DE102012008125A1 - Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren - Google Patents

Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren Download PDF

Info

Publication number
DE102012008125A1
DE102012008125A1 DE201210008125 DE102012008125A DE102012008125A1 DE 102012008125 A1 DE102012008125 A1 DE 102012008125A1 DE 201210008125 DE201210008125 DE 201210008125 DE 102012008125 A DE102012008125 A DE 102012008125A DE 102012008125 A1 DE102012008125 A1 DE 102012008125A1
Authority
DE
Germany
Prior art keywords
fuel
cylinder
combustion
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE201210008125
Other languages
English (en)
Other versions
DE102012008125B4 (de
Inventor
Dr. Flohr Andreas
Alexander Bernhard
Jörg Remele
Aron Toth
Dr. Sauer Christina
Christoph Teetz
Erika Schäfer
Prof. Dr.-Ing. Spicher Ulrich
Florian Bach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to DE102012008125.1A priority Critical patent/DE102012008125B4/de
Priority to PCT/EP2013/001110 priority patent/WO2013159875A1/de
Priority to US14/397,041 priority patent/US20150107550A1/en
Publication of DE102012008125A1 publication Critical patent/DE102012008125A1/de
Application granted granted Critical
Publication of DE102012008125B4 publication Critical patent/DE102012008125B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

Vorgeschlagen wird ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren, bei dem ein erster Kraftstoff in einem Grundgemisch über einen Pilotkraftstoff entzündet wird und bei dem die Kraftstoffmassen des ersten Kraftstoffs und des Pilotkraftstoffs zu Darstellung eines Betriebspunkts der Brennkraftmaschine verändert werden. Die Erfindung ist dadurch gekennzeichnet, das eine Soll-Verbrennungsenergie (VE(SL)) in Abhängigkeit einer Leistungsanforderung berechnet wird und anhand der Soll-Verbrennungsenergie (VE(SL)) über einen Aufteilungsfaktor (CHI) die Kraftstoffmasse des ersten Kraftstoffs und die Kraftstoffmasse des Pilotkraftstoffs festgelegt werden, wobei der Aufteilungsfaktor (CHI) über einen Verbrennungslageregler (18) in Abhängigkeit einer Ist-Verbrennungslage (VL(IST)) zu einer Soll-Verbrennungslage (VL(SL)) berechnet wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren gemäß dem Oberbegriff von Anspruch 1.
  • Die Einhaltung zukünftiger Abgasemissionsgrenzwerte bei gleichzeitig geringem Kraftstoffverbrauch und niedrigen CO2-Emissionen ist eine wesentliche Anforderung in der Entwicklung von Off-Highway-Motoren. Insbesondere Dieselmotoren im Leistungsbereich von 130 kW bis 560 kW, für die ab 2014 in den USA die EPA-Tier 4 Gesetzgebung gilt, unterschreiten die geforderten Grenzwerte nur noch mit einer Kombination aus innermotorischen Maßnahmen und Abgasnachbehandlungssystemen (SCR, Partikelfilter). Dadurch steigen die Komplexität und die Kostendes Dieselmotors deutlich an. Im Hinblick auf die CO2-Emissionen und unter dem Aspekt des stetig steigenden Dieselbedarfs treten zudem alternative Kraftstoffe immer starker in den Vordergrund.
  • Eine Alternative zu aufwendigen Abgasnachbehandlungssystemen stellt die homogene kompressionsgezündete Verbrennung, das HCCI-Brennverfahren, dar. Beim HCCI-Brennverfahren werden nahezu keine Ruß- und Stickoxidemissionen produziert. Allerdings ergeben sich mit diesem Brennverfahren neue Herausforderungen hinsichtlich der Verbrennungssteuerung und der Motorbelastung. Aufgrund der schnellen Wärmefreisetzung, die bei allen HCCI-Brennverfahren auftritt, kommt es zu hohen Druckgradienten, so dass das Verfahren bisher auf den Teillastbereich beschränkt war. Beim HCCI-Brennverfahren wird ein verdünntes homogenes Kraftstoff-Luft-Gemisch durch die Kompression gezündet. Der Zeitpunkt der Selbstzündung hängt von der Gemisch-Zusammensetzung und dem thermodynamischen Ladungszustand ab und ist somit nicht mehr direkt steuerbar. Die Selbstzündung startet gleichzeitig an mehreren Orten im Brennraum. Daraus resultieren kurze Brenndauern, die den Wirkungsgrad positiv beeinflussen. Da aufgrund des homogenen Gemisches lokal keine fetten oder heißen Zonen auftreten, werden Partikel und Stickoxide vermieden. Verglichen mit einem konventionellen Ottomotor ermöglicht HCCI eine deutliche Reduktion des Kraftstoffverbrauchs im Teillastbereich unter Beibehaltung des kostengünstigen Drei-Wege-Katalysators. In Verbindung mit einem Dieselmotor bietet HCCI die Möglichkeit, ohne Einbußen im Wirkungsgrad, auf aufwendige Abgasnachbehandlungssysteme zu verzichten.
  • Die wesentlichen Herausforderungen bei der Realisierung dieses Brennverfahrens sind die Steuerbarkeit und der mögliche Kennfeldbereich. Durch die hohe Empfindlichkeit des Verfahrens auf Änderungen der thermodynamischen Randbedingungen, ist eine Verbrennungsregelung erforderlich, die äußeren Einflüssen entgegenwirkt. Aufgrund der unterschiedlichen Eigenschaften von Benzin und Diesel ergeben sich unterschiedliche Randbedingungen und Anforderungen hinsichtlich der Umsetzung dieses Brennverfahrens im jeweiligen Motor. Die Kraftstoffe unterscheiden sich durch ihre Verdampfungseigenschaften und ihre Zündwilligkeit. Benzin verdampft bereits bei niedrigen Temperaturen, so dass homogene Gemische einfach darzustellen sind. Die Gemischbildung ist sowohl mit konventioneller Saugrohreinspritzung als auch mit Benzin-Direkteinspritzung möglich. Bedingt durch die geringe Zündwilligkeit von Benzin sind jedoch höhere Temperaturen während der Kompression erforderlich, um die Zündung sicherzustellen. Diese können z. B. durch hohe interne Restgasraten realisiert werden. Im Gegensatz zu Benzin verfügt Diesel über eine hohe Zündwilligkeit, jedoch sind die Verdampfungseigenschaften wesentlich schlechter. Daher ist eine äußere Gemischbildung mit herkömmlichen Einspritzventilen nicht darstellbar. Auch die Direkteinspritzung kann nur in einem engen Bereich gegen Ende der Kompression erfolgen, da es ansonsten zu Wandauftrag und Ölverdünnung kommt. Um trotzdem ein weitgehend homogenes Gemisch zu erhalten, ist eine Verlängerung des Zündverzugs durch hohe Abgasrückführraten notwendig. Sowohl otto- als auch dieselmotorisches HCCI ist auf den Teillastbereich beschränkt, da die typische schnelle Wärmefreisetzung zu hohen Druckgradienten führt, die mit steigender Last die zulässigen Belastungsgrenzen des jeweiligen Motors überschreiten. Für Pkw-Motoren, deren Emissionstestzyklen sich auf den Teillastbereich beschränken, bietet HCCI trotz des begrenzten Nutzungsbereichs die Möglichkeit, zukünftige Emissionsgrenzwerte ohne aufwendige Abgasnachbehandlung einzuhalten und die Verbrauchsvorteile im Ottomotor zu nutzen. Für Industriemotoren, deren Emissionstestzyklen aufgrund ihres Lastkollektivs auch die Volllast einschließen, muss der Kennfeldbereich jedoch deutlich erweitert werden. Vor dem Hintergrund der gegensätzlichen Eigenschaften von Benzin- und Diesel ist es naheliegend, die Vorteile beider Kraftstoffe zu nutzen und auf diese Weise sowohl höhere Lasten darzustellen als auch die Selbstzündung zu steuern. So wird bei einem Dual-Fuel-HCCI-Brennverfahren die Selbstzündung eines verdünnten homogenen Benzin-Luft-Gemischs durch die Einspritzung einer kleinen Menge Diesel eingeleitet. Das homogene Grundgemisch kann durch Saugrohreinspritzung oder durch Direkteinspritzung während des Ansaugtakts erzeugt werden. Die Dieseleinspritzung erfolgt im Laufe des Kompressionstakts, wobei die Einspritzung derart gestaltet wird, dass auch der Diesel weitgehend homogen verbrennt. Im weiteren Text wird Diesel auch als Pilotkraftstoff und Benzin auch als erster Kraftstoff bezeichnet.
  • Aus der DE 10 2004 062 019 A1 ist ein Steuerungsverfahren für eine Brennkraftmaschine nach dem HCCI-Brennverfahren mit zwei Kraftstoffen bekannt. Das Verfahren soll in allen Betriebsbereichen angewendet werden können, indem bei Volllast ein mageres homogenes Benzingemisch mit geschichtetem Dieselkraftstoff und bei Teillast eine gegensätzliche Strategie gewählt wird. Eingespritzt werden die beiden Kraftstoffe jeweils über ein eigenes Common-Railsystem entweder gemeinsam im Kompressionstakt oder der erste Kraftstoff im Ansaugtakt und der Pilotkraftstoff im Verdichtungstakt. Die Spritzbeginne und die Spritzdauer der beiden Kraftstoffe werden anhand des Betriebspunkts und/oder des gemessenen Druckverlaufs im Brennraum festgelegt. Weitere Maßnahmen zur Festlegung des Brennverlaufs sind in der Fundstelle jedoch nicht aufgezeigt.
  • Auch aus der WO 2010/149362 A1 ist ein Steuerungsverfahren für eine Brennkraftmaschine nach dem HCCI-Brennverfahren mit zwei Kraftstoffen bekannt. Ergänzend ist die Brennkraftmaschine mit einer zweistufigen Aufladung und einer Abgasrückführung versehen. Das Verfahren besteht darin, dass der Pilotkraftstoffanteil und die AGR-Menge variiert werden. So werden bei Volllast fünf Prozent Dieselanteil an der Gesamt-Kraftstoffmenge und null Prozent AGR-Rate eingestellt. Bei Leerlauf werden dann fünfzehn Prozent Dieselanteil und fünfzig bis siebzig Prozent AGR-Rate eingestellt. Nähere Angaben zur Ausführung des Verfahrens sind in der Fundstelle allerdings nicht dargestellt.
  • Der Erfindung liegt daher die Aufgabe zugrunde für eine Brennkraftmaschine mit externer Abgasrückführung das HCCI-Brennverfahren mit zwei Kraftstoffen zu konkretisieren.
  • Gelöst wird die Aufgabe durch die Merkmale von Anspruch 1. Die Ausgestaltungen hierzu sind in den Unteransprüchen dargestellt.
  • Das Verfahren nach der Erfindung besteht darin, dass eine Soll-Verbrennungsenergie in Abhängigkeit einer Leistungsanforderung berechnet wird und die Soll-Verbrennungsenergie über die Aufteilung auf die beiden Kraftstoffe, insbesondere Diesel als Pilotkraftstoff und Benzin als erster Kraftstoff, dargestellt wird. Die Aufteilung wiederum bestimmt ein Verbrennungslageregler, der anhand der Ist- zur Soll-Verbrennungslage als Stellgröße einen Aufteilungsfaktor berechnet. Eine beispielsweise zu späte Ist-Verbrennungslage korrigiert der Verbrennungslageregler über die Erhöhung des Pilotkraftstoffanteils. Zentrale Idee der Erfindung ist es für die Verbrennungsregelung den Diesel- bzw. Benzinanteil als Steuergröße zu verwenden, da hier ein stetiger Zusammenhang zwischen der Steuergröße und den Verbrennungsgrößen herrscht. Die Regelung auf den 50% Umsatzpunkt, auch MFB50 genannt, unterstreicht die Einfachheit des Verfahrens. Erst dadurch ist die technische Umsetzbarkeit des Dual-Fuel-HCCI-Verfahrens gegeben. Die Optimierung der Regelgröße erfolgt im Hinblick auf den Wirkungsgrad unter Einhaltung der zulässigen mechanischen Belastung. Von Vorteil ist, dass auf diese Weise die Emissionen ebenfalls optimiert werden. Bekanntermaßen treten erhöhte NOx-Emissionen bei sehr frühen und damit nicht wirkungsgradoptimalen Verbrennungen auf.
  • Zur präziseren Anpassung ist jeweils ein Verbrennungslageregler pro Zylinder der Brennkraftmaschine vorgesehen, sodass ein zylinderindividueller Aufteilungsfaktor berechnet werden kann. Ergänzend ist eine zylinderindividuelle Korrektur der Kraftstoffmasse des Pilotkraftstoffs oder der Bestromungsdauer des Injektors, über welchen der Pilotkraftstoff eingespritzt wird, vorgesehen. Die Korrektur der Kraftstoffmasse oder der Bestromungsdauer bewirkt eine Zylindergleichstellung, wodurch eine bessere Laufruhe erzielt wird. Eine hohe Prozesssicherheit gegenüber stochastischen Fehlern bei der Signalerfassung wird dadurch erzielt, dass die Ist-Verbrennungslage in Abhängigkeit der gemessenen Zylinderdrücke über eine Minimalwertauswahl bestimmt wird.
  • In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
  • 1 Ein Systemschaubild,
  • 2 ein Blockschaltbild,
  • 3 ein Blockschaltbild zur Bestimmung der Bestromungsdauer,
  • 4 ein Blockschaltbild zur Bestimmung der Ist-Verbrennungslage,
  • 5 ein Motorkennfeld,
  • 6 ein Zustandsdiagramm des Brennverlaufs,
  • 7 eine Kennlinie und
  • 8 mehrere Brennverläufe
  • Die 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1, welche nach dem Dual-Fuel-HCCI-Brennverfahren betrieben wird. Die weitere Beschreibung bezieht sich beispielhaft auf Benzin als erstem Kraftstoff und Diesel als Pilotkraftstoff. Die Brennkraftmaschine verfügt über eine Abgasrückführung und eine Aufladung. In der externen Abgasrückführung 2 sind ein AGR-Ventil 3 zur Festlegung der rückgeführten Abgasmenge und ein Wärmetauscher 4 angeordnet. Mit Bezugszeichen 5 ist schematisch ein Verdichter dargestellt, der Teil einer zweistufigen Aufladung ist. Die Einspritzanlage der Brennkraftmaschine besteht aus einem Common-Railsystem zur Einspritzung des ersten Kraftstoffs und einem eigenständigen Common-Railsystem zur Einspritzung des Pilotkraftstoffs. Das Common-Railsystem zur Einspritzung des Pilotkraftstoffs umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 7 zur Förderung von Pilotkraftstoff aus einem Tank 6, eine veränderbare Saugdrossel 8 zur Beeinflussung des durchströmenden Volumenstroms, eine Hochdruckpumpe 9 zur Förderung des Pilotkraftstoffs unter Druckerhöhung, ein Rail 10 zum Speichern des Pilotkraftstoffs und ein Injektor 11 zur Einspritzung des Pilotkraftstoffs in den Brennraum 12. Das Common-Railsystem 13 für den ersten Kraftstoff ist strukturell ähnlich aufgebaut, wobei hier jedoch das Benzin über eine Einspritzventil 14 in ein Saugrohr 15 eingespritzt wird. Anstelle der Saugrohreinspritzung könnte der erste Kraftstoff auch über einen eigenen Injektor direkt in den Brennraum 12 eingespritzt werden. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 11 ein Einzelspeicher als zusätzliches Puffervolumen integriert ist.
  • Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Motorsteuergerät (ECU) 16 bestimmt. Das Motorsteuergerät 16 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das Motorsteuergerät 16 aus den Eingangsgrößen die Ausgangsgrößen. In der 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCD der Pilotkraftstoffs, der Raildruck pCB des ersten Kraftstoffs, ein Zylinderdruck pZYL (Sensor 17), eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck und die Temperatur vor den Einlassventilen der Brennkraftmaschine. In der 1 sind als Ausgangsgrößen des Motorsteuergeräts 16 dargestellt: ein Signal SDD zur Ansteuerung der Saugdrossel 8 des Pilotkraftstoffs, ein Signal ED zur Ansteuerung des Injektors 11 (Spritzbeginn/Spritzende), ein Signal SDB zur Ansteuerung des Mengensteuerventils des ersten Kraftstoffs, ein Signal EB zur Ansteuerung des Einspritzventils 14 (Spritzbeginn/Spritzende), ein Stellsignal sAGR zur Ansteuerung des AGR-Ventils 3 und eine Ausgangsgröße AUS. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.
  • Die 2 zeigt ein Blockschaltbild, welches die Programmteile oder Programmschritte eines ausführbarbaren Programms repräsentiert. Über das Blockschaltbild der 2 werden die Einspritzmengen der beiden Kraftstoffe berechnet. Die Eingangsgrößen des Blockschaltbilds sind die Soll-Drehzahl nSL, die Ist-Drehzahl nIST, das Motormoment MM alternativ der indiziert Mitteldruck pMi, eine Soll-Verbrennungslage VL(SL), die Ist-Verbrennungslage VL(IST), der untere Heizwert HuD des Pilotkraftstoffs und der untere Heizwert HuB des ersten Kraftstoffs, also des Benzins. Die Ausgangsgrößen sind: eine erste Bestromungsdauer BDB, ein erster Spritzbeginn SBB, eine zweite Bestromungsdauer BDD und ein zweiter Spritzbeginn SBD. Die erste Bestromungsdauer BDB und der erste Spritzbeginn SBB kennzeichnen die Benzineinspritzung, damit diesen Steuersignalen das Einspritzventil beaufschlagt wird.
  • Die zweite Bestromungsdauer BDD und der zweite Spritzbeginn SBD kennzeichnen die Dieseleinspritzung, da mit diesen Steuersignalen der Injektor angesteuert wird.
  • Anhand der Ist-Verbrennungslage VL(IST) und der Soll-Verbrennungslage VL(SL) bestimmt ein Verbrennungslageregler 18 als Stellgröße einen Aufteilungsfaktor CHI. In einer einfachen Ausführungsform ist ein Verbrennungslageregler allen Zylinder der Brennkraftmaschine zugeordnet. In der dargestellten, bevorzugten Ausführungsform ist jedem Zylinder der Brennkraftmaschine ein eigener Verbrennungslageregler zugeordnet. So bestimmt beispielsweise der Verbrennungslageregler 18.1 den Aufteilungsfaktor CHI1 für den ersten Zylinder. Über den Aufteilungsfaktor CHI wird der Pilotkraftstoffanteil und der Anteil des ersten Kraftstoffs an der Gesamt-Kraftstoffenergie festgelegt. Ein Aufteilungsfaktor von zum Beispiel CHI = 0.93 bedeutet, dass 93% Benzin und 7% Diesel eingespritzt werden. Der Aufteilungsfaktor CHI ist die erste Eingangsgröße einer Berechnung 22. In einer einfachen Ausführungsform ist eine Berechnung 22 allen Zylinder der Brennkraftmaschine zugeordnet. In der dargestellten, bevorzugten Ausführungsform ist jedem Zylinder der Brennkraftmaschine eine eigene Berechnung 22 zugeordnet, beispielsweise die Berechnung 22.1 dem ersten Zylinder. Die zweite Eingangsgröße der Berechnung 22 ist die Soll-Verbrennungsenergie VE(SL). Berechnet wird die Soll-Verbrennungsenergie VE(SL) in Abhängigkeit eines Leistungswunsches. Bei einem drehzahl- oder momentbasiertem System ist dies die Soll-Drehzahl nSL. Im einfacheren Fall kann dies auch eine Fahrpedalstellung FP sein, wie dies in der 2 als Alternative mit dem Bezugszeichen 23 dargestellt ist. An einer Summationsstelle A wird die Ist-Drehzahl nIST mit der Soll-Drehzahl nSL verglichen, woraus die Drehzahl-Regelabweichung dn resultiert. Aus der Drehzahl-Regelabweichung dn wiederum bestimmt ein Drehzahlregler 19 als Stellgröße eine erste Soll-Verbrennungsenergie VE1(SL), Einheit: Joule. Typischerweise besitzt der Drehzahlregler 19 ein PIDT1-Verhalten. Über eine Begrenzung 20 wird die erste Soll-Verbrennungsenergie VE1(SL) limitiert. Die Ausgangsgröße entspricht der Soll-Verbrennungsenergie VE(SL), welche die zweite Eingangsgröße der Berechnung 22 ist. In der Begrenzung 20 sind eine Drehzahl- und eine Ladedruckbegrenzung zusammengefasst. Die Eingangsgrößen der Begrenzung 20 sind daher der Druck p5 vor den Einlassventilen, also der Ladedruck, und die Temperatur T5 vor den Einlassventilen der Brennkraftmaschine. Mitberücksichtigt wird in der Begrenzung 20 ein Wirkungsgrad ETA, der über eine Berechnung 21 bestimmt wird. Über die Berechnung 21 werden in Abhängigkeit der Ist-Drehzahl nIST, der Soll-Verbrennungsenergie VE(SL) und des abgegebenen Motormoments MM oder des indizierten Mitteldrucks pMi der Wirkungsgrad ETA, der erste Spritzbeginn SBB zur Ansteuerung des Einspritzventils und der zweite Spritzbeginn SBD zur Ansteuerung des Injektors berechnet. Anhand des Aufteilungsfaktors CHI und der Soll-Verbrennungsenergie VE(SL) bestimmt dann die Berechnung 22 zylinderindividuell die erste Bestromungsdauer BDB für das Einspritzventil und die zweite Bestromungsdauer BDD für den Injektor.
  • Die 3 zeigt im Detail die Berechnung 22 aus 2, beispielsweise die Berechnung 22.1 für den ersten Zylinder. Die Eingangsgrößen sind der Heizwert HuD des Pilotkraftstoffs, der Heizwert HuB des ersten Kraftstoffs, die Soll-Verbrennungsenergie VE(SL) und der Aufteilungsfaktor CHI, hier beispielsweise den Aufteilungsfaktor CHI1 für den ersten Zylinder. Die Ausgangsgrößen sind die erste Bestromungsdauer BDB und die zweite Bestromungsdauer BDD. In einem Funktionsblock 24 wird in einem ersten Schritt die Differenz des einheitenlosen Aufteilungsfaktors CHI1 zu eins gebildet. In einem zweiten Schritt wird dann diese Differenz mit der Soll-Verbrennungsenergie VE(SL) multipliziert und in einem dritten Schritt durch den Heizwert HuD des Pilotkraftstoffs, Einheit: Joule/mg, dividiert. Die Ausgangsgröße des Funktionsblock 24 entspricht der ersten Kraftstoffmasse mD1 des Pilotkraftstoffs mit der Einheit Milligramm. An einer Summationsstelle A wird zur ersten Kraftstoffmasse mD1 eine Korrekturkraftstoffmasse dmD addiert. Die Korrekturkraftstoffmasse dmD dient zur Zylindergleichstellung. Die Berechnung der Korrekturkraftstoffmasse dmD wird in Verbindung mit der 4 beschrieben. Die Summe aus erster Kraftmasse mD1 und Korrekturkraftstoffmasse dmD entspricht der Kraftstoffmasse mD, welche über eine Berechnung 25 in einen Volumenstrom VD umgerechnet wird. In Abhängigkeit des Volumenstroms VD und des Raildrucks pCD des Pilotkraftstoffs wird dann über ein Kennfeld 26 die zweite Bestromungsdauer BDD berechnet, mit welcher der Injektor zur Einspritzung des Pilotkraftstoffs angesteuert wird. Die Zylindergleichstellung kann auch dadurch erreicht werden, dass die Bestromungsdauer als Ausgangsgröße des Kennfelds 26 über eine Bestromungskorrektur dBDD angepasst wird. Diese Alternative ist in der 3 gestrichelt dargestellt. In einem Funktionsblock 27 wird in einem ersten Schritt der einheitenlose Aufteilungsfaktor CHI1 mit der Soll-Verbrennungsenergie VE(SL) multipliziert und durch den Heizwert HuB des ersten Kraftstoffs (Benzin), Einheit: Joule/mg, dividiert. Die Ausgangsgröße des Funktionsblocks 27 entspricht der Kraftstoffmasse mB mit der Einheit Milligramm. Danach wird die Kraftstoffmasse mB über eine Berechnung 28 in einen Volumenstrom VB umgerechnet. In Abhängigkeit des Volumenstroms VB und des Raildrucks pCB des ersten Kraftstoffs wird dann über ein Kennfeld 29 die erste Bestromungsdauer BDB berechnet, mit welcher das Einspritzventil zur Einspritzung des ersten Kraftstoffs angesteuert wird.
  • In der 4 ist ein Blockschaltbild zur Berechnung der Korrekturkraftstoffmasse dmD, alternativ der Bestromungskorrektur dBDD, und der Ist-Verbrennungslage VL(IST) dargestellt. Die Eingangsgrößen des Blockschaltbilds sind die Ist-Drehzahl nIST, das Motormoment MM oder der indizierte Mitteldruck pMi und die gemessenen Zylinderdrücke pZYL1 bis pZYLn. Bei einer Brennkraftmaschine mit sechs Zylindern wären dies die Zylinderdrücke pZYL1, pZYL2 bis pZYL6. Anhand der Ist-Drehzahl nIST und des Motormoments MM, alternativ des indizierten Mitteldrucks pMi, wird über eine Berechnung 30 die Soll-Verbrennungslage VL(SL) berechnet, welche der erste Eingangswert für eine Zylindergleichstellung 31 (ZGL) ist. Jedem Zylinder ist eine Zylindergleichstellung 31 zugeordnet. So ist beispielsweise die Zylindergleichstellung 31.1 dem ersten Zylinder zugeordnet. Die Soll-Verbrennungslage VL(SL) ist zugleich die Eingangsgröße für den Verbrennungslageregler VLR, siehe 2. Über eine Berechnung 32 wird aus dem gemessenen Zylinderdruck pZYL1 des ersten Zylinders mittels Integration der Heizverlauf berechnet. Die Lage des Heizverlaufs ist in Bezug auf den Kurbelwellenwinkel über den 50%-Umsatzpunkt (MFB50) gekennzeichnet. Dieser 50%-Umsatzpunkt entspricht daher für den ersten Zylinder der ersten Ist-Verbrennungslage VL1(IST). Der 50%-Umsatzpunkt für den n-ten Zylinder entspricht dann der n-ten Ist-Verbrennungslage VLn(IST). Die erste Ist-Verbrennungslage VL1(IST) ist zugleich die zweite Eingangsgröße der Zylindergleichstellung ZGL, hier der Zylindergleichstellung 31.1. Anhand der Abweichung der Soll-Verbrennungslage VL(SL) zur ersten Ist-Verbrennungslage VL1(IST) bestimmt dann die Zylindergleichstellung 31.1, zum Beispiel mit PI-Verhalten, für den ersten Zylinder die Korrekturkraftstoffmasse dmD des Pilotkraftstoffs für den ersten Zylinder. Für den n-ten Zylinder erfolgt dies in entsprechender Weise. Aus den berechneten Ist-Verbrennungslagen VL1(IST) bis VLn(IST) wird dann über eine Minimalwertauswahl MIN der kleinste Wert ermittelt und als Ist-Verbrennungslage VL(IST) gesetzt. Die Minimalwertauswahl verbessert die Prozesssicherheit gegenüber stochastischen Fehlern bei der Signalerfassung. Die Ist-Verbrennungslage wird anschließend im Verbrennungslageregler VLR weiter verarbeitet.
  • Die 5 zeigt ein Motorkennfeld. Auf der Abszisse ist die Motordrehzahl nMOT aufgetragen. Die Ordinate zeigt den Mitteldruck pME in bar, welcher auch das Motormoment kennzeichnet. Begrenzt wird das Motorkennfeld durch eine Volllastlinie 33. Innerhalb des Motorkennfelds sind Bereiche konstanten Anteils des ersten Kraftstoffs, also des Benzins, an der Gesamt-Kraftstoffenegie dargestellt. So wird beispielsweise in einem ersten Bereich 34 hoher Leistungsabgabe ein Benzinanteil von 0.95 eingestellt. Entsprechend wird in einem zweiten Bereich 35 bei niederer Leistungsabgabe ein Benzinanteil von 0,75 eingestellt. Ganz allgemein gilt also, dass für einen Arbeitspunkt anhand des Kennfelds der Benzinanteil ermittelt wird. So ist beispielsweise der Arbeitspunkt A durch die Motordrehzahl nMOT = nA und durch den Mitteldruck pME = pA gekennzeichnet. Entsprechend der Lage des Arbeitspunkts A im Motorkennfeld ergibt sich hier ein Benzinanteil von 0.93. Dies entspricht einem Benzinanteil von 93% und einem Dieselanteil von 7% an der Gesamt-Kraftstoffenergie. Aus der 5 wird deutlich, dass im Großteil des Kennfelds das homogene Grundgemisch mit sehr kleinen Mengen an Pilotkraftstoff (Benzinanteil > 0,9) gezündet werden kann. Lediglich bei niedrigen Lasten steigt der Pilotkraftstoffanteil an, da hier sehr niedrige Ladungstemperaturen vorliegen. Mit steigender Last sind zunehmend frühere Dieseleinspritzzeitpunkte und höhere Benzinanteile notwendig, um die Zündverzugszeit zu verlängern, da die steigende Temperatur die Selbstzündung begünstigt. Der Ansteuerbeginn des Dieselinjektors bewegt sich im gesamten Motorkennfeld zwischen 30°KW und 60°KW vor dem oberen Zündtotpunkt (ZOT). In diesem Einspritzbereich ist sichergestellt, dass eine zweistufige Wärmefreisetzung mit erhöhten Stickoxidemissionen vermieden wird.
  • Die 6 zeigt über dem Kurbelwellenwinkel Phi in Grad den normierten Zylinderdruck pZYL in Prozent und den hieraus berechneten normierten Heizverlauf Qh, ebenfalls in Prozent. Das Bezugszeichen 36 zeigt als durchgezogene Linie einen idealen Heizverlauf. Als 50%-Umsatzpunkt ist der Punkt definiert, an welchem 50% der Kraftstoffmasse umgesetzt sind. Beim idealen Heizverlauf 36 korrespondiert zum 50%-Umsatzpunkt MFB50, Arbeitspunkt A, der Kurbelwellenwinkel Phi = wA. Im vorliegenden Beispiel kennzeichnet daher der Arbeitspunkt A die Soll-Verbrennungslage VL(SL). Das Bezugszeichen 37 zeigt hingegen einen vom Ideal abweichenden Heizverlauf. Gegenüber dem idealen Heizverlauf 36 liegt hier der 50%-Umsatzpunkt über den Arbeitspunkt B bei einem zu späten Kurbelwellenwinkel Phi = wB. In diesem Fall berechnet der Verbrennungslageregler (2: 18) anhand der Soll-Ist-Abweichung der Verbrennungslage einen abnehmenden Aufteilungsfaktor CHI, das heißt, der Anteil an Pilotkraftstoff wird erhöht. Das Bezugszeichen 38 zeigt ebenfalls einen vom Ideal abweichenden Heizverlauf. Gegenüber dem idealen Heizverlauf 36 liegt hier der 50%-Umsatzpunkt über den Arbeitspunkt C bei einem zu frühen Kurbelwellenwinkel Phi = wC. In diesem Fall berechnet der Verbrennungslageregler (2: 18) anhand der Soll-Ist-Abweichung der Verbrennungslage einen zunehmenden Aufteilungsfaktor ChI, das heißt, der Anteil an Pilotkraftstoff wird verringert.
  • In der 7 und der 8 ist nochmals der Einfluss des ersten Kraftstoffs, hier des Benzins, auf die Verbrennung dargestellt. Hierbei zeigt die 7 den Einfluss auf den 50%-Umsatzpunkt in Grad Kurbelwellenwinkel nach dem oberen Zündtotpunkt ZOT. Wie aus der 7 deutlich wird, herrscht eine nahezu lineare Abhängigkeit des 50%-Umsatzpunkts, also der Ist-Verbrennungslage, zum Benzinanteil. Die 8 zeigt ebenfalls den Einfluss des Benzinanteils auf den Brennverlauf. Aus den beiden Figuren wird deutlich, dass die Zündwilligkeit der Zylinderladung und die Zündverzugszeit abnehmen, wenn Benzin durch Dieselkraftstoff ersetzt wird.
  • Bezugszeichenliste
  • 1
    Brennkraftmaschine
    2
    Abgasrückführung
    3
    AGR-Ventil
    4
    Wärmetauscher
    5
    Verdichter
    6
    Tank, Pilotkraftstoff
    7
    Niederdruckpumpe
    8
    Saugdrossel
    9
    Hochdruckpumpe
    10
    Rail
    11
    Injektor
    12
    Brennraum
    13
    Common-Railsystem erster Kraftstoff (Benzin)
    14
    Einspritzventil
    15
    Saugrohr
    16
    Elektronisches Motorsteuergerät (ECU)
    17
    Sensor, Brennraumdruck
    18
    Verbrennungslageregler
    18.1
    Verbrennungslageregler, erste Zylinder
    19
    Drehzahlregler
    20
    Begrenzung
    21
    Berechnung
    22
    Berechnung
    22.1
    Berechnung für ersten Zylinder
    23
    Umrechnung Fahrpedalstellung
    24
    Funktionsblock
    25
    Berechnung
    26
    Kennfeld
    27
    Funktionsblock
    28
    Berechnung
    29
    Kennfeld
    30
    Berechnung
    31
    Zylindergleichstellung
    31.1
    Zylindergleichstellung, erster Zylinder
    32
    Berechnung
    33
    Volllastlinie
    34
    Erster Bereich
    35
    Zweiter Bereich
    36
    Heizverlauf, ideal
    37
    Heizverlauf, abweichend
    38
    Heizverlauf, abweichend
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102004062019 A1 [0005]
    • WO 2010/149362 A1 [0006]

Claims (7)

  1. Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1) nach dem HCCI-Brennverfahren, bei dem ein erster Kraftstoff in einem Grundgemisch über einen Pilotkraftstoff entzündet wird und bei dem die Kraftstoffmassen (mB, mD) des ersten Kraftstoffs und des Pilotkraftstoffs zu Darstellung eines Betriebspunkts der Brennkraftmaschine verändert werden, dadurch gekennzeichnet, das eine Soll-Verbrennungsenergie (VE(SL)) in Abhängigkeit einer Leistungsanforderung berechnet wird und anhand der Soll-Verbrennungsenergie (VE(SL)) über einen Aufteilungsfaktor (CHI) die Kraftstoffmasse (mB) des ersten Kraftstoffs und die Kraftstoffmasse (mD) des Pilotkraftstoffs festgelegt werden, wobei der Aufteilungsfaktor (CHI) über einen Verbrennungslageregler (18) in Abhängigkeit einer Ist-Verbrennungslage (VL(IST)) zu einer Soll-Verbrennungslage (VL(SL)) berechnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, das jedem Zylinder der Brennkraftmaschine ein Verbrennungslageregler (18) zugeordnet wird und für jeden Zylinder der Brennkraftmaschine ein zylinderindividueller Aufteilungsfaktor (CHI) berechnet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Ist-Verbrennungslage (VL(IST)) in Abhängigkeit des Zylinderdrucks (pZYL) bestimmt wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Ist-Verbrennungslage (VL(IST)) über Minimalwertauswahl (MIN) aus mehreren Zylinderdrücken (pZYL1, pZYLn) bestimmt wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine erste Bestromungsdauer (BDB) zur Ansteuerung eines Einspritzventils (14) in Abhängigkeit der Kraftstoffmasse (mB) des ersten Kraftstoffs berechnet wird und eine zweite Bestromungsdauer (BDD) zur Ansteuerung eines Injektors (11) in Abhängigkeit der Kraftstoffmasse (mD) des Pilotkraftstoffs berechnet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass je Zylinder der Brennkraftmaschine (1) eine Korrektur-Bestromungsdauer (dBDD) zur Anpassung des Pilotkraftstoffs im Sinne einer Zylindergleichstellung in Abhängigkeit des Zylinderdrucks (pZYL) bestimmt wird.
  7. Verfahren nach einem der vorausgegangenen Ansprüche, dadurch gekennzeichnet, dass je Zylinder der Brennkraftmaschine (1) eine Korrektur-Kraftstoffmasse (dmD) zur Anpassung des Pilotkraftstoffs im Sinne einer Zylindergleichstellung in Abhängigkeit des Zylinderdrucks (pZYL) berechnet wird
DE102012008125.1A 2012-04-25 2012-04-25 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren Expired - Fee Related DE102012008125B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102012008125.1A DE102012008125B4 (de) 2012-04-25 2012-04-25 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren
PCT/EP2013/001110 WO2013159875A1 (de) 2012-04-25 2013-04-15 Verfahren zur steuerung und regelung einer brennkraftmaschine nach dem hcci-brennverfahren
US14/397,041 US20150107550A1 (en) 2012-04-25 2013-04-15 Method for controlling and regulating an internal combustion engine according to the hcci combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012008125.1A DE102012008125B4 (de) 2012-04-25 2012-04-25 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren

Publications (2)

Publication Number Publication Date
DE102012008125A1 true DE102012008125A1 (de) 2013-10-31
DE102012008125B4 DE102012008125B4 (de) 2019-07-25

Family

ID=48170420

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012008125.1A Expired - Fee Related DE102012008125B4 (de) 2012-04-25 2012-04-25 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren

Country Status (3)

Country Link
US (1) US20150107550A1 (de)
DE (1) DE102012008125B4 (de)
WO (1) WO2013159875A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202038B3 (de) * 2013-02-07 2013-07-25 Mtu Friedrichshafen Gmbh Verfahren zur Korrektur einer mittels einer Brennstoffeinspritzvorrichtung eingespritzten Brennstoffmenge im Betrieb einer Brennkraftmaschine
JP6414152B2 (ja) * 2016-07-12 2018-10-31 トヨタ自動車株式会社 内燃機関の制御装置
US11560763B2 (en) 2019-10-30 2023-01-24 Forum Us, Inc. Methods and apparatus for pre-torque detection in a threaded connection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944534A1 (de) * 1999-09-17 2001-03-22 Daimler Chrysler Ag Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors
DE102004062019A1 (de) 2004-12-23 2006-07-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE69735846T2 (de) * 1996-08-23 2006-10-05 Cummins, Inc., Columbus Gemischverdichtende dieselbrennkraftmaschine mit optimaler verbrennungsregelung
DE10191817B4 (de) * 2000-05-08 2008-08-28 Cummins, Inc., Columbus Mehrbetriebsmodus-Motor und Betriebsverfahren
WO2010149362A1 (de) 2009-06-26 2010-12-29 Mtu Friedrichshafen Gmbh Verfahren zum betreiben eines verbrennungsmotors

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621603A (en) * 1985-10-29 1986-11-11 General Motors Corporation Engine combustion control with fuel balancing by pressure ratio management
US5553575A (en) * 1995-06-16 1996-09-10 Servojet Products International Lambda control by skip fire of unthrottled gas fueled engines
JPH11343911A (ja) * 1998-03-31 1999-12-14 Mazda Motor Corp 筒内噴射式エンジンの燃料制御装置
US7469662B2 (en) * 1999-03-23 2008-12-30 Thomas Engine Company, Llc Homogeneous charge compression ignition engine with combustion phasing
CN101025124B (zh) * 2001-03-30 2010-08-18 三菱重工业株式会社 内燃机燃烧诊断·控制装置和燃烧诊断·控制方法
DE10159017A1 (de) * 2001-12-01 2003-06-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10159016A1 (de) * 2001-12-01 2003-06-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10213441A1 (de) * 2002-03-26 2003-10-23 Hatz Motoren Kraftstoffeinspritzvorrichtung mit hydraulischer Düsennadelsteuerung
DE10240639B3 (de) * 2002-09-03 2004-02-12 Trw Airbag Systems Gmbh & Co. Kg Gasgenerator
EP1538325B1 (de) * 2002-09-09 2013-08-21 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung f r verbrennungsmotor
CA2406137C (en) * 2002-10-02 2004-12-28 Westport Research Inc. Control method and apparatus for gaseous fuelled internal combustion engine
DE102004010519B4 (de) * 2004-03-04 2007-10-04 Mehnert, Jens, Dr. Ing. Verfahren zum Steuern des Luftmengenstromes von Verbrennungskraftmaschinen
JP2005337182A (ja) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp 内燃機関の燃圧制御装置
DE102004038121B3 (de) * 2004-08-05 2006-06-01 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
US6947830B1 (en) * 2004-08-31 2005-09-20 Walt Froloff Adaptive variable fuel internal combustion engine
DE102005028554A1 (de) * 2005-06-21 2007-01-04 Daimlerchrysler Ag Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine
JP2008057439A (ja) * 2006-08-31 2008-03-13 Honda Motor Co Ltd 内燃機関の筒内圧検出装置
WO2010003001A1 (en) * 2008-07-03 2010-01-07 Dow Global Technologies Inc. Improved method of operating a compression ignition internal combustion engine
US8301362B2 (en) * 2009-03-27 2012-10-30 GM Global Technology Operations LLC Method and system for generating a diagnostic signal of an engine component using an in-cylinder pressure sensor
US20110010074A1 (en) * 2009-07-09 2011-01-13 Visteon Global Technologies, Inc. Methods Of Controlling An Internal Combustion Engine Including Multiple Fuels And Multiple Injectors
US8943803B2 (en) * 2010-10-27 2015-02-03 Caterpillar Inc. Power system with cylinder-disabling strategy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69735846T2 (de) * 1996-08-23 2006-10-05 Cummins, Inc., Columbus Gemischverdichtende dieselbrennkraftmaschine mit optimaler verbrennungsregelung
DE19944534A1 (de) * 1999-09-17 2001-03-22 Daimler Chrysler Ag Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors
DE10191817B4 (de) * 2000-05-08 2008-08-28 Cummins, Inc., Columbus Mehrbetriebsmodus-Motor und Betriebsverfahren
DE102004062019A1 (de) 2004-12-23 2006-07-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
WO2010149362A1 (de) 2009-06-26 2010-12-29 Mtu Friedrichshafen Gmbh Verfahren zum betreiben eines verbrennungsmotors

Also Published As

Publication number Publication date
WO2013159875A1 (de) 2013-10-31
US20150107550A1 (en) 2015-04-23
DE102012008125B4 (de) 2019-07-25

Similar Documents

Publication Publication Date Title
DE102009027296B4 (de) Verbrennungsmotorstartvorrichtung
EP2147205B1 (de) Verfahren zur zylindergleichstellung einer brennkraftmaschine
DE102016008911A1 (de) Mit Vormischungsbeschickung und Kompressionszündung arbeitender Motor, Steuer- bzw. Regeleinrichtung hierfür, Verfahren zum Steuern bzw. Regeln eines Motors und Computerprogrammerzeugnis
DE102013213697B4 (de) Verfahren zum Betreiben einer quantitätsgeregelten Brennkraftmaschine und quantitätsgeregelte Brennkraftmaschine
DE102013001112B4 (de) Steuervorrichtung eines Dieselmotors mit Turbolader, Dieselmotor, Verfahrenzum Steuern eines Dieselmotors und Computerprogrammprodukt
DE102012206164A1 (de) Verfahren und System zur Kraftmaschinendrehzahlsteuerung
DE112014003138B4 (de) Steuervorrichtung für eine direkt einspritzende Maschine
DE112014001728B4 (de) Steuerung einer Brennkraftmaschine
DE102008001111A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
DE102016008916A1 (de) Mit Vormischungsbeschickung und Kompressionszündung arbeitender Motor, Steuer- bzw. Regeleinrichtung hierfür, Verfahren zum Steuern bzw. Regeln eines Motors und Computerprogrammerzeugnis
DE102006033141A1 (de) Verfahren zur Zumessung von Kraftstoff für den Betrieb eines Ottomotors
DE102016110519A1 (de) Verbrennungssystem-Controller
WO2008090162A1 (de) Verfahren zum steuern der abgasrückführung bei einer brennkraftmaschine
DE102018106476A1 (de) Verfahren und system zur motorsteuerung
EP1921295B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102012008125B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren
DE102011015626B9 (de) Betriebsverfahren für einen direkteinspritzenden Ottomotor mit NOx-armer Verbrennung (NAV)
EP1941143A1 (de) Verfahren zum betrieb einer brennkraftmaschine
DE102012006342A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE10148651C1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung und Kraftstoffeinspritzung
DE102015221847A1 (de) Verfahren und Vorrichtung zum Betreiben eines Hubkolben-Verbrennungsmotors mit VCR-Steller
WO2016055465A1 (de) Verfahren zur ermittlung einer drehmomentreserve
DE102011083946A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1999355B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102009021793B4 (de) Verfahren zum Bestimmen der Stickoxidemission im Brennraum eines Dieselmotors

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee