DE102012113119A1 - Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse - Google Patents

Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse Download PDF

Info

Publication number
DE102012113119A1
DE102012113119A1 DE102012113119.8A DE102012113119A DE102012113119A1 DE 102012113119 A1 DE102012113119 A1 DE 102012113119A1 DE 102012113119 A DE102012113119 A DE 102012113119A DE 102012113119 A1 DE102012113119 A1 DE 102012113119A1
Authority
DE
Germany
Prior art keywords
biomass
reactor
fermenter
pretreatment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012113119.8A
Other languages
English (en)
Inventor
Thomas Reichhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102012113119.8A priority Critical patent/DE102012113119A1/de
Priority to EP13817644.1A priority patent/EP2938729A1/de
Priority to PCT/DE2013/100393 priority patent/WO2014101915A1/de
Publication of DE102012113119A1 publication Critical patent/DE102012113119A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Verfahren zur Erzeugung von regenerativer Energie durch Vergärung von Biomasse in zumindest einem Fermenter (6), wobei die Biomasse vor der Zuführung zu dem Fermenter (6) einer Vorbehandlung unterzogen wird, wobei das Verfahren folgende Schritte umfasst: – Zuführung der Biomasse zu einem geschlossenen Reaktor (5); – Vorbehandlung der Biomasse unter Einwirkung von Wärme und Druck in zumindest einem Teilprozess der hydrothermalen Karbonisierung in dem Reaktor (5); – Zuführung der vorbehandelten Biomasse zum Fermenter (6); und – Vergärung der vorbehandelten Biomasse zur Erzeugung von Biogas.

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung regenerativer Energie aus Biomasse gemäß dem Oberbegriff des Patentanspruchs 1 sowie eine Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse gemäß dem Oberbegriff des Patentanspruchs 10.
  • Unter Biomasse im Sinne der Erfindung werden sämtliche nachwachsenden Rohstoffe, d.h. pflanzliche Biomasse sowie davon abgeleitete tierische Biomasse und deren Stoffwechselprodukte verstanden, also beispielsweise Grüngut, Hackschnitzel, Pflanzen- und Pflanzenreste, Stroh, Silage, Reststoffe aus der Landwirtschaft, Papier- bzw. Klärschlämme etc.
  • Verfahren zur Erzeugung von regenerativer Energie aus Biomasse sind bereits hinlänglich bekannt. Insbesondere sind Verfahren zur Erzeugung von Biogas, d.h. eines methanhaltigen Gasgemisches durch Vergärung von Biomasse bekannt. Dabei wird an einer Biomasseaufgabe eingebrachte Biomasse über eine Fördereinrichtung einem Fermenter zugeführt, in dem unter anaeroben Bedingungen die Vergärung der eingesetzten Biomasse erfolgt. Zumeist ist nach dem zumindest einen Fermenter ein Nachgärer vorgesehen, der luftdicht abgeschlossen ist und neben der weiteren Vergärung bzw. Restvergärung aus dem Fermenter entnommenen Biomasse als Lagerbehälter für das entstehende Biogas dient. Das aus dem Gärprozess erhaltende Biogas wird vorzugsweise in einem Blockheizkraftwerk zur Erzeugung von elektrischer Energie und Wärmeenergie genutzt. In einer weiteren Anwendung wird das aus dem Gärprozess erhaltende Biogas nach einer Aufbereitung in das Erdgasnetz eingespeist.
  • Ferner sind aus dem Stand der Technik bereits Verfahren zur hydrothermalen Karbonisierung von Biomasse bekannt. Die hydrothermale Karbonisierung ist ein thermochemischer Prozess und bildet den natürlichen Entstehungsprozess von Braunkohle nach. Dabei wird Biomasse als Ausgangsstoff in einem Reaktor unter einem Druck im Bereich zwischen 10 bar und 55 bar und Temperaturen im Bereich zwischen 150°C und 270°C dehydratisiert und karbonisiert, wobei am Reaktorausgang dann ein Kohleschlamm entnommen werden kann. In diesem Kohleschlamm sind Kohlepartikel enthalten, die durch einen Trocknungs- und/oder Entwässerungsprozess dem Kohleschlamm entzogen werden können. Diese nach dem Trocknungs- und/oder Entwässerungsprozess erhaltenen Kohlepartikel ergeben einen Kohlestaub, der nahezu den gesamten Kohlenstoff der verarbeiteten Biomasse enthält und einen Brennwert im Wesentlichen gleich dem Brennwert von fossiler Braunkohle aufweist.
  • Zur Steigerung des Biogasertrags in Biogasanlagen ist ferner bekannt, die eingesetzte Biomasse vorzubehandeln und dabei in ihrer Struktur zu zerkleinern. Hierzu werden insbesondere Vorrichtungen eingesetzt, die mechanisch die Biomasse zerkleinern, beispielsweise Hammermühlen, Hächsler, Extruder oder ähnliches. Ferner ist bekannt, die zu vergärende Biomasse vor dem Gärprozess oder die nach dem Vergärungsprozess entstehenden Gärreste unter Temperatureinwirkung zu hygienisieren, um die in der Biomasse bzw. den Gärresten enthaltene Keime abzutöten und damit das Gesundheitsrisiko für den Menschen durch Ausbringen der Gärreste auf landwirtschaftlichen Flächen und damit die Eintragung der in den Gärresten enthaltenen Keime in die Lebensmittelkette zu unterbinden. Dabei werden die Gärreste beispielsweise bei einer Temperatur von 70°C mindestens 1 Std. hygienisiert.
  • Nachteilig an der bekannten Vorbehandlung der Biomasse ist, dass die Strukturzerkleinerung nur unzureichend erfolgt und damit der Biogasertrag nur geringfügig gesteigert werden kann. Ferner bedarf die Biomassevorbehandlung bzw. die Hygienisierung der Gärreste erheblicher Energie, sodass der die Energiebilanz der Gesamtanlage verschlechtert wird.
  • Ausgehend hiervon ist es Aufgabe der Erfindung, ein Verfahren bzw. eine Vorrichtung zur Erzeugung von regenerativer Energie aus Biomasse anzugeben, die die vorgenannten Nachteile überwindet. Die Aufgabe wird ausgehend von den Oberbegriffen der unabhängigen Patentansprüche 1 und 10 jeweils durch deren kennzeichnende Merkmale gelöst.
  • Der wesentliche Aspekt des erfindungsgemäßen Verfahrens zur Erzeugung von regenerativer Energie durch Vergärung von Biomasse in zumindest einem Fermenter, bei dem die Biomasse vor der Zuführung zu dem Fermenter einer Vorbehandlung unterzogen wird, besteht darin, dass die Biomasse einem geschlossenen Reaktor zugeführt wird, die Biomasse anschließend unter Einwirkung von Wärme und Druck in zumindest einem Teilprozess der hydrothermalen Karbonisierung in dem Reaktor vorbehandelt wird, die dadurch entstehende vorbehandelte Biomasse vom Reaktor entnommen und dem zumindest einen Fermenter zugeführt wird und anschließend die Vergärung der vorbehandelten Biomasse zur Erzeugung von Biogas erfolgt. Die Vorbehandlung der Biomasse in dem Reaktor durch zumindest einen Teilprozess der hydrothermalen Karbonisierung birgt den entscheidenden Vorteil, dass eine Strukturverkleinerung der Biomasse ohne mechanischen Aufwand, beispielweise durch Hächsler, Hammermühlen, Extruder oder ähnliches erforderlich ist. Während des Prozesses der hydrothermalen Karbonisierung laufen mehrere Reaktionsmechanismen ab, insbesondere die Reaktionsmechanismen der Hydrolyse, Dehydratisierung und Aromatisierung. Durch den Prozess der Hydrolyse erfolgt ein Aufschluss der in der Biomasse enthaltenen Zellulose, wodurch der Gasertrag erheblich gesteigert werden kann. Ferner werden durch den Reaktionsmechanismus der Dehydratisierung Wassermolekühle abgespalten, sodass Wasser, nachfolgend als Dehydratwasser bezeichnet, freigesetzt wird. Diese Abspaltung von Dehydratwasser vor der Einbringung in den Fermenter und vorzugsweise Entnahme dieses Dehydratwassers aus dem Reaktor getrennt von der vorbehandelten Biomasse bewirkt, dass die in den Fermenter anschließend eingebrachte, vorbehandelte Biomasse eine erhöhte Trockenmasse aufweist. Dadurch wird wiederum der Gasertrag bei der Biogaserzeugung deutlich gesteigert. Des Weiteren wird durch die Vorbehandlung der Biomasse durch den zumindest einen Teilprozess der hydrothermalen Karbonisierung die Plastizität bzw. Strukturviskosität der im Fermenter enthaltenen Biomasse bzw. dem im Fermenter enthaltenen Biomasse-Flüssigkeitsgemisch gegenüber herkömmlich strukturzerkleinerter Biomasse reduziert, sodass die im Fermenter notwendige Rührenergie reduziert wird.
  • In einem besonders bevorzugten Ausführungsbeispiel wird die Biomasse über eine Zeitdauer von 0,5 Stunden bis 8 Stunden im Reaktor vorbehandelt. Abhängig von der Verweildauer der Biomasse im Reaktor wird der sich vollziehende Prozess der hydrothermalen Karbonisierung in einem variablen Teilbereich durchlaufen, d.h. die bei der hydrothermalen Karbonisierung sich vollziehenden Reaktionsmechanismen der Hydrolyse, Dehydratisierung und Aromatisierung werden abhängig von der Verweildauer durchlaufen. Bevorzugt ist eine Verweildauer innerhalb des Reaktors, die einen vollständigen oder größtenteils vollständigen Zelluloseaufschluss durch Hydrolyse bewirkt. Weiterhin vorzugsweise wird die Verweildauer im Reaktor derart bemessen, dass zumindest eine teilweise Dehydratisierung der Biomasse erfolgt. Dadurch kann, wie zuvor bereits erwähnt, nach Abscheidung des entstehenden Dehydratwassers die im Fermenter eingebrachte Trockenmasse der Biomasse erhöht werden.
  • In einem bevorzugten Ausführungsbeispiel erfolgt die Vorbehandlung der Biomasse bei einer Temperatur zwischen 100°C und 270°C. Besonders bevorzugt sind Temperaturen im Bereich zwischen 150°C und 250°C, insbesondere Temperaturen zwischen 180°C und 240°C. Innerhalb dieser Temperaturbereiche kann eine Vorbehandlung der Biomasse durch zumindest einen Teilprozess der hydrothermalen Karbonisierung erfolgen. Vorteilhaft erfolgt innerhalb dieses Temperaturbereichs auch eine Hygienisierung der Biomasse, d.h. eine Abtötung von in der Biomasse enthaltenen Keimen. Dadurch kann eine Einbringung von Keimen in die Lebensmittelkette durch Ausbringen der nach dem Vergärungsprozess entstehenden Gärreste auf landwirtschaftliche Flächen wirksam vermieden werden.
  • In einem weiteren bevorzugten Ausführungsbeispiel erfolgt die Vorbehandlung der Biomasse innerhalb des Reaktors bei Drücken zwischen 5 bar und 55 bar, bevorzugt im Bereich zwischen 10 bar und 35 bar. In den genannten Druckbereichen kann eine optimale Strukturzerkleinerung der Biomasse durch den zumindest einen Teilprozess der hydrothermalen Karbonisierung erfolgen.
  • In einem weiteren bevorzugten Ausführungsbeispiel erfolgt durch die Vorbehandlung eine Dehydratation der Biomasse, wobei das bei der Dehydratation entstehende Wasser getrennt von der zumindest teilweise vorbehandelten Biomasse aus dem Reaktor entnommen wird. Bei dem Reaktionsmechanismus der Dehydratation, der einen Teilprozess der hydrothermalen Karbonisierung darstellt, werden Wassermoleküle von der Biomasse abgespalten. Das dadurch entstehende Dehydratwasser steigt innerhalb des Reaktors auf und bildet damit eine obere Schicht im Reaktor, sodass bei Vorsehen einer Entnahmeeinrichtung am Reaktor, beispielsweise in der oberen Hälfte des Reaktors, das Dehydratwasser getrennt von der zumindest teilweise vorbehandelten Biomasse entnommen werden kann. Durch die Abspaltung des Dehydratwassers wird die Trockenmasse der vorbehandelten, anschließend in den Fermenter überführten Biomasse erhöht, wodurch der Biogasertrag pro m³ Fermentervolumen bei der Vergärung der vorbehandelten Biomasse entscheidend erhöht wird.
  • In einem bevorzugten Ausführungsbeispiel wird der Reaktor durch eine Durchleitung von Gasen, Gasgemischen und/oder Dämpfen durch zumindest einen im Reaktorinnenraum vorgesehenen Wärmetauscher aufgeheizt oder temperaturstabilisiert. Bei Prozessbeginn ist es nötig, den Reaktor auf eine gewünschte Temperatur, insbesondere auf eine Temperatur zwischen 100°C und 250°C aufzuheizen. Obwohl der Prozess der hydrothermalen Karbonisierung ein exothermer Reaktionsprozess ist, d.h. Reaktionsenergie in Form von Wärme freigesetzt wird, kann es abhängig von unterschiedlichen Prozessparametern notwendig sein, eine Temperaturstabilisierung des Reaktors und damit eine Prozesssteuerung zu erreichen. Dadurch kann der Vorbehandlungsprozess in einem gewünschten Prozessfenster mit gewünschten Prozessparametern betrieben werden.
  • Bevorzugt erfolgt die Aufheizung und/oder Temperaturstabilisierung des Reaktors durch eine Durchleitung von Rauchgasen durch den Wärmetauscher, wobei die Rauchgase bei der Verbrennung des Biogases zur Erzeugung von elektrischer Energie entstehen. Der Wärmetauscher ist vorzugsweise ein Rohrwärmetauscher mit mehreren vertikal angeordneten Rohrelementen, die von der Biomasse bzw. dem Biomasse-Flüssigkeitsgemisch umgeben sind. Vorzugsweise wird eine Biogasanlage in Verbindung mit einem nachgeschalteten Blockheizkraftwerk betrieben, bei dem durch Verbrennung des erzeugten Biogases elektrische Energie bzw. Wärmeenergie erzeugt wird. Durch die Durchleitung von beim Verbrennungsprozess im Blockheizkraftwerk entstehenden Rauchgasen durch den Wärmetauscher kann die im Rauchgas enthaltene Abwärme zur Aufheizung und/oder Temperaturstabilisierung des Reaktors verwendet werden.
  • Vorzugsweise wird im Blockheizkraftwerk Wasser zu Kühlung verwendet, wobei ebenfalls vorzugsweise eine Nutzung der im Kühlwasser enthaltenen Wärmeenergie vorgesehen ist, bei der die im Kühlwasser enthaltene Wärmeenergie entzogen und zur weiteren Nutzung abgeführt wird. Dadurch können gesetzliche Vorgaben, insbesondere Vorgaben des erneuerbaren Energiengesetzes (EEG) erfüllt werden. Zur Steuerung der Temperatur des durch den Wärmetauscher geleiteten Gases oder Dampfes können Mischeinrichtungen vorgesehen sein, die eine gesteuerte Beimischung eines gewünschten Anteils an Frisch- bzw. Kaltluft zu dem Rauchgas bzw. Dampf bewirken. Durch die Beimischung kann die Temperatur des durch den Wärmetauscher geleiteten Gases oder Dampfes geregelt werden und damit eine Temperatursteuerung des Reaktors bewirkt werden.
  • Vorzugsweise wird die Einbringung von Biomasse in den Reaktor, die Entnahme von vorbehandelter Biomasse aus dem Reaktor und der anschließende Prozess der Vergärung der Biomasse kontinuierlich oder quasi kontinuierlich in einem Durchlaufverfahren vollzogen, wobei die Zuführung von Biomasse in den Reaktor bzw. die Entnahme von vorbehandelter Biomasse aus dem Reaktor in kurz aufeinander folgenden Zeitintervallen, beispielsweise Intervallen von 5 Min. bis 30 Min., d.h. intermittierend vollzogen wird. Ebenso ist eine kontinuierliche Zuführung von Biomasse in den Reaktor bzw. eine kontinuierliche Entnahme von vorbehandelter Biomasse möglich. Dabei wird ein im Vergleich zum gesamten im Reaktorinnenraum vorhandenen Biomassevolumen geringeres Volumen von Biomasse jeweils zugeführt bzw. an vorbehandelter Biomasse abgeführt, sodass die Verweildauer innerhalb des Reaktors wesentlich größer ist als die Einbringungs- bzw. Entnahmezyklen.
  • In einem bevorzugten Ausführungsbeispiel wird die Biomasse vor der Einbringung in den Reaktor in einer Vorwärmeinrichtung erwärmt. Die Vorwärmung der Biomasse bewirkt, dass die im Reaktorinnenraum sich vollziehenden Reaktionsmechanismen durch das kontinuierliche oder quasi kontinuierliche Einbringen von neuer Biomasse nicht oder nur unwesentlich gestört werden, da durch die Vorwärmung der Biomasse die Druck- und Temperaturschwankungen im Reaktorinnenraum minimiert werden. Dies ist insbesondere dann der Fall, wenn die Biomasse auf eine Temperatur gleich oder annähernd gleich der Temperatur im Reaktorinnenraum vorerwärmt wird.
  • In einem bevorzugten Ausführungsbeispiel erfolgt die Erwärmung der Biomasse durch Entnahme von durch Dehydratation entstehendem Hydratwasser im flüssigen Zustand aus dem Reaktor, durch unmittelbare Zuführung des Dehydratwassers zur Vorwärmeinrichtung und Vermischung des Dehydratwassers mit der Biomasse innerhalb der Vorwärmeinrichtung. Aufgrund der Tatsache, dass das Wasser im flüssigen Zustand im Vergleich zu Wasserdampf eine größere Menge an Wärmeenergie pro Volumeneinheit aufweist, wird durch die Entnahme eines definierten Volumens von Dehydratwasser im flüssigen Zustand aus dem Reaktor eine größere Menge an Wärmeenergie der Vorwärmeinrichtung zugeführt als bei der Entnahme desselben Volumens an Wasserdampf. Damit muss zur Erzielung eines bestimmten Wärmeeintrags in die Biomasse ein im Vergleich zur Verwendung von Wasserdampf geringeres Volumen an Dehydratwasser entnommen werden, sodass die Reaktionsmechanismen im Reaktorinnenraum nur geringfügig beeinträchtigt werden. Insbesondere bei Verwendung von Biomasse mit einem hohen Trockengehalt wird durch die Vermischung der Biomasse mit dem Dehydratwasser eine verbesserte, gleichmäßigere Vorwärmung der Biomasse im Vergleich zu herkömmlich verwendeten Wärmetauschersystemen erreicht, da die Wärmetauscher bei der Verwendung relativ trockener Biomasse, insbesondere Biomasse mit einem Trockengehalt größer als 20%, zur Verkrustung an den Wärmeübertragungsflächen neigen und dadurch der Wirkungsgrad der Wärmetauscher abnimmt.
  • In einem weiteren bevorzugten Ausführungsbeispiel wird vor dem Einbringen der Biomasse in den Reaktor der Druck in der Vorwärmeinrichtung auf einen Druck zumindest gleich dem Druck im Reaktor erhöht. Durch eine derartige Druckerhöhung in der Vorwärmeinrichtung kann eine Pumpeinrichtung entfallen, die einen Übertrag der vorwärmten Biomasse aus der Vorwärmeinrichtung in den Reaktorinnenraum bewirkt. Es kann vielmehr ein Übertrag erfolgen, der lediglich durch die Schwerkrafteinwirkung auf die Biomasse bzw. das Gemisch aus Biomasse und Dehydratwasser erfolgt, d.h. die Biomasse bzw. das genannte Biomassegemisch wird aus der oberhalb des Reaktors angeordneten Vorwärmeinrichtung in den Reaktorinnenraum fallen gelassen. Alternativ ist es möglich, den Druck in der Vorwärmeinrichtung über den Druck im Reaktorinnenraum zu erhöhen, sodass ein durch den Überdruck bewirkter Übertrag von der Vorwärmeinrichtung in den Reaktorinnenraum erfolgt. Durch einen derartigen Überdruck in der Vorwärmeinrichtung wird eine Verstopfung des Auslasses der Vorwärmeinrichtung bzw. der Zuführöffnung des Reaktors wirksam vermieden.
  • Gemäß einem weiteren Aspekt bezieht sich die Erfindung auf eine Vorrichtung zur Erzeugung von regenerativer Energie durch Vergärung von Biomasse in zumindest einem Fermenter, wobei vor dem zumindest einem Fermenter ein Reaktor vorgesehen ist, der zur Vorbehandlung der Biomasse durch zumindest einen Teilprozess der hydrothermalen Karbonisierung, d.h. Beaufschlagung der Biomasse mit Druck und Temperatur ausgebildet ist.
  • Besonders bevorzugt weist zumindest ein Teil der Innenwandung des Reaktors und/oder die gesamte Innenwandung des Reaktors eine Beschichtung aus einem hochgleitfähigen Material auf. Dieses hochgleitfähige Material kann insbesondere ein Polytetrafluorethylen (PTFE) sein, wobei eine Beschichtung mit einer Schichtdicke von 15 bis 20 µm bevorzugt wird. Die Beschichtung bietet den entscheidenden Vorteil, dass die Gleitfähigkeit der Prozesszwischenprodukte bzw. Endprodukte an der Reaktorwandung entscheidend verbessert wird, so dass sich auch bei längerer kontinuierlicher Benutzungsdauer des Reaktors keine den Prozess negativ beeinflussenden Ablagerungen bilden. Insbesondere kann auch der Wärmetauscher, insbesondere die Rohrelemente des Wärmetauschers mit einer derartigen Beschichtung aus einem hochgleitfähigen Material versehen sein. Besonders bevorzugt wird ein kondenswasserbeständiges und ein gegen hohe Temperaturunterschiede an den Rohrelementen des Wärmetauschers beständiges Polytetrafluorethylen verwendet.
  • Unter der unmittelbaren Zuführung des Dehydratwassers zur Vorwärmeinrichtung wird eine Zuführung beispielsweise mittels Rohrleitungen ohne weitere Vorrichtungen, insbesondere Verdampfer zum Entspannen des Wassers, verstanden. Unter unmittelbarer Zuführung ist jedoch auch eine Rohrleitung oder ein Rohrleitungssystem enthaltend zumindest eine Sperreinrichtung, insbesondere ein Ventil zum Verschluss der Vorwärmeinrichtung und/oder des Reaktors zu verstehen.
  • Unter Dehydratwasser im Sinne der Erfindung wird im Reaktor vorhandene Flüssigkeit verstanden, die durch der Biomasse enthaltene bzw. beigemischte Flüssigkeit und/oder während des Dehydratationsprozess von der Biomasse abgespaltene Wassermoleküle gebildet wird.
  • Der Ausdruck „im Wesentlichen“ bedeutet im Sinne der Erfindung Abweichungen vom jeweils exakten Wert um +/–10%, bevorzugt um +/–5% und/oder Abweichungen in Form von für die Funktion unbedeutenden Änderungen.
  • Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung des Ausführungsbeispiels und aus den Figuren. Dabei sind alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination grundsätzlich Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung. Auch wird der Inhalt der Ansprüche zu einem Bestandteil der Beschreibung gemacht.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels im Zusammenhang mit den Figuren näher erläutert. Es zeigen:
  • 1 beispielhaft eine erfindungsgemäße Anlage zur Erzeugung regenerativer Energie aus Biomasse in einer schematischen Darstellung;
  • 2 beispielhaft die graphische Darstellung des in einem Batch-Versuch ermittelten Gasertrags über der Verweildauer der Biomasse im Fermenter bei Verwendung von erfindungsgemäß vorbehandelter Biomasse; und
  • 3 beispielhaft eine erfindungsgemäße Anlage zur Erzeugung regenerativer Energie aus Biomasse mit einer Vorwärmeinrichtung in einer schematischen Darstellung.
  • In 1 ist mit dem Bezugszeichen 1 eine erfindungsgemäße Anlage zur Erzeugung regenerativer Energie aus Biomasse gezeigt. Die Anlage 1 weist eine Biomasseaufgabe 2 auf, an der insbesondere trockene oder im Wesentlichen trockene Biomasse mit einem Trockengehalt ≥ 30% eingebracht und mittels einer Fördereinrichtung 3 gesteuert bzw. zeitlich intermittierend dem Reaktor 5 zugeführt wird. Die Fördereinrichtung 3 kann hierbei eine Förderschnecke, ein Förderband, ein Schubbodenförderer oder bei Biomasse mit hohem Wasseranteil auch eine Pumpe sein.
  • Der Reaktor 5 wird durch einen druckfesten Behälter gebildet, der durch seine Behälterwandungen einen Reaktorinnenraum 5.1 umschließt bzw. abgrenzt. Zum Befüllen des Reaktorinnenraums mit Biomasse weist der Reaktor 5 einen Einlass 5.2 auf, über den die Biomasse in den Reaktorinnenraum 5.1 gelangt. Bevorzugt ist der Einlass 5.2 an der Oberseite des Reaktors 5 vorgesehen. Die dem Reaktor 5 zugeführte Biomasse wird nach der Einbringung unter Einwirkung von Druck- und Temperatur in einem thermochemischen Verfahren vorbehandelt. Dabei wird der Druck im Innenraum des Reaktors 5 auf einen Wert zwischen 5 bar und 35 bar, vorzugsweise zwischen 10 bar und 25 bar eingestellt. Die Temperatur der Biomasse im Reaktorinnenraum wird dabei auf Werte zwischen 100°C und 250°C, vorzugsweise 150°C bis 250°C, besonders bevorzugt 180°C bis 240°C eingestellt.
  • Beim Einbringen der Biomasse in den Reaktor 5 erfolgt vorzugsweise eine Vermischung derselben mit im Reaktor 5 befindlichem Wasser bzw. Biomasse-Flüssigkeitsgemisch. Die daraus entstehende wässrige Biomassemischung weist vorzugsweise einen pH-Wert im Bereich von 3 bis 6 auf. Unter diesen Prozessbedingungen vollzieht sich innerhalb des Reaktors 5 der Prozess der hydrothermalen Karbonisierung, bei dem durch die Prozessstufen Hydrolyse, Dehydratisierung und Aromatisierung ein Kohlepartikel enthaltender Kohleschlamm entsteht. Vorzugsweise wird der Prozess der hydrothermalen Karbonisierung jedoch nicht vollständig durchlaufen, sondern der Prozess nach einer Zeitdauer zwischen 0,5 Std. bis 5 Std. abgebrochen und die somit vorbehandelte Biomasse über einen Auslass 5.3 des Reaktors 5 aus dem Reaktorinnenraum 5.1 entnommen. Durch zumindest einen Teilprozess der hydrothermalen Karbonisierung, der während der Verweildauer der Biomasse im Reaktor durchlaufen wird, erfolgt eine Aufspaltung der Molekularstruktur der Biomasse. Dabei wird insbesondere die in der Biomasse enthaltene Zellulose durch einen Hydrolyseprozess isomerisiert und dabei in Glukose bzw. Fruktose aufgespalten. Vorzugsweise erfolgt die Einbringung der Biomasse bzw. die Ausbringung der Biomasse aus dem Reaktor 5 kontinuierlich oder quasi kontinuierlich in einem Durchlaufverfahren, wobei durch die Einbringung bzw. Ausbringung der im Reaktorinnenraum 5.1 sich vollziehende thermochemische Prozess aufrechterhalten wird, d.h. die zugeführte Menge an Biomasse bzw. die abgeführte Menge an vorbehandelter Biomasse ist derart im Vergleich zu der im Reaktorinnenraum 5.1 noch vorhandene Menge an Biomasse bemessen, dass sich die Prozessparameter innerhalb des Reaktors 5 nur unwesentlich ändern, sodass die sich vollziehenden Teilprozesse der hydrothermalen Karbonisierung im Wesentlichen unverändert bleiben.
  • Bevorzugt werden im Reaktorinnenraum 5.1 durch die sich bei der hydrothermalen Karbonisierung als Reaktionsmechanismus vollziehende Dehydratation Wassermoleküle aus der Biomasse abgespalten, d.h. innerhalb des Reaktors 5 erfolgt eine Abtrennung von Wasser. Dieses abgetrennte Wasser steigt im Reaktor 5 nach oben und wird vorzugsweise getrennt von der vorbehandelten Biomasse an einer Entnahmeöffnung 5.4 dem Reaktorinnenraum 5.1 entnommen. Dadurch wird vorteilhaft die Trockenmasse der vorbehandelten, anschließend vergärten Biomasse wesentlich erhöht.
  • Die vorbehandelte Biomasse wird an dem Auslass 5.3, wie oben bereits erwähnt, entnommen und einem Fermenter 6 einer Biogasanlage zugeführt. In dem Fermenter 6 erfolgt eine zumindest teilweise Vergärung der Biomasse unter anaeroben Bedingungen, wobei durch den Vergärungsprozess Methan enthaltendes Biogas entsteht.
  • Vorzugsweise wird der Vergärungsprozess innerhalb des Fermenters 6 als kontinuierlicher Gärungsprozess betrieben, wobei dem Fermenter 6 kontinuierlich oder in regelmäßigen zeitlichen Abständen vorbehandelte Biomasse aus dem Reaktor 5 zugeführt wird und die zumindest teilweise vergorene Biomasse bzw. deren Gärreste zusammen mit dem im Fermenter 6 entstehenden Biogas dem Nachgärer 7 zugeführt wird. Der Nachgärer 7 dient zum einen der Restvergärung der Biomasse bzw. der Gärreste der Biomasse, zum anderen als Gasspeicher für das innerhalb im Nachgärer 7 bzw. im Fermenter 6 entstehende Biogas.
  • Der wesentliche Vorteil der Vorbehandlung der Biomasse in dem Reaktor 5 durch zumindest einen Teilprozess der hydrothermalen Karbonisierung besteht darin, dass die Verweildauer der Biomasse innerhalb des Fermenters 6 zur Erreichung einer bestimmten Biogasausbeute deutlich verkürzt werden kann bzw. der Biogasertrag bei konstanter Verweildauer im Fermenter 6 bzw. im Nachgärer 7 deutlich gesteigert werden kann.
  • 2 zeigt ein Diagramm, in dem die Gasausbeute bzw. der Gasertrag in NL/kg oTM (Nettoliter pro Kilogramm organische Trockenmasse) über der Zeit aufgetragen ist. Dabei wurde Ganzpflanzensilage der Getreidesorte Tritikale bei einer Verweildauer von 1 Stunde in dem Reaktor 5 vorbehandelt und zwar beispielsweise bei einer Temperatur von 200°C und einem Druck von 16 bar. Durch die Vorbehandlung kann der Gasertrag erheblich gesteigert werden. Bei Verwendung von Ganzpflanzensilage der Getreidesorte Tritikale ohne Vorbehandlung mittels einem Teilprozess der hydrothermalen Karbonisierung beträgt die Gasausbeute nach 31 Tagen Verweildauer im Fermenter/Nachgärer lediglich 419 NL/kg oTM, d.h. der Gasertrag bei Vorbehandlung mittels einem Teilprozess der hydrothermalen Karbonisierung ist schon bei 24 Tagen Verweildauer im Fermenter/Nachgärer um mehr als 20% gesteigert. Des Weiteren kann die Verweildauer innerhalb des Fermenters/Nachgärers bei einem gewünschten festen Gasertrag durch die erfindungsgemäße Vorbehandlung deutlich reduziert werden, da der o.g. Wert des Gasertrags bei Vorbehandlung der Biomasse schon bereits bei 12 Tagen Verweildauer im Fermenter/Nachgärer erreicht wird.
  • Die Anlage 1 weist zudem in an sich bekannter Weise ein Gärresteendlager 8 auf, in die die Gärreste aus dem Nachgärer 7 eingebracht werden.
  • Die im Fermenter bzw. im Nachgärer 7 entstehenden brennbaren Gase werden vorzugsweise aus dem im Bereich des Nachgärers vorgesehenen Gasspeicher entnommen und einem Blockheizkraftwerk 9 zugeführt, durch das bei Verbrennung des innerhalb der Biogasanlage erzeugten brennbaren Gases elektrischer Strom und Wärme erzeugt wird. Die Restwärmenutzung des Blockheizkraftwerkes 9 erfolgt durch Durchleitung des bei der Verbrennung entstehenden Rauchgases durch einen im Innenraum des Reaktors 5 vorgesehenen Wärmetauschers 10, der zur Durchleitung der Rauchgase ausgebildet ist.
  • Wie in 3 gezeigt, ist der Wärmetauscher 10 als Rohrwärmetauscher ausgebildet und weist mehrere, vorzugsweise vertikal angeordnete Rohrelement 10.1 auf, die mit der am Blockheizkraftwerk 9 angeschlossenen Rauchgasleitung 9.1 verbunden sind und damit vom Rauchgas durchströmt werden. Dadurch wird eine Erwärmung der im Reaktorinnenraum 5.1 enthaltenen Biomasse bzw. dem Biomasse-Flüssigkeitsgemisch bewirkt.
  • Bevorzugt ist in der Rauchgasleitung 9.1 zwischen dem Blockheizkraftwerk 9 und dem Reaktor 5 eine Mischeinrichtung 9.2 vorgesehen, die ein gesteuertes Beimischen einer gewünschten Menge Kaltluft bzw. Frischluft zu dem Rauchgas ermöglicht. Dadurch wird die Rauchgastemperatur bzw. der Wärmeeintrag in den Reaktor 5 über den Wärmetauscher 10 gesteuert. Der benötigte Wärmeeintrag im Reaktor 5 hängt maßgeblich von der verwendeten Biomasse bzw. dem Trockenanteil dieser Biomasse ab, wobei Biomasse mit einem höheren Trockenanteil einen geringeren Wärmeeintrag benötigt, als Biomasse mit einem niedrigen Trockenanteil. Durch die gesteuerte Zuführung von Kaltluft bzw. Frischluft zu dem Rauchgas kann dem jeweiligen benötigten Wärmebedarf abhängig von der bearbeiteten Biomasse Rechnung getragen werden. Zudem ist eine Steuerung der Temperatur der durch den Wärmetauscher 10 geleiteten Rauchgase in Abhängigkeit von den jeweiligen Prozessbedingungen möglich. Vorzugsweise erfolgt eine Restwärmenutzung der im Rauchgas enthaltenen Wärmemenge ≥ 50% durch die Durchleitung des Rauchgases durch den Wärmetauscher 10, sodass durch eine weiterhin vorgesehene Restwärmenutzung im Kühlwasserkreislauf des Blockheizkraftwerks, bei dem mindestens 10% der im Blockheizkraftwerk 9 entstehenden Abwärme genutzt wird, die gesetzlich geforderte Grenze von mindesten 60% der Restwärmenutzung erreicht wird. Die Restwärmenutzung des Kühlwassers erfolgt vorzugsweise durch den Wärmetauscher 11.
  • In 3 ist die erfindungsgemäße Anlage 1 in einem höheren Detaillierungsgrad gezeigt. Die Anlage 1 weist eine zwischen der Biomasseaufgabe 2 und dem Reaktor 5 angeordnete Vorwärmeinrichtung 12 auf, der über die Fördereinrichtung 3 die an der Biomasseaufgabe 2 eingebrachte Biomasse zugeführt wird. Die Vorwärmeinrichtung 12 ist vorzugsweise ein druckfester, abgesehen von Zu- und Ableitungen, geschlossener Behälter, die zur Vorerwärmung der Biomasse vor der Einbringung in den Reaktor 5 dient. Sie ist vorzugsweise oberhalb des Reaktors 5, insbesondere unmittelbar über dem Einlass 5.2 angeordnet. Die Vorerwärmung der Biomasse birgt den Vorteil, dass durch die Einbringung der Biomasse in den Reaktor 5 die Temperaturschwankungen innerhalb des Reaktors 5 minimiert werden, und dabei der zumindest eine Teilprozess der hydrothermalen Karbonisierung innerhalb des Reaktors 5 durch das intermittierende Einbringen von neuer Biomasse aufrechterhalten wird.
  • Die Vorerwärmung der Biomasse erfolgt vorzugsweise durch Entnahme von Flüssigkeit aus dem Reaktor 5, beispielsweise mittels der Entnahmeeinrichtung 12.1. Vorzugsweise wird aus der in den Reaktor 5 eingebrachten Biomasse durch einen Dehydratationsprozess Wasser abgeschieden, sogenanntes Dehydratwasser, welches über die Entnahmeeinrichtung 12.1 der Vorwärmeinrichtung 12 zugeführt wird. Innerhalb der Vorwärmeinrichtung 12 erfolgt vorzugsweise eine Vermischung des Dehydratwassers mit der Biomasse. Dieses Wasser weist näherungsweise die im Reaktor 5 vorherrschende Temperatur, d.h. vorzugsweise Temperaturen im Bereich von 100°C bis 250°C auf und kann aufgrund seiner hohen spezifischen Masse optimal für einen Wärmeeintrag in die zu erwärmende Biomasse verwendet werden.
  • Zur Entnahme des Dehydratwassers im flüssigen Zustand aus dem Reaktor 5 ist eine unmittelbare fluidische Verbindung zwischen dem Reaktor 5 und der Vorwärmeinrichtung 12 vorgesehen, über die das Dehydratwasser vorzugsweise über zumindest ein Ventil gesteuert dem Reaktor 5 entzogen werden kann. Beim Zuführen des Dehydratwassers in die Vorwärmeinrichtung 12 ist diese vorzugsweise druckdicht verschlossen, sodass bei Zuführung des unter Druck stehenden Dehydratwassers der Druck im Inneren der Vorwärmeinrichtung 12 erhöht wird. Vorzugsweise wird der Druck innerhalb der Vorwärmeinrichtung 12 über den im Reaktor 5 vorherrschenden Druck erhöht. Diese Druckerhöhung kann beispielsweise mittels eines Druckerzeugers oder einem mit dem Druckerzeuger gekoppelten Druckspeicher erfolgen. Nach der Erhöhung des Drucks in der Vorwärmeinrichtung 12 wird die vorerwärmte Biomasse bzw. das Gemisch aus Biomasse und Dehydratwasser über den Einlass 5.2 dem Reaktor 5 zugeführt. Für den Fall, dass in der Vorwärmeinrichtung 12 der gleiche Druck wie im Reaktor 5 vorherrscht, wird die Biomasse schwerkraftbedingt in den Reaktor 5 eingebracht. Bevorzugt ist eine Erhöhung des Drucks in der Vorwärmeinrichtung 12 über den Druck im Reaktor 5, sodass ein Verstopfen des Auslasses der Vorwärmeinrichtung 12 bzw. der Zuführöffnung 5.2 des Reaktors 5 wirksam vermieden wird.
  • Die Erfindung wurde voranstehend an einem Ausführungsbeispiel beschrieben. Es versteht sich, dass zahlreiche Modifikationen und Änderungen möglich sind, ohne dass hierdurch der Erfindungsgedanke verlassen wird.
  • Bezugszeichenliste
  • 1
    Anlage
    2
    Biomasseaufgabe
    3
    Fördereinrichtung
    5
    Reaktor
    5.1
    Reaktorinnenraum
    5.2
    Einlass
    5.3
    Auslass
    5.4
    Entnahmeöffnung
    6
    Fermenter
    7
    Nachgärer
    8
    Gärresteendlager
    9
    Blockheizkraftwerk
    9.1
    Rauchgasleitung
    9.2
    Mischeinrichtung
    10
    Wärmetauscher
    10.1
    Rohrelement
    11
    Wärmetauscher
    12
    Vorwärmeinrichtung
    12.1
    Entnahmeeinrichtung

Claims (15)

  1. Verfahren zur Erzeugung von regenerativer Energie durch Vergärung von Biomasse in zumindest einem Fermenter (6), wobei die Biomasse vor der Zuführung zu dem Fermenter (6) einer Vorbehandlung unterzogen wird, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: – Zuführung der Biomasse zu einem geschlossenen Reaktor (5); – Vorbehandlung der Biomasse unter Einwirkung von Wärme und Druck in zumindest einem Teilprozess der hydrothermalen Karbonisierung in dem Reaktor (5); – Zuführung der vorbehandelten Biomasse zum Fermenter (6); und – Vergärung der vorbehandelten Biomasse zur Erzeugung von Biogas.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Biomasse über eine Zeitdauer von 0,5 Stunden bis 5 Stunden vorbehandelt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vorbehandlung der Biomasse bei einer Temperatur zwischen 100°C und 270 °C erfolgt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorbehandlung der Biomasse bei Drücken zwischen 5 bar und 55 bar erfolgt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Vorbehandlung eine Dehydratation der Biomasse erfolgt, wobei das bei der Dehydratation entstehende Wasser getrennt von der vorbehandelten Biomasse aus dem Reaktor entnommen wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Reaktor durch eine Durchleitung von Gasen und/oder Wasserdampf durch zumindest einen im Reaktorinnenraum (5.1) vorgesehenen Wärmetauscher (10) aufgeheizt und/oder temperaturstabilisiert wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Aufheizung und/oder Temperaturstabilisierung durch eine Durchleitung von Rauchgasen durch den Wärmetauscher (10) erfolgt, wobei die Rauchgase bei der Verbrennung des Biogases zur Erzeugung von elektrischer Energie entstehen.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Biomasse vor der Einbringung in den Reaktor (5) in einer Vorwärmeinrichtung (12) erwärmt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Erwärmung der Biomasse durch Entnahme von durch Dehydratation entstehendem Dehydratwasser im flüssigen Zustand aus dem Reaktor (5), durch unmittelbare Zuführung des Dehydratwassers zur Vorwärmeinrichtung (12) und Vermischung des Dehydratwassers mit der Biomasse in der Vorwärmeinrichtung (12) erfolgt.
  10. Vorrichtung zur Erzeugung von regenerativer Energie durch Vergärung von Biomasse in zumindest einem Fermenter (6), dadurch gekennzeichnet, dass vor dem zumindest einen Fermenter (6) ein Reaktor (5) vorgesehen ist, der zur Vorbehandlung der Biomasse durch zumindest einen Teilprozess der hydrothermalen Karbonisierung, d.h. Beaufschlagung der Biomasse mit Druck und Temperatur ausgebildet ist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass im Innenraum des Reaktors (5) ein Wärmetauscher (10) vorgesehen ist, der zur Durchleitung von Gasen und/oder Dämpfen ausgebildet ist.
  12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass vor dem Reaktor (5) eine Vorwärmeinrichtung (12) zur Erwärmung der Biomasse vor dem Einbringen in den Reaktor (5) vorgesehen ist.
  13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Reaktor (5) an zumindest einem Teil der Innenfläche der Reaktorwandung eine Beschichtung aufweist, die ein Anhaften der Biomasse verhindert.
  14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Wärmetauscher (12) eine Beschichtung aufweist, die ein Anhaften der Biomasse verhindert.
  15. Vorrichtung nach einem der Ansprüche 13 bis 14, dadurch gekennzeichnet, dass die Beschichtung zumindest eine Schicht aus Polytetrafluorethylen (PTFE) ist.
DE102012113119.8A 2012-12-27 2012-12-27 Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse Withdrawn DE102012113119A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102012113119.8A DE102012113119A1 (de) 2012-12-27 2012-12-27 Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse
EP13817644.1A EP2938729A1 (de) 2012-12-27 2013-11-20 Verfahren sowie vorrichtung zur erzeugung von regenerativer energie aus biomasse
PCT/DE2013/100393 WO2014101915A1 (de) 2012-12-27 2013-11-20 Verfahren sowie vorrichtung zur erzeugung von regenerativer energie aus biomasse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012113119.8A DE102012113119A1 (de) 2012-12-27 2012-12-27 Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse

Publications (1)

Publication Number Publication Date
DE102012113119A1 true DE102012113119A1 (de) 2014-07-03

Family

ID=49917402

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012113119.8A Withdrawn DE102012113119A1 (de) 2012-12-27 2012-12-27 Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse

Country Status (3)

Country Link
EP (1) EP2938729A1 (de)
DE (1) DE102012113119A1 (de)
WO (1) WO2014101915A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012320A1 (de) * 2014-10-20 2016-04-27 Innovative Biogas GmbH & Co. KG Fermenter
EP3034603A1 (de) * 2014-12-19 2016-06-22 AIVOTEC s.r.o. Erweiterte biogasanlage
DE102015016194A1 (de) * 2015-12-15 2017-06-22 Terranova Energy Gmbh Verfahren zur Faulung und hydrothermalen Karbonisierung von Klärschlamm
DE102016100768A1 (de) * 2016-01-19 2017-07-20 Universität Rostock Verfahren zur Herstellung von Biokohle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007056170A1 (de) * 2006-12-28 2008-11-06 Dominik Peus Semikontinuierliches Verfahren zur Herstellung von Brennstoff aus Biomasse
DE102009024287B4 (de) * 2008-06-23 2019-04-25 Hochschule Ostwestfalen-Lippe Verfahren der Biogasgewinnung
DE102009053867A1 (de) * 2009-11-20 2011-05-26 Terranova Energy Gmbh Verfahren zur Herstellung von Bodenzusatzstoffen zur Verbesserung der Kationenaustauschkapazität, der Nährstoff- und der Wasserhaltefähigkeit von Böden
DE102009055026A1 (de) * 2009-12-18 2011-06-22 Heete, Lars Christian, 46240 Verfahren und Vorrichtung zum Temperieren einer exothermen Reaktion
DE102010000580A1 (de) * 2010-02-26 2011-09-01 G+R Technology Group Ag System und Verfahren zur Bereitstellung einer Mischung aus unterschiedlichen Biomassen für eine Anlage zur Gewinnung eines Reaktionsprodukts aus den unterschiedlichen Biomassen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012320A1 (de) * 2014-10-20 2016-04-27 Innovative Biogas GmbH & Co. KG Fermenter
EP3034603A1 (de) * 2014-12-19 2016-06-22 AIVOTEC s.r.o. Erweiterte biogasanlage
DE102015016194A1 (de) * 2015-12-15 2017-06-22 Terranova Energy Gmbh Verfahren zur Faulung und hydrothermalen Karbonisierung von Klärschlamm
DE102016100768A1 (de) * 2016-01-19 2017-07-20 Universität Rostock Verfahren zur Herstellung von Biokohle

Also Published As

Publication number Publication date
WO2014101915A1 (de) 2014-07-03
EP2938729A1 (de) 2015-11-04

Similar Documents

Publication Publication Date Title
EP1929024B1 (de) Verfahren zur herstellung von biogas unter verwendung eines substrats mit hohem feststoff- und stickstoffanteil
DE102007012112C5 (de) Vorrichtung und Verfahren zur hydrothermalen Karbonisierung von Biomasse
AT507469B1 (de) Vorrichtung zur kontinuierlichen oder diskontinuierlichen hydrolyse von organischen substraten
EP3428130B1 (de) Verfahren zur vergasung und verstromung von feuchter biomasse mit überkritischem wasser
AT509319B1 (de) Verfahren und vorrichtung zur hydrolyse von vorzugsweise festen, organischen substraten
EP3197839B1 (de) Verfahren und anordnung zur abwasserbehandlung
WO2009090072A1 (de) Hydrothermale karbonisierung von biomasse
EP2284141A1 (de) Verfahren und Vorrichtung zur Herstellung von mit Mineralstoffen angereicherten Kohlepartikeln
DE102006061217B3 (de) Verfahren zur thermischen Aufbereitung von Klärschlamm und Einrichtung zur Durchführung des Verfahrens
EP3574080B1 (de) Verfahren und vorrichtung zum erzeugen von biogas
EP3390590A1 (de) Verfahren zur faulung und hydrothermalen karbonisierung von klärschlamm
DE102009052902A1 (de) Niedertemperaturpyrolyse von Biomasse in der Wirbelschicht für eine nachfolgende Flugstromvergasung
EP2233442B1 (de) Verfahren zur thermischen Hydrolyse von Klärschlamm
DE102012113119A1 (de) Verfahren sowie Vorrichtung zur Erzeugung regenerativer Energie aus Biomasse
EP1769064B1 (de) Biogasanlage zur bereitstellung von methanhaltigen gasen
WO2008006397A1 (de) Verfahren zur herstellung von methangas und reaktor zu dessen durchführung
EP1754771A2 (de) Verfahren zur Verwertung von biologischen Materialien
DE102008047563A1 (de) Verfahren und Vorrichtung zur Aufbereitung von kunststoffhaltigen Stoffen
EP3015444B1 (de) Verfahren und Vorrichtung zur Behandlung von organischer Masse mit Eindickung und thermischer Behandlung
DE102006035213A1 (de) Vorrichtung und Verfahren zur kombinierten Erzeugung von Wasserstoff und Methan durch Vergährung von biologischen Eingangsstoffen
EP1676819B1 (de) Verfahren zur umweltverträglichen Behandlung von Klärschlamm sowie Anordnung umfassend eine Kläranlage
DE102014108233B4 (de) Verfahren zur Initialisierung des Fermentationsprozesses in Biogasanlagen
EP2785818B1 (de) Verfahren sowie vorrichtung zur hydrothermalen karbonisierung von biomasse
EP3114208B1 (de) Vorrichtung und verfahren zur erzeugung einer biomassezubereitung
EP3228692A2 (de) Verfahren und vorrichtung zur aufbereitung von biomasse

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee