ausgetauscht wird, einen vorgegebenen Wert aufweisen muss, wobei für jede Nachricht ein Teilnehmer die Rolle des Senders innehat und wenigstens ein anderer Teilnehmer als Empfänger die Nachricht empfängt und eine Fehlerüberwachung für die Nachricht durchführt, dadurch gekennzeichnet, dass bei Vorliegen wenigstens eines Steuerbits mit einem von dem vorgegebenen Wert abweichenden Wert wenigstens ein Empfänger einen Protokollausnahmezustand einnimmt, in dem er die Fehlerüberwachung aussetzt, bis eine Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls erfüllt ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Vorliegen des wenigstens einen Steuerbits mit einem von dem vorgegebenen Wert abweichenden Wert anzeigt, dass der Sender die von ihm übertragene Nachricht unter Nutzung eines abweichenden Kommunikationsprotokolls sendet.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das abweichende Kommunikationsprotokoll in einem Teil der übertragenen Nachricht eine gegenüber dem ersten Kommunikationsprotokoll kürzere Bitdauer aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der wenigstens eine Empfänger den Protokollausnahmezustand einnimmt, indem er einen Neustart einer Protokollsteuereinheit oder einer Protokollzustandsmaschine durchführt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls eine vorgegebene oder vorgebbare Anzahl von Bits mit vorgegebenen Werten definiert ist.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls eine vorgegebene oder vorgebbare Dauer ausbleibender Kommunikation auf dem Bus definiert ist.
  7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der wenigstens eine Empfänger nach dem Neustart das Eintreten der Wiederaufnahmebedingung unter Nutzung einer Flankenerkennung (222) und eines Zählers (221) für das Auftreten von Bits mit einem vorgegebenen Wert überwacht, wobei der Zähler bei Auftreten einer Flanke neu gestartet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die gemäß dem ersten Kommunikationsprotokoll zu übertragenden Nachrichten einen Kopfteil, ein Datenfeld und einen Schlussteil aufweisen, wobei die zu übertragenen Daten im Datenfeld enthalten sind und das wenigstens eine Steuerbit im Kopfteil enthalten ist.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Rollen von Sender und Empfänger unter den Teilnehmern durch ein Arbitrierungsverfahren vergeben werden, wobei anhand einer im Kopfteil der Nachricht enthaltenen Kennung festgelegt wird, welcher Teilnehmer Sendezugriff auf den Bus erhält, wenn mehrere Teilnehmer gleichzeitig versuchen, eine Nachricht zu senden.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Arbitrierungsverfahren gemäß dem CAN-Standard ISO 11898-1 ausgeführt wird und der Kopfteil der Nachricht ein Start-Of-Frame-Bit, ein Arbitration Field, ein Control Field umfasst und der Schlussteil der Nachricht ein CRC Field, ein Acknowledge Field und ein End-Of-Frame Field aufweist.
  11. Vorrichtung zum Austausch von Daten zwischen Teilnehmern, die mittels eines Bussystems miteinander verbunden sind, die Mittel aufweist, so dass Nachrichten, die die Daten enthalten, gemäß einem ersten Kommunikationsprotokoll ausgetauscht werden, wobei die Nachrichten aus einer Sequenz von Bits bestehen, wobei wenigstens ein Steuerbit mit einer vorgegebenen Position innerhalb der Nachricht, die gemäß dem ersten Kommunikationsprotokoll ausgetauscht wird, einen vorgegebenen Wert aufweisen muss, wobei die Vorrichtung Mittel aufweist, um als Empfänger die Nachricht zu empfangen und eine Fehlerüberwachung für die Nachricht durchzuführen, dadurch gekennzeichnet, dass die Vorrichtung bei Vorliegen wenigstens eines Steuerbits mit einem von dem vorgegebenen Wert abweichenden Wert in einer empfangenen Nachricht einen Protokollausnahmezustand einnimmt, in dem sie die Fehlerüberwachung aussetzt, bis eine Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls erfüllt ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Vorrichtung den Protokollausnahmezustand einnimmt, indem sie einen Neustart einer Protokollsteuereinheit oder einer Protokollzustandsmaschine durchführt.
  13. Vorrichtung nach einem der Ansprüche 11 bis 12, dadurch gekennzeichnet, dass zur Feststellung der Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls Mittel vorgesehen sind, um eine vorgegebene oder vorgebbare Anzahl von Bits mit vorgegebenen Werten zu erkennen.
  14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass zur Feststellung der Wiederaufnahmebedingung für die Nutzung des ersten Kommunikationsprotokolls Mittel vorgesehen sind, um eine vorgegebene oder vorgebbare Dauer ausbleibender Kommunikation auf dem Bus zu erkennen.
  15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass zur Feststellung der Wiederaufnahmebedingung Mittel zur Flankenerkennung (222) und ein Zähler (221) für das Auftreten von Bits mit einem vorgegebenen Wert vorgesehen sind, wobei der Zähler bei Auftreten einer Flanke neu gestartet wird.
  16. Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass Mittel vorgesehen sind, um eines der Verfahren gemäß Anspruch 1 bis 10 auszuführen.
DE102012224031.4A 2012-12-20 2012-12-20 Datenübertragungsprotokoll mit Protokollausnahmezustand Pending DE102012224031A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102012224031.4A DE102012224031A1 (de) 2012-12-20 2012-12-20 Datenübertragungsprotokoll mit Protokollausnahmezustand
ES13814543T ES2733332T3 (es) 2012-12-20 2013-12-19 Protocolo de transmisión de datos con estado de excepción de protocolo
JP2015548604A JP6121563B2 (ja) 2012-12-20 2013-12-19 プロトコル例外状態を用いたデータ伝送プロトコル
EP13814543.8A EP2936746B1 (de) 2012-12-20 2013-12-19 Datenübertragungsprotokoll mit protokollausnahmezustand
CN201380073346.8A CN104995874B (zh) 2012-12-20 2013-12-19 具有协议异常状态的数据传输协议
KR1020157019546A KR102091565B1 (ko) 2012-12-20 2013-12-19 프로토콜 예외 상태를 갖는 데이터 전송
RU2015129337A RU2678715C2 (ru) 2012-12-20 2013-12-19 Протокол передачи данных с состоянием исключения протокола
PCT/EP2013/077524 WO2014096278A1 (de) 2012-12-20 2013-12-19 Datenübertragungsprotokoll mit protokollausnahmezustand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012224031.4A DE102012224031A1 (de) 2012-12-20 2012-12-20 Datenübertragungsprotokoll mit Protokollausnahmezustand

Publications (1)

Publication Number Publication Date
DE102012224031A1 true DE102012224031A1 (de) 2014-06-26

Family

ID=49885259

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012224031.4A Pending DE102012224031A1 (de) 2012-12-20 2012-12-20 Datenübertragungsprotokoll mit Protokollausnahmezustand

Country Status (8)

Country Link
EP (1) EP2936746B1 (de)
JP (1) JP6121563B2 (de)
KR (1) KR102091565B1 (de)
CN (1) CN104995874B (de)
DE (1) DE102012224031A1 (de)
ES (1) ES2733332T3 (de)
RU (1) RU2678715C2 (de)
WO (1) WO2014096278A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052299A1 (de) * 2013-10-09 2015-04-16 Robert Bosch Gmbh Anpasseinrichtung für ein bussystem und verfahren zum betreiben einer can-teilnehmerstation und einer can-fd-teilnehmerstation in einem bussystem
EP2985955A1 (de) * 2014-08-15 2016-02-17 Nxp B.V. Controller area network (can)-vorrichtung und verfahren zum emulieren von klassischem can-fehlermanagement
EP3035605A1 (de) * 2014-12-15 2016-06-22 Schneider Electric (Australia) Pty Limited Steuerungsprotokoll mit variabler datenrate
DE102014001197B4 (de) 2013-01-31 2018-04-05 Infineon Technologies Ag Kompatibler Netzwerkknoten, insbesondere für CAN-Bussysteme
US10452504B2 (en) 2013-10-02 2019-10-22 Nxp B.V. Controller area network (CAN) device and method for emulating classic CAN error management

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212757A1 (de) * 2017-07-25 2019-01-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Schützen eines Feldbusses
CN108957237B (zh) * 2018-08-01 2020-12-01 歌尔光学科技有限公司 一种异常线路检测方法、装置、设备及存储介质
CN114465963B (zh) * 2021-12-24 2022-10-25 北京环宇博亚科技有限公司 交换机异常检测方法、装置、电子设备和计算机可读介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116988A (ja) * 1995-10-18 1997-05-02 Fujitsu Ten Ltd 車両内通信方法
DE10311395A1 (de) * 2003-03-13 2004-09-23 Robert Bosch Gmbh Kommunikationsvorrichtung mit asynchroner Datenübertragung über eine symmetrische serielle Schnittstelle
KR101135101B1 (ko) * 2005-10-17 2012-04-16 엘지전자 주식회사 캔에서의 데이터 길이 코드를 이용한 데이터 필드 패딩방법
JP2010258990A (ja) * 2009-04-28 2010-11-11 Autonetworks Technologies Ltd 制御システム及び制御プログラム更新方法
CN102195753A (zh) * 2010-12-09 2011-09-21 无锡乐智科技有限公司 基于2.4grf的多媒体传输方法
RU2620989C2 (ru) * 2011-04-06 2017-05-30 Роберт Бош Гмбх Способ и устройство для повышения пропускной способности при передаче данных в последовательной шинной системе

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
http://www.semiconductors.bosch.de
ISO 11898-1
Kapitel 7 "Fault Confinement" der CAN Specification 2.0, Regel 12
Standard ISO 11898

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001197B4 (de) 2013-01-31 2018-04-05 Infineon Technologies Ag Kompatibler Netzwerkknoten, insbesondere für CAN-Bussysteme
US10452504B2 (en) 2013-10-02 2019-10-22 Nxp B.V. Controller area network (CAN) device and method for emulating classic CAN error management
WO2015052299A1 (de) * 2013-10-09 2015-04-16 Robert Bosch Gmbh Anpasseinrichtung für ein bussystem und verfahren zum betreiben einer can-teilnehmerstation und einer can-fd-teilnehmerstation in einem bussystem
EP2985955A1 (de) * 2014-08-15 2016-02-17 Nxp B.V. Controller area network (can)-vorrichtung und verfahren zum emulieren von klassischem can-fehlermanagement
EP3035605A1 (de) * 2014-12-15 2016-06-22 Schneider Electric (Australia) Pty Limited Steuerungsprotokoll mit variabler datenrate
AU2015268688B2 (en) * 2014-12-15 2019-08-15 Schneider Electric (Australia) Pty Limited Variable data rate control protocol

Also Published As

Publication number Publication date
JP6121563B2 (ja) 2017-04-26
RU2678715C2 (ru) 2019-01-31
CN104995874A (zh) 2015-10-21
JP2016500503A (ja) 2016-01-12
EP2936746B1 (de) 2019-04-03
RU2015129337A (ru) 2017-01-25
EP2936746A1 (de) 2015-10-28
CN104995874B (zh) 2019-11-05
ES2733332T3 (es) 2019-11-28
KR102091565B1 (ko) 2020-03-20
KR20150120952A (ko) 2015-10-28
WO2014096278A1 (de) 2014-06-26

Similar Documents

Publication Publication Date Title
EP2936747B1 (de) Datenübertragung unter nutzung eines protokollausnahmezustands
EP2936746B1 (de) Datenübertragungsprotokoll mit protokollausnahmezustand
EP2695074B1 (de) Verfahren und vorrichtung zur anpassung der datenübertragungssicherheit in einem seriellen bussystem
EP2740042B1 (de) VERFAHREN UND VORRICHTUNG ZUR VERBESSERUNG DER DATENÜBERTRAGUNGSSICHERHEIT IN EINER SERIELLEN DATENÜBERTRAGUNG MIT FLEXIBLER NACHRICHTENGRÖßE
EP2695076B1 (de) Verfahren und vorrichtung zur erhöhung der datenübertragungskapazität in einem seriellen bussystem
EP2702495B1 (de) Verfahren und vorrichtung zur an speichergrössen angepassten seriellen datenübertragung
EP2700017A1 (de) Verfahren und vorrichtung zur seriellen datenübertragung mit umschaltbarer datencodierung
EP1509005B1 (de) Verfahren und Vorrichtung zur Übertragung von Daten über ein Busnetz mittels Broadcast
EP3949285A1 (de) Teilnehmerstation für ein serielles bussystem und verfahren zur kommunikation in einem seriellen bussystem
EP3042472A1 (de) Verfahren zum überwachen eines ersten teilnehmers in einem kommunikationsnetzwerk und überwachungssystem
EP3152872B1 (de) Übertragungseinheit mit prüffunktion
EP1826646B1 (de) Verfahren, Knoten und Netzwerk zum zyklischen Versenden von Ethernet-Telegrammen
EP3226484A1 (de) Verfahren zur datenübermittlung in einem kommunikationsnetz eines industriellen automatisierungssystems und kommunikationsgerät
DE102011006884A1 (de) Verfahren und Vorrichtung zur Erhöhung der Datenübertragungskapazität in einem seriellen Bussystem
WO2017063996A1 (de) Verfahren zur generierung eines geheimnisses in einem netzwerk mit wenigstens zwei übertragungskanälen
DE102011122845A1 (de) Verfahren und Vorrichtung zur seriellen Datenübertragung mit flexibler Nachrichtengröße und variabler Bitlänge
DE102011122801A1 (de) Verfahren und Vorrichtung zur Anpassung der Datenübertragungssicherheit in einem seriellen Bussystem
DE102011006875A1 (de) Verfahren und Vorrichtung zur Anpassung der Datenübertragungssicherheit in einem seriellen Bussystem
EP2299616A1 (de) Verfahren und System zum Übertragen von Telegrammen
DE102011122802A1 (de) Verfahren und Vorrichtung zur Erhöhung der Datenübertragungskapazität in einem seriellen Bussystem
DE102011122826A1 (de) Verfahren und Vorrichtung zur an Speichergrößen angepassten seriellen Datenübertragung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H04L0029060000

Ipc: H04L0065000000