DE102011110804A1 - Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE - Google Patents

Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE Download PDF

Info

Publication number
DE102011110804A1
DE102011110804A1 DE102011110804A DE102011110804A DE102011110804A1 DE 102011110804 A1 DE102011110804 A1 DE 102011110804A1 DE 102011110804 A DE102011110804 A DE 102011110804A DE 102011110804 A DE102011110804 A DE 102011110804A DE 102011110804 A1 DE102011110804 A1 DE 102011110804A1
Authority
DE
Germany
Prior art keywords
conductive materials
heat
feed channel
materials
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011110804A
Other languages
German (de)
Inventor
wird später genannt werden Erfinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102011110804A priority Critical patent/DE102011110804A1/en
Publication of DE102011110804A1 publication Critical patent/DE102011110804A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

The three dimensional printing head comprises a feed channel, which consists of an array of highly heat-conductive materials such as aluminum, copper, steel or graphite and low heat-conductive materials such as PTFE or polyetheretherketone, where the fed printing material has contact surfaces with the inside of these materials. An independent claim is included for a feed channel.

Description

Drähte (Filament) zum dreidimensionalen Drucken nach dem FDM-Verfahren werden über einen Beschickungs-Kanal (Drahtzuführung) in eine Schmelzkammer geschoben, in der sie schmelzen und über eine Öffnung (Düse) austreten. Die ausgetretene Menge bildet das in Schichten zu druckende Objekt.Three-dimensional printing wires (filament) according to the FDM method are pushed via a feed channel (wire feed) into a melting chamber in which they melt and exit through an opening (nozzle). The leaked amount forms the object to be printed in layers.

Die Hersteller solcher Druckköpfe versuchen durch bauliche Maßnahmen den Wärmeübergang, der von der Schmelzkammer ausgeht, zu minimieren. Hierfür werden an den Verbindungspunkten von Schmelzkammer und Beschickungs-Kanal Materialien mit geringem Wärmeleitkoeffizient verwendet.The manufacturers of such printheads try by structural measures to minimize the heat transfer that emanates from the melting chamber. For this purpose, materials with a low thermal conductivity coefficient are used at the connection points of the melting chamber and the feed channel.

Die zu diesem Zweck verwendeten Kunststoffe PTFE oder PEEK besitzen zudem einen geringen Reibwert, weshalb das Filament im Beschickungs-Kanal gut gleitet. Dies wurde bisher als Vorteil angesehen, da ein Filament, welchem nur geringe Reibung widerfährt, mit hoher Genauigkeit gefördert (Fördervolumen/Zeit) werden kann und nur geringen Widerstand auf die eigentliche Fördereinheit ausübt.The plastics used for this purpose PTFE or PEEK also have a low coefficient of friction, which is why the filament slides well in the feed channel. This has hitherto been regarded as an advantage since a filament, which undergoes only slight friction, can be conveyed with high accuracy (delivery volume / time) and exerts only slight resistance on the actual delivery unit.

In der Praxis zeigt sich jedoch, daß temperaturempfindliche Materialien (Filamente), gerade solche, die schon unterhalb von beispielsweise 50–70°C erweichen, nicht erst in der Schmelzkammer schmelzen, sondern schon innerhalb der Filament-Zuführung so viel Wärme aufnehmen, daß sie erweichen und wegen des Druckes beim Hineinschieben des Filamentes in den Beschickungs-Kanal gestaucht werden und dadurch aufbauchen (aufwölben), bevor sie in die eigentliche Schmelzkammer eingeschoben werden.In practice, however, shows that temperature-sensitive materials (filaments), just those that soften even below, for example, 50-70 ° C, not first melt in the melting chamber, but already absorb so much heat within the filament feed that they soften and because of the pressure when pushing in the filament into the feed channel are compressed and thereby bulge before they are inserted into the actual melting chamber.

Das Aufbauchen bedeutet, das Filament wird an die Wandung des Kanales gedrückt und erfährt dort eine stark erhöhte Reibung (erwärmtest bis geschmolzenes Filament gegen die Wandung) bis hin zur „Beinahe-Verklebung” mit dieser Wand.The bulging means that the filament is pressed against the wall of the channel and experiences there a greatly increased friction (heated to molten filament against the wall) up to the "near-gluing" with this wall.

Ab diesem Moment ist keine exakte Förderung des Filamentes mehr möglich.From this moment on, no exact conveyance of the filament is possible anymore.

Der zum Vorschub nötige Druck erhöht sich rapide, eine Blockage ist eingetreten. Die Fördereinheit versucht weiter zu fördern und zerstört den Draht, da sie von diesem Material abreibt.The pressure required for the feed increases rapidly, a blockage has occurred. The conveyor unit continues to encourage and destroys the wire as it rubs off of this material.

Abhilfe schafft erst die Entnahme des Filamentes, gefolgt durch die komplette Abkühlung des Extruderkopfes mit Beschickungs-Kanal und Neubeschickung mit ungestauchtem, Material auf Raumtemperatur.Remedy only the removal of the filament, followed by the complete cooling of the extruder head with feed channel and re-loading with ungestauchtem, material to room temperature.

Fazit:Conclusion:

Es erweist sich aber in der oben beschriebenen bisherigen Konstruktion als nachteilig, Materialien mit geringer Wärmeleitfähigkeit zu verwenden, da diese die Wärme dennoch, wenn auch schlecht dorthin leiten, wo sie von Nachteil ist. Der Beschickungs-Kanal ist in der Folge schlecht kühlbar, er speichert eher noch die Wärme.However, it proves to be disadvantageous in the above-described previous construction to use materials with low thermal conductivity, since they nevertheless conduct the heat, albeit poorly, to where it is disadvantageous. The feed channel is badly coolable in the sequence, he stores rather even the heat.

Durch diese Art der Filament-Zuführung werden die Filamente in Zone 2, in der sie eigentlich nur leicht gleiten sollen, geradezu aufgeheizt.By this type of filament feeder, the filaments in zone 2, in which they are supposed to slide only slightly, almost heated up.

Dieser Vorgang wird bei geringem Vorschub des Filamentes auch noch befördert (lange Verweilzeit).This process is also promoted with low feed of the filament (long residence time).

Es wird hier zur Lösung dieser Probleme vorgeschlagen,
den längsten Teil (Zonen 2 + 3) des Beschickungs-Kanales aus einem die Wärme gut leitenden Material zu fertigen und nur ein kleines Stück zur thermischen Trennung aus schlecht leitendem Material zu belassen. Diese neu gestaltete Zone kann nun schnell gekühlt werden.
It is proposed here to solve these problems
to produce the longest part (zones 2 + 3) of the feed channel from a material which conducts heat well and to leave only a small part for thermal separation from poorly conducting material. This redesigned zone can now be cooled quickly.

Das Filament hat deshalb bis kurz vor Eintritt in die Schmelzkammer immer noch Raumtemperatur. Eine vorzeitige Erweichung mit gefolgter Blockage wird erfolgreich vermieden.The filament therefore still has room temperature until shortly before entering the melting chamber. Premature softening followed by blockage is successfully avoided.

Auch wenn die Reibwerte von Alu oder Kupfer höher sind als zuvor verwendetes PTFE, dann wirkt sich dies nicht nachteilig aus, da der erhöhte Aufwand durch Reibungsverluste, das Filament in die Schmelzkammer zu schieben, vernachlässigbar ist (gemeint ist Reibung bei Raumtemperatur).Even if the coefficients of friction of aluminum or copper are higher than previously used PTFE, then this does not adversely affect, since the increased effort by friction losses to push the filament into the melting chamber is negligible (meaning friction at room temperature).

Die dargestellten Temperaturprofile entlang der Ausdehnung des Filamentes im Beschickungskanal und folgender Schmelzkammer zeigen den erzielten Unterschied der Absenkung der Temperatur im kritischen Bereich 2 des Beschickungs-Kanales.The temperature profiles shown along the extension of the filament in the feed channel and the following melting chamber show the difference in temperature reduction achieved in the critical region 2 of the feed channel.

In 2 erfolgt erst in der kurzen Zone 2a eine sprunghafte Anhebung der Temperatur, in 1 jedoch über die gesamte Zone 2. In 2 takes place only in the short zone 2a a sudden increase in temperature, in 1 however, over the entire zone 2.

Die gedachte Strecke A-C beschreibt die Ausdehnung eines Beschickungs-Kanales, wobei die Strecken C-B und A-B gleich lang sein sollen und diese in zwei gedachte Teile halbieren.The imaginary route A-C describes the extent of a feed channel, with the distances C-B and A-B should be the same length and halve them into two imaginary parts.

Die wichtigere Hälfte des Beschickungs-Kanales liegt entlang der Strecke A-C.The more important half of the feed channel lies along route A-C.

Deren Wandungen sollen zu mehr als 60% ihrer Ausdehnung aus gut wärmeleitendem Material bestehen, optimaler Weise sogar zu mehr als 85%.Their walls should consist of more than 60% of their extent of good heat conducting material, optimally even more than 85%.

Besteht die Hälfte B-C zu einem geringeren Teil oder gar nicht aus gut wärmeleitendem Material, so ist des für das Temperaturprofil unerheblich.If the half B-C to a lesser extent or not at all made of good heat-conducting material, so that is irrelevant for the temperature profile.

In 3 ist entlang der Strecke BC eine thermische Barriere Tb3 aus einem schlecht Wärme leitendem Material eingezeichnet. Diese stört nicht die Ausprägung eines Temperaturprofiles ähnlich zu Fig. 2a, da diese Hälfte nicht mit Wärme der Schmelzkammer beaufschlagt wird. Beschreibung/Legende Fig. 1 Stand der Technik: 3D Druckkopf mit Beschickungskanal Tb1 aus schlecht wärmeleitendem Material, welches durch den darüber geschobenen Kühler C1 gekühlt wird Fig. 2 3D Druckkopf mit zweiteiligem Beschickungs-Kanal, der aus der Wärmebarriere Tb2 aus schlecht wärmeleitendem Material, sowie aus dem Kühler C2 aus gut wärmeleitendem Material besteht. Fig. 3 Alternative zur Anordnung in Fig. 2, Der Beschickungskanal ist 3-teilig: er besteht aus Tb3; C3; Tb4. Der Kühler C3 wird schmelzkammerseitig von der Wärmebarriere Tb4 begrenzt. Auf seiner anderen Seite wird das Filament durch Tb3 geführt, einem Stück Beschickungs-Kanal aus einem schlechten Wärmeleiter. Die Kühlstrecke C3 ist wahlweise beheizbar ausgeführt, um im Falle einer Blockage das Filament zwecks Entnahme erwärmen zu können. C3 kann über AIR zwangsgekühlt werden, kann aber auch mit einem Wasserkreislauf verbunden werden. Zone 1 Angedeuteter Temperaturverlauf innerhalb der Schmelzkammer. Das Filament hat Zieltemperatur = Schmelztemperatur. Zone 2 Das Material des Beschickungs-Kanales Tb1 hat soviel Wärme aus direktem Kontakt zur Schmelzkammer aufgenommen, daß sich das Filament in der Zone 2 schon stark erwärmen wird. Es ist Ziel der Erfindung, die Filament-Temperatur in diesem Bereich zu senken. Zone 3 Bereich der geringsten Temperatur des Filamentes. A Endpunkt des Beschickungs-Kanales. Das Filament wird in die Schmelzkammer geschoben. B Mittelpunkt einer gedachten Strecke A-C. C Eingang des Beschickungs-Kanales. Das Filament wird hier dem Druckkopf zugeführt. T Die Strecke A-T markiert die Ausdehnung einer thermischen Barriere zwischen Schmelzkammer und den gut wärmeleitenden Teilen des Beschickungs-Kanales. F Filament, aufzuschmelzendes Druckmaterial K Die gestrichelte Linie deutet die Ausmaße des Druckkopfes an. S geschmolzenes Filament H Heizeinheit zur Erwärmung der Schmelzkammer H2 Heizeinheit zur Erwärmung von C3 O zu druckendes Objekt Tb1 Beschickungs-Kanal nach dem Stand der Technik durchgehend als thermische Barriere aus schlecht die Wärme leitendem Material ausgebildet. Tb2 Thermische Barriere des Beschickungs-Kanales, in ihrer Ausdehnung 2a besonders kurz ausgeführt. Tb3 Thermische Barriere entlang der oberen Hälfte des Beschickungs-Kanales FU Fördereinheit In 3 along the route BC a thermal barrier Tb3 is drawn from a poorly heat-conducting material. This does not disturb the expression of a temperature profile similar to Fig. 2a, since this half is not acted upon by heat of the melting chamber. Description / Legend Fig. 1 PRIOR ART: 3D print head with feed channel Tb1 made of poorly heat-conducting material, which is cooled by the cooler C1 pushed over it Fig. 2 3D printhead with two-part feed channel, which consists of the thermal barrier Tb2 of poor thermal conductivity material, as well as the cooler C2 of good heat conducting material. Fig. 3 Alternative to the arrangement in Fig. 2, the feed channel is 3-piece: it consists of Tb3; C3; Tb4. The cooler C3 is limited by the heat barrier Tb4 on the melt chamber side. On its other side, the filament is passed through Tb3, a piece of feed channel from a poor heat conductor. The cooling section C3 is optionally designed to be heatable in order to heat the filament in the event of blockage for the purpose of removal. C3 can be forcibly cooled via AIR, but can also be connected to a water circuit. Zone 1 Suggested temperature profile within the melting chamber. The filament has target temperature = melting temperature. Zone 2 The material of the feed channel Tb1 has absorbed so much heat from direct contact with the melting chamber that the filament in the zone 2 is already heating up strongly. It is an object of the invention to lower the filament temperature in this area. Zone 3 Range of the lowest temperature of the filament. A End point of the feed channel. The filament is pushed into the melting chamber. B Center of an imaginary route AC. C Input of the feed channel. The filament is fed here to the print head. T The distance AT marks the extent of a thermal barrier between the melting chamber and the parts of the feed channel which conduct heat well. F Filament, print material to be melted K The dashed line indicates the dimensions of the print head. S molten filament H Heating unit for heating the melting chamber H2 Heating unit for heating C3 O object to be printed Tb1 Feed channel according to the prior art throughout as a thermal barrier from poorly formed the heat-conducting material. Tb2 Thermal barrier of the feed channel, executed in its extension 2a particularly short. Tb3 Thermal barrier along the top half of the feed channel FU delivery unit

Claims (5)

3D-Druckkopf zum Aufschmelzen und schichtweise Ablegen von drahtförmigen Materialien und zugehöriger Draht, gekennzeichnet dadurch, daß dieser über mindestens einen Beschickungs-Kanal verfügt, der aus einer Anordnung von hochwärmeleitenden Materialien, wie vorzugsweise Aluminium, Kupfer, Stahl oder Graphit und gering wärmeleitenden Materialien wie vorzugsweise PTFE, PEEK besteht, wobei das zugeführte Druckmaterial (Filament) mit der Innenseite dieser Materialien gemeinsame Kontaktflächen besitzt.3D print head for melting and layering of wire-shaped materials and associated wire, characterized in that it has at least one feed channel, which consists of an array of highly heat-conductive materials, such as preferably aluminum, copper, steel or graphite and low heat-conductive materials such preferably PTFE, PEEK, wherein the supplied printing material (filament) has common contact surfaces with the inside of these materials. Beschickungskanal nach Anspruch 1, gekennzeichnet dadurch, daß dieser entlang der Beschickungskanal-Halbierenden A-B über eine Ausdehnung von mehr als 60%, optimaler Weise auf über 85% aus hochwärmeleitendem Material und auf weniger als 40%, optimaler Weise auf weniger als 15% aus schlecht wärmeleitendem Material besteht.Feed duct according to claim 1, characterized in that it extends along the feed duct bisecting line AB over an extension of more than 60%, optimally over 85% from high thermal conductivity material and to less than 40%, optimally down to less than 15% from poor thermally conductive material. Beschickungskanal nach Anspruch 1–2, gekennzeichnet dadurch, daß dieser entlang der Strecke A-C über eine Ausdehnung von mehr als 80% optimaler Weise auf über 90% aus hochwärmeleitendem Material und auf weniger als 20%, optimaler Weise auf weniger als 10% aus schlecht wärmeleitendem Material besteht, wobei höhere Wärmeleitfähigkeit hier definiert wird beginnend bei Werten > 10 W/m·K, vorzugsweise eher Werte größer als 100 W/m·K, geringere Wärmeleitfähigkeit bei Werten < 9 W/m·K, vorzugsweise eher Werte kleiner als 0,5 W/m·K.Feed duct according to claims 1-2, characterized in that it extends optimally along the distance AC over an extent of more than 80% to over 90% of highly heat-conducting material and to less than 20%, optimally to less than 10% from poorly heat-conducting Material is defined, wherein higher thermal conductivity is defined here starting at values> 10 W / m · K, preferably rather values greater than 100 W / m · K, lower thermal conductivity at values <9 W / m · K, preferably values of less than 0 , 5 W / m · K. Beschickungskanal nach Anspruch 1–3, gekennzeichnet dadurch, daß dieser a) mittels Luft oder Wasser gekühlt wird, b) beheizbar ausgeführt ist und c) über einen Temperatursensor verfügt.Feed duct according to claims 1-3, characterized in that this a) is cooled by means of air or water, b) is designed to be heated and c) has a temperature sensor. Beschickungskanal nach Anspruch 1–4, gekennzeichnet dadurch, daß dieser entlang der Strecke A-C über eine Ausdehnung von weniger als 10 mm, vorzugsweise zwischen 1–5 mm, aus schlecht wärmeleitendem Material besteht.Feeding duct according to Claims 1-4, characterized in that it has an extent of less than 10 mm, preferably between 1-5 mm, of poorly heat-conducting material along the distance A-C.
DE102011110804A 2011-08-22 2011-08-22 Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE Withdrawn DE102011110804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102011110804A DE102011110804A1 (en) 2011-08-22 2011-08-22 Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011110804A DE102011110804A1 (en) 2011-08-22 2011-08-22 Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE

Publications (1)

Publication Number Publication Date
DE102011110804A1 true DE102011110804A1 (en) 2013-02-28

Family

ID=47665043

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011110804A Withdrawn DE102011110804A1 (en) 2011-08-22 2011-08-22 Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE

Country Status (1)

Country Link
DE (1) DE102011110804A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350507A (en) * 2013-04-04 2013-10-16 周双 Three-dimensional printing pen
CN103395973A (en) * 2013-08-15 2013-11-20 蚌埠玻璃工业设计研究院 Glass high temperature melting molding sprayer based on 3D (three dimensional) printing technology
CN103707511A (en) * 2013-12-31 2014-04-09 包呼和 3D (three-dimension) printing pen
CN103878370A (en) * 2014-04-09 2014-06-25 王利民 Metal 3D printer production equipment
CN104014793A (en) * 2014-05-15 2014-09-03 东莞市亚美精密机械配件有限公司 Extrusion-type metal flow 3D printer
CN104249596A (en) * 2014-09-05 2014-12-31 安徽科鸣三维科技有限公司 Photocuring 3D (three dimensional) drawing pen
WO2015006697A1 (en) * 2013-07-11 2015-01-15 Heikkila Kurt E Surface modified particulate and sintered extruded products
TWI491495B (en) * 2013-12-13 2015-07-11 三緯國際立體列印科技股份有限公司 Printing head module
CN105200261A (en) * 2015-10-26 2015-12-30 三峡大学 There-dimensional spatial ordered-structure graphite/aluminum composite material and preparation method thereof
WO2016004642A1 (en) * 2014-07-11 2016-01-14 东莞中国科学院云计算产业技术创新与育成中心 3d printer nozzle capable of adjusting cross-sectional area of extruded material, and speed and precision control method thereof
CN105889571A (en) * 2016-06-01 2016-08-24 深圳万为智能制造科技有限公司 Multi-channel telescopic nozzle valve for 3D printing and nozzle valve control system
TWI596002B (en) * 2013-12-13 2017-08-21 三緯國際立體列印科技股份有限公司 Three dimensional printing apparatus
CN107415228A (en) * 2017-09-05 2017-12-01 宁波大红鹰学院 A kind of brand-new nozzle system of 3D printer
CN114106293A (en) * 2014-11-24 2022-03-01 Ppg工业俄亥俄公司 Co-reactive materials and methods for three-dimensional printing
WO2022147641A1 (en) * 2021-01-05 2022-07-14 深圳原子智造科技有限公司 Fdm printer nozzle and a 3d printer applying same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350507A (en) * 2013-04-04 2013-10-16 周双 Three-dimensional printing pen
CN103350507B (en) * 2013-04-04 2017-11-07 吴洁 3 D-printing pen
US9512544B2 (en) 2013-07-11 2016-12-06 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
US11000895B2 (en) 2013-07-11 2021-05-11 Tundra Composits, LLC Surface modified particulate and sintered or injection molded products
WO2015006697A1 (en) * 2013-07-11 2015-01-15 Heikkila Kurt E Surface modified particulate and sintered extruded products
US10456836B2 (en) 2013-07-11 2019-10-29 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
US10328491B2 (en) 2013-07-11 2019-06-25 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
US10052691B2 (en) 2013-07-11 2018-08-21 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products
CN103395973B (en) * 2013-08-15 2016-06-29 蚌埠玻璃工业设计研究院 A kind of glass high temperature melting melt forming shower nozzle based on 3D printing technique
CN103395973A (en) * 2013-08-15 2013-11-20 蚌埠玻璃工业设计研究院 Glass high temperature melting molding sprayer based on 3D (three dimensional) printing technology
TWI491495B (en) * 2013-12-13 2015-07-11 三緯國際立體列印科技股份有限公司 Printing head module
TWI596002B (en) * 2013-12-13 2017-08-21 三緯國際立體列印科技股份有限公司 Three dimensional printing apparatus
CN103707511A (en) * 2013-12-31 2014-04-09 包呼和 3D (three-dimension) printing pen
CN103878370A (en) * 2014-04-09 2014-06-25 王利民 Metal 3D printer production equipment
CN104014793A (en) * 2014-05-15 2014-09-03 东莞市亚美精密机械配件有限公司 Extrusion-type metal flow 3D printer
WO2016004642A1 (en) * 2014-07-11 2016-01-14 东莞中国科学院云计算产业技术创新与育成中心 3d printer nozzle capable of adjusting cross-sectional area of extruded material, and speed and precision control method thereof
CN104249596B (en) * 2014-09-05 2017-05-03 合肥斯科尔智能科技有限公司 Photocuring 3D (three dimensional) drawing pen
CN104249596A (en) * 2014-09-05 2014-12-31 安徽科鸣三维科技有限公司 Photocuring 3D (three dimensional) drawing pen
CN114106293A (en) * 2014-11-24 2022-03-01 Ppg工业俄亥俄公司 Co-reactive materials and methods for three-dimensional printing
CN105200261A (en) * 2015-10-26 2015-12-30 三峡大学 There-dimensional spatial ordered-structure graphite/aluminum composite material and preparation method thereof
CN105200261B (en) * 2015-10-26 2016-12-07 三峡大学 A kind of three dimensions ordered structure graphite/aluminium composite material and preparation method thereof
CN105889571A (en) * 2016-06-01 2016-08-24 深圳万为智能制造科技有限公司 Multi-channel telescopic nozzle valve for 3D printing and nozzle valve control system
CN107415228A (en) * 2017-09-05 2017-12-01 宁波大红鹰学院 A kind of brand-new nozzle system of 3D printer
WO2022147641A1 (en) * 2021-01-05 2022-07-14 深圳原子智造科技有限公司 Fdm printer nozzle and a 3d printer applying same

Similar Documents

Publication Publication Date Title
DE102011110804A1 (en) Three dimensional printing head, useful for melting and depositing layers of wire-shaped materials, comprises feed channel consisting of array of highly heat-conductive materials e.g. aluminum and low heat-conductive materials e.g. PTFE
EP3541604B1 (en) 3d printhead comprising additional temperature control means
EP3444097B1 (en) Method for the manufacture of a tube
AT510023A4 (en) extrusion die
EP2509456B1 (en) Temperature control of a forming device for a filter rod machine or tobacco rod machine
DE1289297B (en) Process and device for the continuous production of multi-layer hoses made of thermoplastics by the extrusion process
DE2907960C3 (en) Method and device for the continuous heat treatment of isolated, elongated metallic material
EP2616226A2 (en) Process and apparatus for treating an extrudate surface
EP2746026A2 (en) Device and method for producing plastic preforms from a thermoplastic material
WO2002049572A1 (en) Rotary-die-method and fill wedge for producing capsules, in particular soft capsules
CN103958155A (en) Extrusion machine with improved temperature control system
AT503395A2 (en) plasticizing
DE9014968U1 (en) Device for extruding hollow chamber sheets made of thermoplastic material
DE2252219B2 (en) METHOD AND DEVICE FOR PRODUCING THIN-WALLED MOLDINGS FROM THERMOPLASTIC PLASTIC
DE102008047208B4 (en) Extrusion line, process for cooling plastic profiles and plastic pipe
DE102010051047A1 (en) Method for tempering a mold
DE102016117213B4 (en) Method and apparatus for extruding plastics
DE19709895B4 (en) Cooling device for cooling extruded articles
DE3815297C2 (en)
DE102004031366B4 (en) blown film extrusion
DE102015001841A1 (en) Method for operating a blown film plant, calibration unit and blown film plant
DE102013103758B4 (en) Process for producing a thermoplastic foam board and air cooling device
DE102011013961A1 (en) Thermally melting wire, particularly welding wires for three-dimensional printer in frequency division multiplexing process, has surface with specific irregularities or shape deviation in scoring, grooves, rails, nubs or cracks
DE19716192C2 (en) Welding wire preheating device for hot gas welding devices
EP2260998A1 (en) Injection moulding device, injection moulding nozzle and distributor

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140301