DE102012108413A1 - Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements - Google Patents

Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements Download PDF

Info

Publication number
DE102012108413A1
DE102012108413A1 DE102012108413.0A DE102012108413A DE102012108413A1 DE 102012108413 A1 DE102012108413 A1 DE 102012108413A1 DE 102012108413 A DE102012108413 A DE 102012108413A DE 102012108413 A1 DE102012108413 A1 DE 102012108413A1
Authority
DE
Germany
Prior art keywords
housing
optoelectronic component
casing
general formulas
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012108413.0A
Other languages
English (en)
Inventor
Christina Keith
Gertrud Kräuter
Georg Dirscherl
Tobias Gebuhr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102012108413.0A priority Critical patent/DE102012108413A1/de
Priority to PCT/EP2013/067617 priority patent/WO2014037235A1/de
Publication of DE102012108413A1 publication Critical patent/DE102012108413A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/14Esters of polycarboxylic acids
    • C08F118/16Esters of polycarboxylic acids with alcohols containing three or more carbon atoms
    • C08F118/18Diallyl phthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/14Esters of polycarboxylic acids
    • C08F218/16Esters of polycarboxylic acids with alcohols containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/14Esters of polycarboxylic acids
    • C08F218/16Esters of polycarboxylic acids with alcohols containing three or more carbon atoms
    • C08F218/18Diallyl phthalate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Es wird ein Gehäuse für ein optoelektronisches Bauteil angegeben. Das Gehäuse umfasst ein duroplastisches Polymer, das mittels Polymerisation von zumindest einer Monomerverbindung erhältlich ist.

Description

  • Die Erfindung betrifft ein Gehäuse für ein optoelektronisches Bauteil, ein optoelektronisches Bauelement, das ein derartiges Gehäuse aufweist sowie ein Verfahren zur Herstellung eines derartigen optoelektronischen Bauelements.
  • Nach dem Stand der Technik sind die als Gehäusematerialien für optoelektronische Bauteile, insbesondere für lichtemittierende Dioden (LEDs) verwendeten polymeren Materialien nicht ausreichend beständig gegen Alterung. Die durch Wärme oder Licht bedingte Alterung führt zu einer Bräunung des Materials und damit verbunden zu einer limitierenden Lebensdauer der LEDs, zu einem Verlust an Helligkeit und zu einer Schwächung der mechanischen Festigkeit. Gehäuse aus thermoplastischen Materialien werden bei Licht- und bei Wärmeeinwirkung weich und somit verformbar. Gehäuse aus Keramik sind teuer und besitzen nur eine begrenzte Reflektivität. Des Weiteren können Keramikgehäuse nicht so präzise hergestellt werden wie Kunststoffgehäuse.
  • Eine zu lösende Aufgabe besteht daher darin, ein Gehäuse für ein optoelektronisches Bauteil anzugeben, das sich durch eine erhöhte Alterungsbeständigkeit auszeichnet.
  • Diese Aufgabe wird durch das Gehäuse, das optoelektronische Bauelement, das das Gehäuse umfasst und das Verfahren zur Herstellung des optoelektronischen Bauelements gemäß den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausführungen sowie Weiterbildungen der vorliegenden Erfindung sind in den jeweils abhängigen Ansprüchen angegeben.
  • Es wird ein Gehäuse für ein optoelektronisches Bauteil angegeben. Das Gehäuse umfasst ein duroplastisches Polymer, das mittels Polymerisation von zumindest einer Monomerverbindung erhältlich ist, wobei die Monomerverbindung ausgewählt ist aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) oder Kombinationen daraus:
    Figure DE102012108413A1_0002
  • R, R' und R'' stehen für organische Reste mit endständigen C=C-Doppelbindungen, wobei R, R' und R'' gleich oder unterschiedlich gewählt sein können. n steht für 0 oder 1, X steht für Wasserstoff und/oder einen organischen Rest, wobei X gleich oder unterschiedlich gewählt sein kann.
  • Organische Reste mit „endständigen C=C-Doppelbindungen” bedeutet, dass die Reste R, R' und R'' an einem von der Anbindung an die Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) entfernten Ende ihrer Kette eine C=C-Doppelbindung aufweisen, wobei eines der C-Atome, das an der Doppelbindung beteiligt ist eine CH2-Gruppe oder ein C-Atom mit zwei Alkyl- oder Arylresten ist.
  • R'' kann in einer Verbindung gleich oder unterschiedlich gewählt sein.
  • Bei dem organischen Rest der X sein kann, kann es sich um einen gesättigten organischen Rest handeln.
  • X kann in einer Verbindung gleich oder unterschiedlich gewählt sein. X kann beispielsweise ausgewählt sein aus einer Gruppe, die Wasserstoff, Alkylsubstituenten, Arylsubstituenten, R, R' und R'' umfasst. Vorzugsweise handelt es sich bei dem organischen Rest X um C1- bis C8-Alkylreste, die verzweigt oder unverzweigt sein können. Besonders bevorzugt kann X aus einer Gruppe ausgewählt sein die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sec-Butyl-, tert-Butyl-, Cyclohexyl-, Phenylreste und Wasserstoff umfasst.
  • Gemäß einer Ausführungsform ist das Gehäuse Bestandteil eines optoelektronischen Bauelements.
  • Dadurch, dass das Gehäuse eines dieser duroplastischen Polymere umfasst, weist das Gehäuse eine hohe chemische und physikalische Beständigkeit auf. Die erhöhte chemische und physikalische Beständigkeit ist auf ein dreidimensionales Netzwerk der duroplastischen Polymere zurückzuführen. Das dreidimensionale Netzwerk kommt durch die Polymerisation der zumindest einen Monomerverbindung zustande. Das dreidimensionale Netzwerk entsteht durch den Einsatz von Monomerverbindungen der Formeln (I), (II), (III) und (IV), die zumindest zwei organische Reste mit endständigen C=C-Doppelbindungen aufweisen, über diese sie polymerisieren können. Die Polymerisation kann über einen radikalischen Mechanismus verlaufen. Durch die Polymerisation der zumindest einen Monomerverbindung entstehen Polymere und/oder Oligomere. Die zumindest eine Monomerverbindung, die Polymere und/oder Oligomere werden über die noch vorhandenen Doppelbindungen der Monomerverbindung, der Polymere und/oder Oligomere zusätzlich beispielsweise durch kovalente Bindungen verbrückt. Die duroplastischen Polymere verfügen über eine sehr gute Temperatur- und Strahlungsbeständigkeit, sowie über eine hohe mechanische Stabilität. Es hat sich gezeigt, dass ein Gehäuse umfassend eines der oben genannten duroplastischen Polymere vor allem durch die Strahlenbelastung und durch die Wärmeinwirkungen dem es in einem optoelektronischen Bauelement ausgesetzt ist nicht oder nur geringfügig vergilbt und eintrübt und sich in seinen mechanischen Eigenschaften nicht oder kaum verändert. Damit ist auch gewährleistet, dass die Lichtausbeute nicht oder weniger herabgesetzt wird und die Abstrahlcharakteristik des optoelektronischen Bauelements nicht oder nur geringfügig verändert wird.
  • Unter einem ”optoelektronischen Bauteil” ist in diesem Zusammenhang gemäß einer Ausführungsform eine mehr als eine Schicht umfassende Schichtenfolge zu verstehen, beispielsweise eine Folge einer p-dotierten und einer n-dotierten Halbleiterschicht, wobei die Schichten übereinander angeordnet sind.
  • Die Schichtenfolge kann als Epitaxieschichtenfolge oder als strahlungsemittierender Halbleiterchip mit einer Epitaxieschichtenfolge, also als epitaktisch gewachsene Halbleiterschichtenfolge ausgeführt sein. Dabei kann die Schichtenfolge beispielsweise auf der Basis von InGaAlN ausgeführt sein. InGaAlN-basierte Halbleiterchips und Halbleiterschichtenfolgen sind insbesondere solche, bei denen die epitaktisch hergestellte Halbleiterschichtenfolge eine Schichtenfolge aus unterschiedlichen Einzelschichten aufweist, die mindestens eine Einzelschicht enthält, die ein Material aus dem III–V-Verbindungshalbleitermaterialsystem InxAlyGa1-x-yN mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 aufweist. Halbleiterschichtenfolgen, die zumindest eine aktive Schicht auf Basis von InGaAlN aufweisen, können beispielsweise elektromagnetische Strahlung in einem ultravioletten bis grünen Wellenlängenbereich emittieren.
  • Alternativ oder zusätzlich kann die Halbleiterschichtenfolge oder der Halbleiterchip auch auf InGaAlP basieren, das heißt, dass die Halbleiterschichtenfolge unterschiedliche Einzelschichten aufweisen kann, wovon mindestens eine Einzelschicht ein Material aus dem III–V-Verbindungshalbleitermaterialsystem InxAlyGa1-x-yP mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 aufweist. Halbleiterschichtenfolgen oder Halbleiterchips, die zumindest eine aktive Schicht auf Basis von InGaAlP aufweisen, können beispielsweise bevorzugt elektromagnetische Strahlung mit einer oder mehreren spektralen Komponenten in einen grünen bis roten Wellenlängenbereich emittieren.
  • Alternativ oder zusätzlich kann die Halbleiterschichtenfolge oder der Halbleiterchip auch andere III–V-Verbindungshalbleitermaterialsysteme, beispielsweise ein AlGaAs-basiertes Material, oder II–VI-Verbindungshalbleitermaterialsysteme aufweisen. Insbesondere kann eine aktive Schicht, die ein AlGaAs-basiertes Material aufweist, geeignet sein, elektromagnetische Strahlung mit einer oder mehreren spektralen Komponenten in einem roten bis infraroten Wellenlängenbereich zu emittieren.
  • Die aktive Halbleiterschichtenfolge kann neben der aktiven Schicht weitere funktionale Schichten und funktionelle Bereiche umfassen, etwa p- oder n-dotierte Ladungsträgertransportschichten, also Elektronen- oder Löchertransportschichten, undotierte oder p- oder n-dotierte Confinement-, Cladding- oder Wellenleiterschichten, Barriereschichten, Planarisierungsschichten, Pufferschichten, Schutzschichten und/oder Elektroden sowie Kombinationen daraus. Weiterhin können beispielsweise auf einer dem Aufwachssubstrat abgewandten Seite der Halbleiterschichtenfolge eine oder mehrere Spiegelschichten aufgebracht sein. Die hier beschriebenen Strukturen die aktive Schicht oder die weiteren funktionalen Schichten und Bereiche betreffend sind dem Fachmann insbesondere hinsichtlich Aufbau, Funktion und Struktur bekannt und werden von daher an dieser Stelle nicht näher erläutert.
  • Bei dem optoelektronischen Bauteil kann es sich auch um eine OLED (organische Licht emittierende Diode handeln). Beispielsweise kann es sich bei dem Gehäuse somit um das Gehäuse einer OLED handeln.
  • Gemäß einer Ausführungsform des Gehäuses stehen R, R' und R'' für organische Reste der allgemeinen Formeln (IA), (IB), (IC), (ID) und/oder (IE)
    Figure DE102012108413A1_0003
    wobei
    m, m', m'', m''', m'''' = 0 bis 6,
    wobei
    Figure DE102012108413A1_0004
    für die Anbindungen der Reste R, R', R'' an die Verbindungen der allgemeinen Formeln (I), (II), (III) und/oder (IV) stehen und wobei Y, Y', Y'', Y''', Y'''' jeweils für Wasserstoff oder einen organischen Rest stehen.
  • Es ist möglich, dass m, m', m'', m''', m'''' gleich oder unterschiedlich gewählt sind. Bevorzugt sind m', m'', m''', m'''' = 0 bis 3, besonders bevorzugt sind m', m'', m''', m'''' = 1.
  • Bei dem organischen Rest, der Y, Y', Y'', Y''', Y'''' sein kann, kann es sich um einen gesättigten organischen Rest handeln.
  • Gemäß einer Ausführungsform können Y, Y', Y'', Y''', Y'''' ausgewählt sein aus einer Gruppe, die Wasserstoff, Alkylsubstituenten und Arylsubstituenten umfasst. Y, Y', Y'', Y''', Y'''' können gleich oder unterschiedlich gewählt sein. Vorzugsweise handelt es sich bei den organischen Resten Y, Y', Y'', Y''', Y'''' um C1- bis C8-Alkylreste, die verzweigt oder unverzweigt sein können. Besonders bevorzugt können Y, Y', Y'', Y''' aus einer Gruppe ausgewählt sein die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sec-Butyl-, tert-Butyl-, Cyclohexyl-, Phenylreste und Wasserstoff umfasst.
  • Bevorzugt stehen R, R' und R'' für organische Reste der allgemeinen Formeln (IA), (IB), (IC) und/oder (IE). Besonders bevorzugt stehen R, R' und R'' für einen organischen Rest der allgemeinen Formel (IA).
  • Gemäß einer Ausführungsform ist die zumindest eine Monomerverbindung ausgewählt aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II) und (III) oder Kombinationen daraus. Besonders bevorzugt ist die zumindest eine Monomerverbindung ausgewählt aus einer Gruppe von Verbindungen der allgemeinen Formeln (I) und (III) oder Kombinationen daraus.
  • Gemäß einer Ausführungsform des Gehäuses ist die zumindest eine Monomerverbindung der allgemeinen Formeln (I), (II) und (III) ausgewählt aus Diallylphthalat, Diallylisophthalat und Diallylterephthalat oder Kombinationen daraus. Bevorzugt ist die zumindest eine Monomerverbindung ausgewählt aus Diallylphthalat und Diallylterephthalat oder Kombinationen daraus.
  • Gehäuse umfassend ein duroplastisches Polymer, das mittels Polymerisation und Vernetzung von Diallylphthalat, Diallylisophthalat und/oder Diallylterephthalat erhältlich sind, weisen eine besonders hohe Hydrolysestabilität auf. Außerdem weisen sie eine sehr hohe Stabilität gegen Licht und Wärme auf. Des Weiteren weisen sie eine hohe Reflektivität gegenüber Strahlung des sichtbaren Bereichs des elektromagnetischen Spektrums auf. Es hat sich gezeigt, dass die hohe Reflektivität über die Länge der Betriebsdauer erhalten oder nahezu erhalten bleibt, so dass eine konstante Leuchtstärke über die Länge der Betriebsdauer des optoelektronischen Bauelements garantiert werden kann. Somit kann einem frühzeitigen Ausfall des optoelektronischen Bauelements vorgebeugt werden und die Lebensdauer des optoelektronischen Bauelements verlängert werden.
  • Gemäß einer Ausführungsform weist das Gehäuse für eine UV-Strahlung und/oder sichtbare Strahlung eine Reflektivität zwischen 80% bis 99% auf. Insbesondere liegt die Reflektivität zwischen 90% und 99%, besonders bevorzugt liegt die Reflektivität zwischen 95% und 99%.
  • Möglich ist, dass das Gehäuse aus dem duroplastischen Polymer besteht.
  • Gemäß einer Ausführungsform ist das duroplastische Polymer ein duroplastisches Heteropolymer. Heteropolymere sind Polymere, die durch Polymerisation und Vernetzung von zwei oder mehr verschiedenartigen Monomerverbindungen erhältlich sind. Möglich ist, dass das Heteropolymer durch zwei oder mehr Monomerverbindungen der Formeln (I), durch zwei oder mehr Monomerverbindungen der Formeln (II), durch zwei oder mehr Monomerverbindungen der Formeln (III) oder durch zwei oder mehr Monomerverbindungen der Formeln (IV) erhältlich ist. Auch Kombinationen von ein, zwei oder mehr Monomerverbindungen der allgemeinen Formeln (I), (II), (III) und/oder (IV) untereinander sind denkbar. Beispielsweise kann das duroplastische Heteropolymer erhältlich sein aus einer Monomerverbindung der Formel (I) und einer Monomerverbindung der Formel (III). Es sind aber auch alle anderen Kombinationen möglich.
  • Es ist auch möglich, dass es sich bei dem duroplastischen Polymer um ein duroplastisches Homopolymer handelt. Homopolymere sind Polymere, die durch Polymerisation und Vernetzung von nur einer Monomerverbindung erhältlich sind. Beispielsweise sind duroplastische Homopolymere, die mittels Polymerisation und Vernetzung von Diallylphthalat oder Diallylterephthalat erhältlich sind, möglich. Aus Diallylphthalat oder Diallylterephthalat erhältliche duroplastische Polymere zeichnen sich durch ihre besonders hohe Strahlen- und Temperaturbeständigkeit, sowie durch ihre hohe Beständigkeit gegenüber Wasser aus. Sie zeigen über die Länge der Betriebsdauer des optoelektronischen Bauelements keine oder nur geringfügige Alterungserscheinungen, wie Bräunung, Eintrübung oder ein Abfall in der Reflektivität gegenüber Strahlung im sichtbaren und/oder UV Bereich. Im Vergleich zu den Heteropolymeren ist die Herstellung vereinfacht, da nur eine Monomerverbindung benötigt wird.
  • Gemäß einer Ausführungsform weist das duroplastische Polymer mindestens eine Struktureinheit auf, wobei die Struktureinheit ausgewählt ist aus einer Gruppe der allgemeinen Formeln (VA), (VB), (VC) und Kombinationen daraus.
  • Figure DE102012108413A1_0005
  • Figure DE102012108413A1_0006
  • Wobei p, q, p', q', p'', q'' gleich oder unterschiedlich gewählt sein können und wobei p, p', q, p', q', p'', q'' gleich 1 bis 10000, bevorzugt 1 bis 1000.
  • Gemäß einer Ausführungsform ist die Struktureinheit der allgemeinen Formel (VA) durch Polymerisation aus Diallylphthalat, die Struktureinheit der allgemeinen Formel (VB) durch Polymerisation aus Diallylisophthalat und die Struktureinheit der allgemeinen Formel (VC) durch Polymerisation aus Diallylterephthalat erhältlich.
  • Duroplastische Polymere, die mindestens eine dieser Struktureinheiten aufweisen, sind neben ihrer sehr hohen Hydrolysestabilität besonders unempfindlich gegenüber Wärme- und Strahleneinwirkungen. Sie vergilben nicht oder nur sehr geringfügig und trüben auch nicht oder nur sehr geringfügig ein. Auch verändern sich die mechanischen Eigenschaften nicht oder nur sehr geringfügig bei Wärme- und Strahlenbelastung.
  • Gemäß einer Ausführungsform sind die duroplastischen Polymere durch einen der Reaktionswege 1 bis 3 erhältlich:
    Figure DE102012108413A1_0007
    Figure DE102012108413A1_0008
    wobei p, q, p', q', p'', q'' gleich oder unterschiedlich gewählt sein können und wobei p, p', q, p', q', p'', q'' gleich 1 bis 10000, bevorzugt 1 bis 1000.
  • Gemäß einer Ausführungsform umfasst das gesamte Gehäuse das duroplastische Polymer. Es ist auch möglich, dass nur Teilbereiche des Gehäuses das duroplastische Polymer umfassen.
  • Gemäß einer Ausführungsform weist das Gehäuse eine Ausnehmung auf. In der Ausnehmung ist das optoelektronische Bauteil angeordnet. Es ist auch möglich, dass zwei oder mehrere optoelektronische Bauteile in der Ausnehmung angeordnet sind.
  • Die Ausnehmung kann seitlich begrenzende Seitenwände aufweisen, die ein in der Ausnehmung angeordnetes optoelektronische Bauteil seitlich umgeben. Die Seitenwände können jeweils senkrecht zur Oberfläche der Ausnehmung ausgerichtet sein. Üblicherweise werden sie aber zumindest teilweise schräg ausgebildet sein, sodass die Ausnehmung zum Beispiel eine wannenförmige Geometrie aufweist.
  • In einer weiteren Ausführungsform des Gehäuses ist die Ausnehmung mit einem Verguss ausgefüllt. Das Material des Vergusses ist aus einer Gruppe ausgewählt, die Glas, Keramik und Polymere und Kombinationen daraus umfasst. Insbesondere kann der Verguss transparent ausgebildet sein, wenn er sich im Strahlengang der emittierten Strahlung des optoelektronischen Bauteils befindet.
  • Gemäß einer Ausführungsform umfasst das Gehäuse zwei Teilbereiche. Ein erster Teilbereich ist der Bereich der Ausnehmung des Gehäuses. Es ist möglich, dass nur der erste Teilbereich das duroplastische Polymer umfasst oder daraus besteht. Dies bedeutet, dass nur die Oberfläche der Ausnehmung das duroplastische Polymer umfasst. Der zweite Teilbereich bezeichnet den Rest des Gehäuses.
  • Es ist auch möglich, dass der zweite Teilbereich des Gehäuses das duroplastische Polymer umfasst oder daraus besteht.
  • Möglich ist, dass der erste Teilbereich und der zweite Teilbereich unterschiedliche duroplastische Polymere umfassen.
  • Gemäß einer Ausführungsform ist das Gehäuse über einen längeren Zeitraum von beispielsweise mehreren zehntausend Stunden gegenüber einer Temperatur von 120° unempfindlich. Unempfindlich heißt hierbei, dass das Gehäuse bei diesen Temperaturen nicht erweicht und/oder vergilbt.
  • Gemäß einer weiteren Ausführungsform hält das Gehäuse auch kurzzeitig Temperaturen bis zu 260° stand. Beispielsweise hält das Gehäuse mehrere Minuten bis mehrere Stunden Temperaturen bis zu 260° stand. So kann ein Löten des optoelektronische Bauteils stattfinden und gleichzeitig die Form des Gehäuses bewahrt werden.
  • Gemäß einer Ausführungsform zersetzt sich das duroplastische Polymer bei Temperaturen unter 300°C nicht.
  • Gemäß einer Ausführungsform umfasst das Gehäuse zumindest einen Füllstoff. Durch die Beimengung von Füllstoffen können mechanische und optische Eigenschaften des Gehäuses optimiert werden.
  • Gemäß einer Ausführungsform ist der zumindest eine Füllstoff homogen in dem Gehäuse verteilt. Es ist auch möglich, dass der Füllstoff mit einem Konzentrationsgradienten in dem Gehäuse verteilt ist.
  • Es ist möglich, dass nur der erste Teilbereich des Gehäuses oder der zweite Teilbereich des Gehäuses einen Füllstoff umfasst.
  • Gemäß einer Ausführungsform umfasst der erste Teilbereich des Gehäuses einen anderen Füllstoff als der zweite Teilbereich des Gehäuses.
  • Gemäß einer Ausführungsform des Gehäuses umfasst der zumindest eine Füllstoff ein Weißpigment. Die Weißpigmente werden dafür verwendet, das Gehäuse beziehungsweise Teilbereiche des Gehäuses einzufärben. Durch das Einfärben kann beispielsweise die Reflektivität und die Strahlenbeständigkeit des Gehäuses erhöht werden. Es ist möglich, dass nur der erste Teilbereich des Gehäuses das Weißpigment umfasst.
  • Gemäß einer Ausführungsform ist das Weißpigment mit einem Konzentrationsgradienten in dem Gehäuse verteilt. Es ist möglich, dass die Konzentration an Weißpigment ab der Ausnehmung in lateraler Richtung sinkt. So kann eine durch die Weißpigmente erhöhte Reflektivität im Bereich der Ausnehmung, auf das die zu reflektierende Strahlung trifft, erreicht werden.
  • Gemäß einer Ausführungsform ist das Weißpigment aus einer Gruppe ausgewählt, die Titandioxid, Lithopone, Bariumsulfat, Zinkoxid, Zinksulfid, Bleicarbonat, Calciumcarbonat und Kombinationen daraus umfasst.
  • Bei Lithopone handelt es sich um ein Weißpigment aus Bariumsulfat und Zinksulfid.
  • Insbesondere handelt es sich bei dem Weißpigment um Titandioxid. Bevorzugt handelt es sich bei dem Titandioxid um Rutil und/oder Anatas. Möglich ist, dass das Titandioxid mit einem Alumosilikat beschichtet ist. Das Alumosilikat kann Aerosil sein. Dies sorgt dafür, dass sich das Weißpigment besser in das duroplastische Polymer einfügt.
  • Die Menge an Weißpigment kann zwischen 10 und 25 Gew-% liegen. Bevorzugt liegt die Menge an Weißpigment zwischen 15 und 25 Gew-%, besonders bevorzugt zwischen 20 und 25 Gew-%.
  • Die Weißpigmente können als Partikel vorliegen. Die Partikel können einen Durchmesser zwischen 10 und 500 μm, bevorzugt einen Durchmesser von 10 und 200 μm aufweisen. Besonders bevorzugt weisen die Partikel einen Durchmesser von zirka 100 μm auf.
  • Gemäß einer weiteren Ausführungsform umfassen die Füllstoffe Glasfasern, Kohlenstofffasern, aromatische Polyamidfasern, Zellulosefasern, Zellulosepulver und/oder Glaskugeln. Durch den Zusatz dieser Füllstoffe in das duroplastische Polymer werden vor allem die mechanischen Eigenschaften des Gehäuses verbessert. Die Stabilität des Gehäuses gegenüber Zug- und Scherspannungen kann durch die Füllstoffe deutlich gesteigert werden. Insbesondere kann auch die Formstabilität des Gehäuses bei Erwärmung deutlich erhöht werden. Die Fasern können mit ihrer Länge an die jeweiligen Anforderungen angepasst werden und umfassen eine Länge zwischen 150 bis 300 μm, bevorzugt 200 bis 300 μm, besonders bevorzugt 250 bis 300 μm. Die Menge an diesen Füllstoffen kann zwischen 10 und 25 Gew-% liegen. Bevorzugt liegt die Menge dieser Füllstoffe zwischen 15 und 25 Gew-%, besonders bevorzugt zwischen 20 und 25 Gew-%. Die Glaskugeln können einen Durchmesser von 10 bis 100 μm aufweisen.
  • Gemäß einer Ausführungsform umfassen die Füllstoffe thermisch leitfähige Materialien. Bei den thermisch leitfähigen Materialien kann es sich um Aluminiumnitrid und/oder Bornitrid handeln. Der Gehalt an thermisch leitfähigen Materialien liegt in dem Gehäuse zwischen 10 und 25 Gew-%, bevorzugt zwischen 15 und 25 Gew-%, besonders bevorzugt zwischen 20 und 25 Gew-%.
  • Die thermisch leitfähigen Materialien können als Partikel vorliegen. Die Partikel können einen Durchmesser zwischen 10 und 500 μm, bevorzugt einen Durchmesser von 10 und 200 μm aufweisen. Besonders bevorzugt weisen die Partikel einen Durchmesser von zirka 100 μm auf. Die Wärmeleitung der thermisch leitfähigen Partikel ist eine Funktion der Perkolation. Perkolation ist die Fähigkeit der Wärme durch die leitfähigen Partikel und nicht durch das duroplastische Polymer hindurch zu gehen.
  • Gemäß einer Ausführungsform sind einzelne Aluminiumnitrid und/oder Bornitridpartikel über ihre Oberflächen miteinander in Kontakt und leiten die Wärme so ab.
  • Gemäß einer Ausführungsform weist das Gehäuse einen Anspitzpunkt auf. Die angegebenen duroplastischen Polymere lassen sich in einem Spritzguss und/oder Spritzpressverfahren verarbeiten. Wird ein Gehäuse mit einem solchen Verfahren gefertigt, so weist es während der Fertigung einen Überstand an der Stelle auf, an dem das Material, aus dem Gehäuse gefertigt wurde, in die Form eingespritzt wurde. Der Überstand wird während des Herstellungsverfahrens von dem Gehäuse abgetrennt, wobei ein Anspritzpunkt am Gehäuse ausgebildet wird. Bei dem Anspritzpunkt handelt es sich um jene Stelle, an dem der Überstand zuvor mit dem Gehäuse verbunden war. Durch den Anspritzpunkt ist es somit üblicherweise möglich, noch am fertigen optoelektronischen Bauelement festzustellen, dass dieses mittels Spritzguss oder Spritzpressverfahrens hergestellt wurde.
  • Weiter wird ein optoelektronisches Bauelement angegeben. Das optoelektronische Bauelement umfasst ein Gehäuse gemäß den oben angeführten Ausführungsbeispielen. Das bedeutet, dass sämtliche für das Gehäuse beschriebenen Merkmale auch für das optoelektronisches Bauelement offenbart sind. Das optoelektronische Bauelement umfasst weiter zumindest ein optoelektronisches Bauteil, wobei das Gehäuse eine Ausnehmung aufweist und wobei das zumindest eine optoelektronische Bauteil in der Ausnehmung angeordnet ist.
  • Bei dem optoelektronischen Bauelement kann es sich um Lumineszenzdioden, Photodioden, -transistoren, -arrays/module und optische Koppler handeln. Insbesondere kann es sich bei dem optoelektronischen Bauelement um SMD (surface mounted device)-fähige elektronische und optoelektronische Bauelemente für den Automobilbereich handeln.
  • Bei dem optoelektronischen Bauelement kann es sich insbesondere um ein Quad Flat No Leads Package (QFN) handeln.
  • Gemäß einer Ausführungsform des optoelektronischen Bauelements befindet sich zwischen dem Gehäuse und dem optoelektronischen Bauteil ein Leiterrahmen.
  • Gemäß einer Ausführungsform des optoelektronischen Bauelements umfasst das optoelektronisches Bauteil einen Halbleiterchip.
  • Die angegebenen Ausführungsformen des optoelektronischen Bauelements können gemäß nachfolgend genanntem Verfahren hergestellt werden.
  • Weiterhin wird ein Verfahren zur Herstellung eines optoelektronischen Bauelements umfassend die Verfahrensschritte
    • A) Mischen zumindest einer Monomerverbindung, die aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) oder Kombinationen daraus ausgewählt ist:
      Figure DE102012108413A1_0009
      Figure DE102012108413A1_0010
      wobei R, R' und R'' für organische Reste mit endständigen C=C-Doppelbindungen stehen, wobei R, R' und R'' gleich oder unterschiedlich gewählt sein können, wobei n für 0 oder 1 steht, wobei X für Wasserstoff und/oder einen organischen Rest steht und wobei X gleich oder unterschiedlich gewählt sein kann,
    • B) Ausformen eines Gehäuses für ein optoelektronisches Bauteil mit einer Ausnehmung aus der unter A) hergestellten Mischung,
    • C) Aushärten des Gehäuses, wobei aus der unter A) hergestellten Mischung ein duroplastisches Polymer entsteht,
    • D) Einbringen des optoelektronischen Bauteils in die Ausnehmung.
  • Gemäß einer Ausführungsform wird in Verfahrensschritt A) zusätzlich ein Katalysator zugemischt.
  • Gemäß einer Ausführungsform wird das Gehäuse im Verfahrensschritt B) mittels eines Spritzguss- oder Spritzpressverfahrens ausgeformt. Hierdurch weist das Gehäuse einen Überstand auf, der in einem Verfahrensschritt B') abgetrennt wird. Es wird somit ein Anspritzpunkt an dem Gehäuse gebildet.
  • Gemäß einer Ausführungsform des Verfahrens wird in Verfahrensschritt B) zusätzlich ein erster und ein zweiter Leiterrahmen in der Ausnehmung angeordnet und mit der unter A) hergestellten Mischung umhüllt, insbesondere umspritzt. Der erste und der zweite Leiterrahmen dienen der Kontaktierung des optoelektronischen Bauteils.
  • Gemäß einer Ausführungsform ist der Zylinder der Einfüllvorrichtung, der die unter A) hergestellte Mischung enthält während des Spritzgießens oder Spritzpressens temperiert. Beispielsweise wird der Zylinder auf eine Temperatur unter 130°C temperiert. Bevorzugt wird der Zylinder auf eine Temperatur von 60°C bis 80°C temperiert. So kann die unter A) hergestellte Mischung bereits in dem Zylinder vorpolymerisiert werden. In dem Zylinder entsteht bereits ein Vorpolymerisat der unter A) hergestellten Mischung. Die Vorpolymerisation in dem Zylinder kann beispielsweise innerhalb eines Zeitraums von 60 bis 120 Sekunden erfolgen.
  • In dem Vorpolymerisat können die zumindest eine Monomerverbindung, Polymere und/oder Oligomere enthalten sein, wobei die Polymere und/oder Oligomere durch die Polymerisation der zumindest einen Monomerverbindung entstehen. Die Monomerverbindung, Polymere und/oder Oligomere können in dem Vorpolymerisat untereinander durch kovalente Bindungen verbrückt sein. Das Vorpolymerisat ist vorzugsweise flüssig oder leicht viskos, so dass ein Spritzgießen oder Spritzpressen noch möglich ist. Die Schmelzviskosität kann unter 50 Pas, bevorzugt unter 40 Pas, besonders bevorzugt unter 30 Pas liegen. Das bedeutet, dass die Polymerisation in dem Vorpolymerisat noch nicht vollständig abgeschlossen ist und somit noch nicht alle Doppelbindungen der Verbindungen des Vorpolymerisats abreagiert sind. Aus diesem Grund wird die Temperatur des Zylinders vorzugsweise unter 130°C temperiert, da bei diesen Temperaturen die Polymerisation initiiert wird, jedoch nicht so schnell vonstatten geht, dass bereits eine vollständige Polymerisation zu dem duroplastischen und somit unverformbaren Feststoff stattfindet.
  • Es ist auch möglich, dass in dem Vorpolymerisat keine Monomerverbindung enthalten ist.
  • Gemäß einer Ausführungsform des Verfahrens findet während des Aushärtens im Verfahrensschritt C) eine Polymerisation der unter A) hergestellten Mischung zu einem duroplastischen Polymer statt. Unter Polymerisation ist hier die Polymerisation der zumindest einen Monomerverbindung zu Polymeren und/oder Oligomeren und die Verbrückung der Monomerverbindung, Polymere und/oder Oligomere durch beispielsweise kovalente Bindungen zu verstehen. So entsteht ein dreidimensionales Netzwerk des duroplastischen Polymers.
  • Gemäß einer Ausführungsform des Verfahrens findet während des Aushärtens im Verfahrensschritt C) eine Nachpolymerisation des Vorpolymerisats der unter A) hergestellten Mischung zu einem duroplastischen Polymer statt. Bei der Nachpolymerisation wird das Vorpolymerisat vollständig polymerisiert. Noch vorhandene Doppelbindungen der Monomerverbindungen, Polymere und/oder Oligomere können hier beispielsweise durch kovalente Bindungen miteinander verbrückt werden, so dass sich bei der Nachpolymerisation das dreidimensionales Netzwerk des duroplastischen Polymers ausbildet.
  • Gemäß einer Ausführungsform findet die Aushärtung des Gehäuses in Verfahrensschritt C) bei über 130°C statt. Bei Temperaturen über 130°C wird die Polymerisation thermisch initiiert. Die Polymerisation wird bei diesen Temperaturen beschleunigt, so dass die Aushärtung sehr schnell vonstatten geht. Beispielsweise findet die Aushärtung bei Temperaturen zwischen 150–180°C über einen Zeitraum von 2 bis 6 Stunden statt. Die Polymerisation kann über einen radikalischen Mechanismus verlaufen.
  • Gemäß einer Ausführungsform umfasst das Gehäuse zwei Teilbereiche. Ein erster Teilbereich ist der Bereich der Ausnehmung des Gehäuses. Der zweite Teilbereich bezeichnet den Rest des Gehäuses. Gemäß dieser Ausführungsform umfasst Verfahrensschritt B) die Verfahrensschritte B1) Ausformen eines ersten Teilbereichs des Gehäuses für ein optoelektronisches Bauteil mit einer Ausnehmung aus der unter A) hergestellten Mischung und B2) Ausformen eines zweiten Teilbereichs des Gehäuses für ein optoelektronisches Bauteil.
  • Es ist möglich, dass das Ausformen des zweiten Teilbereichs des Gehäuses für ein optoelektronisches Bauteil in Verfahrensschritt B2) aus einer in einem Verfahrensschritt A') Mischen zumindest einer Monomerverbindung, die aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) oder Kombinationen daraus ausgewählt ist:
    Figure DE102012108413A1_0011
    Figure DE102012108413A1_0012
    wobei R, R' und R'' für organische Reste mit endständigen C=C-Doppelbindungen stehen,
    wobei R, R' und R'' gleich oder unterschiedlich gewählt sein können,
    wobei n für 0 oder 1 steht,
    wobei X für Wasserstoff und/oder einen organischen Rest steht und wobei X gleich oder unterschiedlich gewählt sein kann, hergestellten Mischung geschieht.
  • Gemäß einer weiteren Ausführungsform umfasst die in den Verfahrensschritten A) und/oder A') hergestellte Mischung zumindest einen Füllstoff. Es ist möglich, dass die in den Verfahrensschritten A) und A') hergestellten Mischungen den oder die gleichen Füllstoffe umfassen. Möglich ist aber auch, dass die in den Verfahrensschritten A) und A') hergestellten Mischungen unterschiedliche Füllstoffe umfassen.
  • Gemäß einer weiteren Ausführungsform des Verfahrens werden der erste und der zweite Leiterrahmen isoliert voneinander angeordnet. Das bedeutet, dass der erste und der zweite Leiterrahmen nicht in direktem Kontakt zueinender stehen.
  • In einem Verfahrensschritt E) kann zur elektrischen Kontaktierung des optoelektronischen Bauteils, das optoelektronischen Bauteil angelötet werden. Insbesondere findet der Lötprozess mittels eines bleifreien Lots statt. Durch die Verwendung eines Gehäuses, das durch Polymerisation und Vernetzung von zumindest einer Monomerverbindung, die aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) oder Kombinationen daraus ausgewählt ist, hergestellt wird, ist es möglich Lötprozesse durchzuführen, da das Gehäuse bei kurzzeitiger Aussetzung von Temperaturen bis zu 260°C formstabil bleibt, die während des Anlötens entstehen können.
  • Weitere vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
  • 1 und 2 zeigen schematische Seitenansichten verschiedener Ausführungsformen von optoelektronischen Bauelementen,
  • 3 zeigt die Reflektivität in Abhängigkeit der Wellenlänge.
  • In den Ausführungsbeispielen und Figuren sind gleiche oder gleich wirkende Bestandteile jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen. Vielmehr können einzelne Elemente insbesondere Schichtdicken zum besseren Verständnis übertrieben groß dargestellt sein.
  • Das optoelektronische Bauelement 1 gemäß 1 zeigt ein Gehäuse 2 und einen ersten 3a und einen zweiten Leiterrahmen 3b. Das Gehäuse 2 weist in der Mitte eine Ausnehmung 4 auf, in der das optoelektronische Bauteil 5 angeordnet ist, das mit den Leiterrahmen 3a und 3b elektrisch verbunden ist. Die Ausnehmung 4 ist mit einem Verguss 6 ausgefüllt. Der Verguss 6 kann transparent für die von dem optoelektronischen Bauteil 5 emittierte Strahlung sein und ein Polymer umfassen. Das Gehäuse 2 umfasst ein duroplastisches Polymer. Das duroplastische Polymer kann in dieser Ausführungsform beispielsweise durch Polymerisation und Vernetzung von Diallylphthalat erhalten werden. Das Gehäuse 2 kann Füllstoffe, wie beispielsweise Weißpigmente umfassen. Möglich ist aber auch, dass das Gehäuse 2 zusätzlich oder alternativ weitere Füllstoffe umfasst. Bei dem optoelektronischen Bauteil 5 handelt es sich bevorzugt um eine LED. Das Gehäuse 2 weist eine Reflektivität zwischen 80 und 99% auf. So kann die von dem optoelektronischen Bauteil 5 emittierte Strahlung an dem Gehäuse 2 reflektiert werden und somit die Lichtausbeute des optoelektronischen Bauelements 1 erhöht werden.
  • Das optoelektronische Bauelement 1 gemäß 2 zeigt ein Gehäuse 2 und einen ersten 3a und einen zweiten Leiterrahmen 3b. Das Gehäuse 2 weist in der Mitte eine Ausnehmung 4 auf, in der das optoelektronische Bauteil 5 angeordnet ist, das mit den Leiterrahmen 3a und 3b elektrisch verbunden ist. Das Gehäuse 2 weist einen ersten 2a und einen zweiten Teilbereich 2b auf. Der erste Teilbereich 2a befindet sich im Bereich der Ausnehmung 4. Die Ausnehmung 4 ist mit einem Verguss 6 ausgefüllt. Der Verguss 6 kann transparent für die von dem optoelektronischen Bauteil 5 emittierte Strahlung sein und ein Polymer umfassen. Der erste Teilbereich des Gehäuses 2a umfasst ein duroplastisches Polymer. Das duroplastische Polymer kann in dieser Ausführungsform beispielsweise durch Polymerisation und Vernetzung von Diallylterephthalat erhalten werden. Der erste Teilbereich des Gehäuses 2a kann ein Weißpigment wie zum Beispiel Titandioxid-Partikel mit einem Durchmesser von 100 μm umfassen. Der erste Teilbereich des Gehäuses 2a weist eine Reflektivität zwischen 80 und 99% auf. Der zweite Teilbereich des Gehäuses 2b umfasst ein duroplastisches Polymer. Das duroplastische Polymer kann in dieser Ausführungsform beispielsweise durch Polymerisation und Vernetzung von Diallylterephthalat erhalten werden. Der zweite Teilbereich des Gehäuses 2b kann Glasfasern umfassen. In diesem Ausführungsbeispiel kann die von dem optoelektronischen Bauteil 5 emittierte Strahlung an dem Gehäuse (erster Teilbereich 2a) reflektiert werden und somit die Lichtausbeute des optoelektronischen Bauelements 1 erhöht werden. Zudem erweist sich der zweite Teilbereich des Gehäuses 2b als besonders stabil gegenüber Zug- und Scherspannungen. Bei dem optoelektronischen Bauteil 5 handelt es sich bevorzugt um eine LED.
  • In 3 ist die Reflektivität R in Abhängigkeit der Wellenlänge λ in nm für zwei Gehäusematerialien dargestellt. Die Reflektivitäten wurden an spritzgegossenen plättchenförmigen Gehäusematerialproben ermittelt. Die mit den Bezugszeichen I und II versehenen Kurven sind folgenden Gehäusematerialien zugeordnet:
    • I: Gehäusematerial umfassend ein duroplastisches Polymer, das durch Polymerisation und Vernetzung von Diallylphthalat erhalten wurde und Glasfasern
    • II: herkömmliches Gehäusematerial mit Glasfasern Aus den Kurven I und II ist erkennbar, dass sich in einem Spektralbereich von ca. 400 nm bis ca. 790 nm, also über den gesamten sichtbaren Bereich des elektromagnetischen Spektrums, eine Reflektivität des erfindungsgemäßen Gehäusematerials mit dem Bezugszeichen II von über 89% erreichen lässt. Damit zeigt es eine ähnliche Reflektivität wie herkömmliche Gehäusematerialien (Kurve mit dem Bezugszeichen II). Das Gehäusematerial umfassend ein duroplastisches Polymer, das durch Polymerisation und Vernetzung von Diallylphthalat erhalten wurde und Glasfasern weist jedoch eine sehr viel bessere Hydrolysestabilität im Vergleich zu herkömmlichen Gehäusematerialien auf.
  • Das Gehäusematerial mit dem Bezugszeichen I wurde Alterungstests unterzogen. Dafür wurde es jeweils für 72 h Temperaturen von 120°C und von 140°C und gleichzeitig einer Strahlung im UV-Bereich bis blauen Bereich des elektromagnetischen Spektrums ausgesetzt. Das Gehäusematerial zeigte danach keine Bräunung. Das Gehäusematerial zeigt also eine hohe Beständigkeit bei Temperatureinwirkung und gleichzeitiger Strahlungsbelastung.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims (15)

  1. Gehäuse (2) für ein optoelektronisches Bauteil (5) umfassend ein duroplastisches Polymer, das mittels Polymerisation von zumindest einer Monomerverbindung erhältlich ist, wobei die Monomerverbindung ausgewählt ist aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) oder Kombinationen daraus:
    Figure DE102012108413A1_0013
    wobei R, R' und R'' für organische Reste mit endständigen C=C-Doppelbindungen stehen, wobei R, R' und R'' gleich oder unterschiedlich gewählt sein können, wobei n für 0 oder 1 steht, wobei X für Wasserstoff und/oder einen organischen Rest steht und wobei X gleich oder unterschiedlich gewählt sein kann.
  2. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei R, R', R'' für organische Reste der allgemeinen Formeln (IA), (IB), (IC), (ID) und/oder (IE)
    Figure DE102012108413A1_0014
    stehen, wobei m, m', m'', m''', m'''' = 0 bis 6, wobei
    Figure DE102012108413A1_0015
    für die Anbindunen der Reste R, R', R'' an die Verbindungen der allgemeinen Formeln (I), (II), (III) und/oder (IV) stehen und wobei Y, Y', Y'', Y''', Y'''' jeweils für Wasserstoff oder einen organischen Rest stehen.
  3. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei die zumindest eine Monomerverbindung der allgemeinen Formeln (I), (II) und (III) ausgewählt ist aus Diallylphthalat, Diallylisophthalat und Diallylterephthalat oder Kombinationen daraus.
  4. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (2) für eine UV-Strahlung und/oder sichtbare Strahlung eine Reflektivität zwischen 80% bis 99% aufweist.
  5. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei das duroplastische Polymer ein duroplastisches Heteropolymer ist.
  6. Gehäuse (2) nach einem der Ansprüche 1 bis 4, wobei das duroplastische Polymer ein duroplastisches Homopolymer ist.
  7. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei das duroplastische Polymer mindestens eine Struktureinheit aufweist und wobei die Struktureinheit ausgewählt ist aus einer Gruppe der allgemeinen Formeln (VA), (VB), (VC) und Kombinationen daraus.
    Figure DE102012108413A1_0016
    Figure DE102012108413A1_0017
    wobei p, q, p', q', p'', q'' gleich oder unterschiedlich gewählt sein können und wobei p, q, p', q', p'', q'' = 1 bis 10000.
  8. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (2) zumindest einen Füllstoff umfasst.
  9. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei der Füllstoff ein Weißpigment umfasst.
  10. Gehäuse (2) nach dem vorhergehenden Anspruch, wobei das Weißpigment ausgewählt ist aus einer Gruppe, die Titandioxid, Lithopone, Bariumsulfat, Zinkoxid, Zinksulfid, Bleicarbonat, Calciumcarbonat und Kombinationen daraus umfasst.
  11. Gehäuse (2) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (2) einen Anspritzpunkt aufweist.
  12. Optoelektronisches Bauelement (1) umfassend – ein Gehäuse (2) nach einem der Ansprüche 1 bis 11, und – zumindest ein optoelektronisches Bauteil (5), wobei das Gehäuse (2) eine Ausnehmung (4) aufweist und wobei das zumindest eine optoelektronisches Bauteil (5) in der Ausnehmung (4) angeordnet ist.
  13. Optoelektronisches Bauelement (1) nach dem vorhergehenden Anspruch, wobei das optoelektronische Bauteil (5) einen Halbleiterchip umfasst.
  14. Verfahren zur Herstellung eines optoelektronischen Bauelements (1) umfassend die Verfahrensschritte: A) Mischen zumindest einer Monomerverbindung, die aus einer Gruppe von Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) oder Kombinationen daraus ausgewählt ist:
    Figure DE102012108413A1_0018
    wobei R, R' und R'' für organische Reste mit endständigen C=C-Doppelbindungen stehen, wobei R, R' und R'' gleich oder unterschiedlich gewählt sein können, wobei n für 0 oder 1 steht, wobei X für Wasserstoff und/oder einen organischen Rest steht und wobei X gleich oder unterschiedlich gewählt sein kann, B) Ausformen eines Gehäuses (2) für ein optoelektronisches Bauteil (5) mit einer Ausnehmung (4) aus der unter A) hergestellten Mischung, C) Aushärten des Gehäuses (2), wobei aus der unter A) hergestellten Mischung ein duroplastisches Polymer entsteht, D) Einbringen des optoelektronischen Bauteils (5) in die Ausnehmung (4).
  15. Verfahren nach Anspruch 14, wobei das Gehäuse (2) in Verfahrensschritt B) mittels eines Spritzguss- oder Spritzpressverfahrens ausgeformt wird.
DE102012108413.0A 2012-09-10 2012-09-10 Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements Withdrawn DE102012108413A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012108413.0A DE102012108413A1 (de) 2012-09-10 2012-09-10 Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements
PCT/EP2013/067617 WO2014037235A1 (de) 2012-09-10 2013-08-26 Gehäuse für ein optoelektronisches bauteil, optoelektronisches bauelement und verfahren zur herstellung des optoelektronischen bauelements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012108413.0A DE102012108413A1 (de) 2012-09-10 2012-09-10 Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements

Publications (1)

Publication Number Publication Date
DE102012108413A1 true DE102012108413A1 (de) 2014-03-13

Family

ID=49029112

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012108413.0A Withdrawn DE102012108413A1 (de) 2012-09-10 2012-09-10 Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements

Country Status (2)

Country Link
DE (1) DE102012108413A1 (de)
WO (1) WO2014037235A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916073A (en) * 1974-03-11 1975-10-28 Gen Instrument Corp Process for passivating semiconductor surfaces and products thereof
DE2734798A1 (de) * 1976-08-02 1978-02-09 Texas Instruments Inc Gehaeuse fuer ein mehrere einzelelemente enthaltendes elektro-optisches halbleiterbauelement
US5101264A (en) * 1988-03-31 1992-03-31 Mitsui Petrochemical Ind. Light-emitting or receiving device with smooth and hard encapsulant resin
US5126826A (en) * 1989-09-29 1992-06-30 Mitsui Petrochemical Industries, Ltd. Light-emitting or receiving device and method for preparing the same
US5298327A (en) * 1986-07-08 1994-03-29 Lumenyte International Corporation High temperature plastic light conduit and composition of matter therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255338A (ja) * 2007-03-14 2008-10-23 Nippon Gosei Kako Kk ジアリルフタレート樹脂組成物
JP5481245B2 (ja) * 2010-03-24 2014-04-23 太陽ホールディングス株式会社 活性エネルギー線硬化性白色樹脂組成物及びその硬化物からなる絶縁層を有するプリント配線板
DE102010013317B4 (de) * 2010-03-30 2021-07-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauteil, Gehäuse hierfür und Verfahren zur Herstellung des optoelektronischen Bauteils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916073A (en) * 1974-03-11 1975-10-28 Gen Instrument Corp Process for passivating semiconductor surfaces and products thereof
DE2734798A1 (de) * 1976-08-02 1978-02-09 Texas Instruments Inc Gehaeuse fuer ein mehrere einzelelemente enthaltendes elektro-optisches halbleiterbauelement
US5298327A (en) * 1986-07-08 1994-03-29 Lumenyte International Corporation High temperature plastic light conduit and composition of matter therefor
US5101264A (en) * 1988-03-31 1992-03-31 Mitsui Petrochemical Ind. Light-emitting or receiving device with smooth and hard encapsulant resin
US5126826A (en) * 1989-09-29 1992-06-30 Mitsui Petrochemical Industries, Ltd. Light-emitting or receiving device and method for preparing the same

Also Published As

Publication number Publication date
WO2014037235A1 (de) 2014-03-13

Similar Documents

Publication Publication Date Title
EP1929547B1 (de) Elektromagnetische strahlung emittierendes optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
DE102007057710B4 (de) Strahlungsemittierendes Bauelement mit Konversionselement
DE102005036520A1 (de) Optisches Bauteil, optoelektronisches Bauelement mit dem Bauteil und dessen Herstellung
DE102011018921B4 (de) Träger, optoelektronisches Bauelement mit Träger und Verfahren zur Herstellung dieser
EP1853943A2 (de) Verfahren zur herstellung eines optischen und eines strahlungsemittierenden bauelementes und optisches sowie strahlunsemittierendes bauelement
DE112013001866B4 (de) Optoelektronisches Bauelement umfassend eine Konverterträgerschicht, und Verfahren zur Herstellung eines optoelektronischen Bauelements umfassend eine Konverterträgerschicht
DE102006051746A1 (de) Optoelektronisches Bauelement mit einer Lumineszenzkonversionsschicht
DE10153259A1 (de) Optoelektronisches Bauelement
DE102010009456A1 (de) Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung
DE102014107472A1 (de) Halbleiterbauelement und Beleuchtungsvorrichtung
DE102007046348A1 (de) Strahlungsemittierendes Bauelement mit Glasabdeckung und Verfahren zu dessen Herstellung
DE102007018208A1 (de) SMD-Leuchtdiode
WO2017162734A1 (de) Verfahren zur herstellung einer elektronischen vorrichtung und elektronische vorrichtung
WO2019141480A1 (de) Optoelektronisches bauteil
EP3390274A1 (de) Konversionselement, optoelektronisches bauelement damit, und verfahren zur herstellung eines konversionselements
DE112017002467B4 (de) Beleuchtungsvorrichtungen mit einer linse und einer kompositverkapselung und verfahren zur herstellung hiervon
WO2014206937A1 (de) Optoelektronisches bauelement umfassend ein konversionselement, und verfahren zur herstellung eines optoelektronischen bauelements umfassend ein konversionselement
DE102012106984A1 (de) Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
WO2012010377A1 (de) Optoelektronisches bauelement
DE102016103463A1 (de) Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102012108413A1 (de) Gehäuse für ein optoelektronisches Bauteil, Optoelektronisches Bauelement und Verfahren zur Herstellung des optoelektronischen Bauelements
DE10214119A1 (de) Optoelektronisches Bauelement
DE102012208287A1 (de) Verfahren zur herstellung eines optischen elements
DE102013112826B4 (de) Optoelektronisches Bauelement umfassend eine Haftschicht und Verfahren zur Herstellung einer Haftschicht in einem optoelektronischen Bauelement
DE102015101598A1 (de) Strahlungsemittierende optoelektronische Vorrichtung und Verfahren zur Herstellung einer strahlungsemittierenden optoelektronischen Vorrichtung

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee