DE102011089596A1 - Distanzstück für ein thermisches Durchflussmessgerät - Google Patents

Distanzstück für ein thermisches Durchflussmessgerät Download PDF

Info

Publication number
DE102011089596A1
DE102011089596A1 DE102011089596A DE102011089596A DE102011089596A1 DE 102011089596 A1 DE102011089596 A1 DE 102011089596A1 DE 102011089596 A DE102011089596 A DE 102011089596A DE 102011089596 A DE102011089596 A DE 102011089596A DE 102011089596 A1 DE102011089596 A1 DE 102011089596A1
Authority
DE
Germany
Prior art keywords
spacer
width
thin
film resistance
resistance thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011089596A
Other languages
English (en)
Other versions
DE102011089596A8 (de
Inventor
Tobias Baur
Fanos Christodoulou
Martin Barth
Axel Pfau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to DE102011089596A priority Critical patent/DE102011089596A1/de
Priority to US14/366,836 priority patent/US20140366624A1/en
Priority to PCT/EP2012/073359 priority patent/WO2013092102A1/de
Priority to EP12798225.4A priority patent/EP2795264A1/de
Publication of DE102011089596A1 publication Critical patent/DE102011089596A1/de
Publication of DE102011089596A8 publication Critical patent/DE102011089596A8/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Abstract

Distanzstück (1) für ein thermisches Durchflussmessgerät mit einer Auflagefläche (2) für ein Dünnfilm-Widerstandsthermometer und zwei, eine erste Breite (4) dieser Auflagefläche (2) begrenzende Wände (3), wobei die erste Breite (4) der Auflagefläche kleiner ist als eine zweite Breite (5) der Auflagefläche (2).

Description

  • Die vorliegende Erfindung betrifft ein Distanzstück für ein thermisches Durchflussmessgerät mit einer Auflagefläche für ein Dünnfilm-Widerstandsthermometer und zwei, eine erste Breite dieser Auflagefläche begrenzende Wände.
  • Herkömmliche thermische Durchflussmessgeräte verwenden üblicherweise zwei möglichst gleichartig ausgestaltete Temperatursensoren, die in, meist stiftförmigen, Metallhülsen, so genannten Stingers, angeordnet sind und die in thermischem Kontakt mit dem durch ein Messrohr oder durch die Rohrleitung strömenden Medium sind. Für die industrielle Anwendung sind beide Temperatursensoren üblicherweise in ein Messrohr eingebaut; die Temperatursensoren können aber auch direkt in der Rohrleitung montiert sein. Einer der beiden Temperatursensoren ist ein so genannter aktiver Temperatursensor, der mittels einer Heizeinheit beheizt wird. Als Heizeinheit ist entweder eine zusätzliche Widerstandsheizung vorgesehen, oder bei dem Temperatursensor selbst handelt es sich um ein Widerstandselement, z. B. um einen RTD-(Resistance Temperature Device)Sensor, der durch Umsetzung einer elektrischen Leistung, z. B. durch eine entsprechende Variation des Messstroms erwärmt wird. Bei dem zweiten Temperatursensor handelt es sich um einen sog. passiven Temperatursensor: Er misst die Temperatur des Mediums.
  • Üblicherweise wird in einem thermischen Durchflussmessgerät der beheizbare Temperatursensor so beheizt, dass sich eine feste Temperaturdifferenz zwischen den beiden Temperatursensoren einstellt. Alternativ ist es auch bekannt geworden, über eine Regel-/Steuereinheit eine konstante Heizleistung einzuspeisen.
  • Tritt in dem Messrohr kein Durchfluss auf, so wird eine zeitlich konstante Wärmemenge zur Aufrechterhaltung der vorgegebenen Temperaturdifferenz benötigt. Ist hingegen das zu messende Medium in Bewegung, ist die Abkühlung des beheizten Temperatursensors wesentlich von dem Massedurchfluss des vorbeiströmenden Mediums abhängig. Da das Medium kälter ist als der beheizte Temperatursensor, wird durch das vorbeiströmende Medium Wärme von dem beheizten Temperatursensor abtransportiert. Um also bei einem strömenden Medium die feste Temperaturdifferenz zwischen den beiden Temperatursensoren aufrecht zu erhalten, ist eine erhöhte Heizleistung für den beheizten Temperatursensor erforderlich. Die erhöhte Heizleistung ist ein Maß für den Massedurchfluss bzw. den Massestrom des Mediums durch die Rohrleitung.
  • Wird hingegen eine konstante Heizleistung eingespeist, so verringert sich infolge des Durchflusses des Mediums die Temperaturdifferenz zwischen den beiden Temperatursensoren. Die jeweilige Temperaturdifferenz ist dann ein Maß für den Massedurchfluss des Mediums durch die Rohrleitung bzw. durch das Messrohr.
  • Es besteht somit ein funktionaler Zusammenhang zwischen der zum Beheizen des Temperatursensors notwendigen Heizenergie und dem Massedurchfluss durch eine Rohrleitung bzw. durch ein Messrohr. Die Abhängigkeit des Wärmeübertragungskoeffizienten von dem Massedurchfluss des Mediums durch das Messrohr bzw. durch die Rohrleitung wird in thermischen Durchflussmessgeräten zur Bestimmung des Massedurchflusses genutzt. Geräte, die auf diesem Prinzip beruhen, werden von der Anmelderin unter der Bezeichnung ,t-trend' oder 't-mass' angeboten und vertrieben.
  • Bisher wurden hauptsächlich RTD-Elemente mit wendelförmig gewickelten Platindrähten in thermischen Durchflussmessgeräten eingesetzt. Bei Dünnfilm-Widerstandsthermometern (TFRTDs) wird herkömmlicherweise eine mäanderförmige Platinschicht auf ein Substrat aufgedampft. Darüber wird eine weitere Glasschicht zum Schutz der Platinschicht aufgebracht. Der Querschnitt der Dünnfilm-Widerstandsthermometern ist im Unterschied zu den, einen runden Querschnitt aufweisenden RTD-Elementen, rechteckig. Die Wärmeübertragung in das Widerstandselement und/oder aus dem Widerstandselement erfolgt demnach über zwei gegenüberliegende Oberflächen, welche zusammen einen Großteil der Gesamtoberfläche eines Dünnfilm-Widerstandsthermometers ausmachen.
  • Der Einbau eines quaderförmigen Dünnfilm-Widerstandsthermometers in eine runde Stifthülse wird in der US-PS 6,971,274 und der US-PS 7,197,953 folgendermaßen gelöst. In eine Distanzbuchse aus Metall mit einer rechteckigen Vertiefung wird der Dünnfilm-Widerstandsthermometer so eingesetzt, dass zumindest die zwei gegenüberliegenden großen Oberflächen des Dünnfilm-Widerstandsthermometers quasi spaltfreien Kontakt zu den ihnen gegenüberliegenden Oberflächen der Distanzbuchse haben. Die Distanzbuchse weist dazu eine rechteckige Vertiefung auf, welche entsprechend der Außenmaße des Dünnfilm-Widerstandsthermometers gefertigt ist. Die Distanzbuchse soll den Dünnfilm-Widerstandsthermometer eng halten. Dazu bilden Distanzbuchse und Dünnfilm-Widerstandsthermometer quasi eine Presspassung. Die Distanzbuchse selbst und die Stifthülse bilden ebenfalls eine Presspassung. Dadurch wird der Einsatz einer Vergussmasse oder eines anders gearteten Füllmaterials überflüssig. Der Vorteil dieses Aufbaus besteht in einer allseitigen guten Wärmekopplung zwischen Dünnfilm-Widerstandsthermometer und Messmedium durch die Distanzbuchse. Allerdings entstehen durch den festen Sitz des Dünnfilm-Widerstandsthermometers und/oder durch unterschiedliche Wärmeausdehnungskoeffizienten der beteiligten Materialen mechanische Spannungen im Dünnfilm-Widerstandsthermometer.
  • Die DE 10 2009 028 848 A1 zeigt nun die Distanzbuchse mit einer Ausnehmung zur Aufnahme des Dünnfilm-Widerstandsthermometers, welche Ausnehmung jedoch so bemessen ist, dass das Dünnfilm-Widerstandsthermometer an einer ersten Oberfläche der Distanzbuchse anlötbar ist, wobei es zu einer zweiten Oberfläche, welche der ersten Oberfläche gegenüberliegt, einen Abstand aufweist, welcher groß genug ist, um Füllmaterial zwischen Dünnfilm-Widerstandsthermometer und zweiter Oberfläche in die Distanzbuchse einzubringen. Die Distanzbuchse weist dabei ein Loch in der Wand der zweiten Oberfläche auf, um das Dünnfilm-Widerstandsthermometer durch das Loch mittels eines Niederhalters auf die erste Oberfläche der Distanzbuchse während des Lötverfahrensschritts anzudrücken.
  • Die WO 2009/115452 A2 zeigt ein Distanzstück, welches statt einer Ausnehmung in Form einer Bohrung eine Ausnehmung in Form einer Nut aufweist, wobei das Dünnfilm-Widerstandsthermometer am Nutgrund anlötbar ist. Da auch dieses Distanzstück in eine Stifthülse eingepresst wird, können auch zu eng stehende Nutflanken zu Spannungen im Dünnfilm-Widerstandsthermometer führen.
  • Die Aufgabe der Erfindung besteht darin, ein Distanzstück für ein thermisches Durchflussmessgerät zur kostengünstigen Herstellung des thermischen Durchflussmessgeräts vorzuschlagen.
  • Die Aufgabe wird gelöst durch die Gegenstände der unabhängigen Ansprüche 1 und 11. Weiterbildungen und Ausgestaltungen der Erfindung finden sich in den Merkmalen der jeweils abhängigen Ansprüche wider.
  • Die Erfindung lässt zahlreiche Ausführungsformen zu. Einige davon sollen hier kurz anhand der nachfolgenden Figuren näher erläutert werden. Gleiche Elemente sind in den Figuren mit gleichen Bezugszeichen versehen.
  • 1 zeigt ein erfindungsgemäßes Distanzstück in einer ersten Ausgestaltung,
  • 2 zeigt ein erfindungsgemäßes Distanzstück in einer zweiten Ausgestaltung,
  • 3 zeigt ein erfindungsgemäßes Distanzstück in einer dritten Ausgestaltung,
  • 4 zeigt ein Distanzstück mit einer geneigten Auflagefläche.
  • In 1 ist ein erfindungsgemäßes Distanzstück 1 für ein thermisches Durchflussmessgerät in Vorderansicht, Draufsicht und perspektivisch dargestellt. Das Distanzstück 1 weist eine Nut längs seiner Längsachse 6 auf. Der Nutgrund bildet eine Auflagefläche 2 für ein Dünnfilm-Widerstandsthermometer. Die Nutflanken sind durch die Wände 3 des Distanzstücks 1 gebildet. Die Wände 3 weisen zwei unterschiedliche Abstände zueinander auf. In einem ersten Bereich weisen die Wände 3 einen ersten Abstand zueinander auf und in einem zweiten Bereich weisen sie einen zweiten Abstand zueinander auf. Da die Wände 3 die Auflagefläche 2 in diesem Ausführungsbeispiel über die gesamte Länge des Distanzstücks 1 in ihrer Breite begrenzen, weist somit die Auflagefläche 2 im ersten Bereich eine erste Breite 4 auf und im zweiten Bereich eine zweite 5, wobei erfindungsgemäß die erste Breite 4 der Auflagefläche 2 kleiner ist als eine zweite Breite 5 der Auflagefläche 2.
  • Die erste Breite 4 der Auflagefläche 2 ist dabei gemäß einer Weiterbildung der Erfindung zumindest 15%, insbesondere mindestens 20% kleiner ist als eine zweite Breite 5 der Auflagefläche 2. Da hier die Abstände der Wände der Breite der Auflagefläche 2 entsprechen, weisen die Wände 3 im Bereich der zweiten Breite 4 einen, hier um mindestens 15%, insbesondere um mindestens 20%, größeren Abstand zueinander auf, als im Bereich der ersten Breite 5.
  • Ein thermisches Durchflussmessgerät mit einem erfindungsgemäßen Distanzstück 1 weist ein, hier nicht dargestelltes, auf der Auflagefläche 2 des Distanzstücks 1 angeordnetes Dünnfilm-Widerstandsthermometer auf. Das Dünnfilm-Widerstandsthermometer teilt sich dabei in zwei Bereiche auf. Einen Messbereich und einen Anschlussbereich. Im Messbereich ist ein meist mäanderförmiger Platindraht angeordnet, im Anschlussbereich sind meist zwei Anschlusspads zum elektrischen Verbinden des Dünnfilm-Widerstandsthermometers mit einer Spannungsmessgerät und/oder einer Strom- oder Spannungsquelle zum Heizen.
  • Erfindungsgemäß ist das Dünnfilm-Widerstandsthermometer so auf der Auflagefläche 2 angeordnet, dass im Bereich der Anschlusskabel am Dünnfilm-Widerstandsthermometer, also im Anschlussbereich, die Auflagefläche die zweite Breite 5 aufweist. Wobei der Messbereich im ersten Bereich des Distanzstücks 1 mit der ersten Breite 4 angeordnet ist.
  • Das Distanzstück 2 ist zum Dünnfilm-Widerstandsthermometer so ausgestaltet, dass die zweite Breite 5 der Auflagefläche 2 zumindest 40% größer ist, insbesondere zumindest 60% größer, als eine Breite des Dünnfilm-Widerstandsthermometers an derselben Stelle, also insbesondere im Anschlussbereich der Kabel des Dünnfilm-Widerstandsthermometers. Hier ist also der Abstand der Wände 3 entsprechend größer als die Breite des Dünnfilm-Widerstandsthermometers.
  • Dies bedingt den technischen Effekt, dass Lot zwischen Auflagefläche und Dünnfilm-Widerstandsthermometer, nicht während des Lötens zwischen dem Dünnfilm-Widerstandsthermometer und den Wänden 3 hervortreten und sich auf das Dünnfilm-Widerstandsthermometer, insbesondere im Anschlussbereich, niederlegen kann, wo es zu Kurzschlüssen führen kann. Die Wände im ersten Bereich halten das Dünnfilm-Widerstandsthermometer jedoch in vorgegebener Position. Ein Aufschwimmen des Dünnfilm-Widerstandsthermometers ist somit unkritisch.
  • Darüber hinaus werden beim Einpressvorgang des Distanzstücks in eine Stifthülse mechanische Spannungen in dem Distanzstück hervorgerufen, welche sich bei einem erfindungsgemäßen Distanzstück in vorgegebenen Grenzen halten und somit nicht zur Beschädigung des Dünnfilm-Widerstandsthermometers führen.
  • Durch eine wesentlich verringerte Ausfallrate, bedingt durch die mechanischen Spannungen und Lot im Anschlussbereich der Kabel, ist das thermische Durchflussmessgerät kostengünstig herzustellen.
  • Gemäß einer Weiterbildung der Erfindung beträgt die erste Breite der Auflagefläche, also insbesondere der Abstand der Wände 3 im ersten Bereich, höchstens 115%, insbesondere höchstens 105% der Breite des Dünnfilm-Widerstandsthermometers an derselben Stelle, hier entsprechend des Messbereichs des Dünnfilm-Widerstandsthermometers.
  • Hergestellt wird ein thermisches Durchflussmessgerät mit einem erfindungsgemäßen Distanzstück beispielsweise, indem Lot zwischen Dünnfilm-Widerstandsthermometer und Auflagefläche des Distanzstücks aufgebracht wird, und das Dünnfilm-Widerstandsthermometer so auf der Auflagefläche des Distanzstücks ausgerichtet wird, dass ein beidseitiger Abstand des Dünnfilm-Widerstandsthermometers im Bereich der Anschlusskabel an dem Dünnfilm-Widerstandsthermometer zu den Grenzen der Auflagefläche des Distanzstücks mindestens 20% der Breite des Dünnfilm-Widerstandsthermometers an derselben Stelle beträgt.
  • Anschließend wird das Dünnfilm-Widerstandsthermometer auf die Auflagefläche des Distanzstücks gelötet. In einer Ausgestaltung der Erfindung wird das Distanzstück mit dem angelöteten Dünnfilm-Widerstandsthermometer in eine Hülse, insbesondere eine Stifthülse, eingeführt, insbesondere mit dieser verpresst.
  • Der Übergang von erster Breite 4 zu zweiter Breite 5 erfolgt hier über einen Radius. Es sind jedoch weitere Varianten einem Fachmann nahe liegend. Nachfolgend soll in 2 nur eine davon vorgestellt werden.
  • Gemäß 2 weist das Distanzstück 1 zwischen der ersten Breite 4 und der zweiten Breite 5 ein keilförmiges Zwischenstück auf.
  • 3 zeigt eine technische Zeichnung des Distanzstücks 1 in einer weiteren Ausgestaltung. Das Distanzstück 1 weist im zweiten Bereich keine Wände auf, welche die Auflagefläche 2 begrenzen. Auch hier entspricht der Abstand der Wände der ersten Breite 4 der Auflagefläche 2. Das Dünnfilm-Widerstandsthermometer würde entsprechend so auf der Auflagefläche angeordnet werden, dass das Distanzstück 1 im Bereich der Anschlusskabel an dem Dünnfilm-Widerstandsthermometer keine die zweite Breite 5 der Auflagefläche 2 begrenzende Wände aufweist.
  • Alternativ zu den hier veranschaulichten Nuten, können die Wände auch eine Bohrung, beispielsweise mit rechteckigem Querschnitt, im Distanzstück begrenzen.
  • 4 zeigt ein Distanzstück 1 mit einer ebenen Auflagefläche 2 und einer ansonsten kreiszylindrischen Mantelfläche. Die Auflagefläche 2 ist zur Längsachse 6 des Distanzstücks geneigt. Die Längsachse 6 liegt dabei in einer gedachten Ebene, welche die Auflagefläche 2 senkrecht schneidet. Die Längsachse 6 des Distanzstücks 1 fällt darüber hinaus mit einer Längsachse eines Kreiszylinders mit einer Mantelfläche, welche mit der kreiszylindrischen Mantelfläche des Distanzstücks 2 zusammenfällt, zusammen.
  • Als Vorteilhaft hat sich ein Neigungswinkel, welche von der Auflagefläche 2 und der Längsachse 6 des Distanzstücks 1 eingeschlossen wird, zwischen 5° und 30°, insbesondere zwischen 10° und 20° herausgestellt. Ein Vorteil ist, dass überschüssiges Lot in eine vorgegebene Richtung abfließen kann. Bei der Verwendung einer geneigten Auflagefläche ohne begrenzende Wände, würde das Dünnfilm-Widerstandsthermometer nicht durch die Wände in seiner Position gehalten. Um dieses Problem zu umgehen, ist natürlich eine Kombination aus Nut oder Bohrung und geneigter Auflagefläche vorteilhaft.
  • Bezugszeichenliste
  • 1
    Distanzstück eines thermischen Durchflussmessgeräts
    2
    Auflagefläche des Distanzstücks für ein Dünnfilm-Widerstandsthermometer
    3
    Wände des Distanzstücks
    4
    Erste Breite der Auflagefläche
    5
    Zweite Breite der Auflagefläche
    5
    Längsachse des Distanzstücks
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6971274 [0008]
    • US 7197953 [0008]
    • DE 102009028848 A1 [0009]
    • WO 2009/115452 A2 [0010]

Claims (11)

  1. Distanzstück (1) für ein thermisches Durchflussmessgerät mit einer Auflagefläche (2) für ein Dünnfilm-Widerstandsthermometer und zwei, eine erste Breite (4) dieser Auflagefläche (2) begrenzende Wände (3), dadurch gekennzeichnet, dass die erste Breite (4) der Auflagefläche kleiner ist als eine zweite Breite (5) der Auflagefläche (2).
  2. Distanzstück nach Anspruch 1, dadurch gekennzeichnet, dass die erste Breite (4) der Auflagefläche (2) zumindest 15% kleiner ist als eine zweite Breite (5) der Auflagefläche (2).
  3. Distanzstück nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wände (3) eine Nut im Distanzstück (1) begrenzen, deren Nutgrund die Auflagefläche (2) bildet.
  4. Distanzstück nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wände (3) eine Bohrung im Distanzstück (1) begrenzen.
  5. Distanzstück nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Distanzstück (1) im Bereich der zweiten Breite (5) der Auflagefläche (1) keine Wände (3) aufweist.
  6. Distanzstück nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Wände (3) im Bereich der zweiten Breite (5) einen größeren Abstand zueinander aufweisen, als im Bereich der ersten Breite (4).
  7. Distanzstück nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Auflagefläche (1) zu einer Längsachse (6) des Distanzstücks geneigt ist.
  8. Thermisches Durchflussmessgerät mit einem Distanzstück (1) nach einem der Ansprüche 1 bis 7 und einem auf der Auflagefläche (2) des Distanzstücks (1) angeordnetem Dünnfilm-Widerstandsthermometer, dadurch gekennzeichnet, dass das Dünnfilm-Widerstandsthermometer so auf der Auflagefläche (2) angeordnet ist, dass im Bereich von Anschlusskabeln am Dünnfilm-Widerstandsthermometer die Auflagefläche (2) die zweite Breite (5) aufweist.
  9. Thermisches Durchflussmessgerät nach Anspruch 8, dadurch gekennzeichnet, dass das Dünnfilm-Widerstandsthermometer so auf der Auflagefläche (2) angeordnet ist, dass das Distanzstück im Bereich der Anschlusskabel an dem Dünnfilm-Widerstandsthermometer keine die Breite der Auflagefläche (2) begrenzende Wände (3) aufweist oder, dass die Wände (3) des Distanzstücks (1) im Bereich der Anschlusskabel an dem Dünnfilm-Widerstandsthermometer einen Abstand zueinander aufweisen von mindestens 140% einer Breite des Dünnfilm-Widerstandsthermometers an derselben Stelle.
  10. Thermisches Durchflussmessgerät nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die erste Breite (4) der Auflagefläche (5) höchstens 115% der Breite des Dünnfilm-Widerstandsthermometers an derselben Stelle beträgt.
  11. Verfahren zum Herstellen eines thermischen Durchflussmessgerät nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass Lot zwischen Dünnfilm-Widerstandsthermometer und Auflagefläche (2) des Distanzstücks (1) aufgebracht wird, und dass das Dünnfilm-Widerstandsthermometer so auf der Auflagefläche (2) des Distanzstücks (1) ausgerichtet wird, dass eine Summe der beidseitigen Abstände des Dünnfilm-Widerstandsthermometers im Bereich der Anschlusskabel an dem Dünnfilm-Widerstandsthermometer zu den Grenzen der Auflagefläche (2) des Distanzstücks mindestens 140% der Breite des Dünnfilm-Widerstandsthermometers an derselben Stelle beträgt.
DE102011089596A 2011-12-22 2011-12-22 Distanzstück für ein thermisches Durchflussmessgerät Withdrawn DE102011089596A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102011089596A DE102011089596A1 (de) 2011-12-22 2011-12-22 Distanzstück für ein thermisches Durchflussmessgerät
US14/366,836 US20140366624A1 (en) 2011-12-22 2012-11-22 Spacer for a Thermal, Flow Measuring Device
PCT/EP2012/073359 WO2013092102A1 (de) 2011-12-22 2012-11-22 Distanzstück für ein thermisches durchflussmessgerät
EP12798225.4A EP2795264A1 (de) 2011-12-22 2012-11-22 Distanzstück für ein thermisches durchflussmessgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011089596A DE102011089596A1 (de) 2011-12-22 2011-12-22 Distanzstück für ein thermisches Durchflussmessgerät

Publications (2)

Publication Number Publication Date
DE102011089596A1 true DE102011089596A1 (de) 2013-06-27
DE102011089596A8 DE102011089596A8 (de) 2013-09-05

Family

ID=48575297

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011089596A Withdrawn DE102011089596A1 (de) 2011-12-22 2011-12-22 Distanzstück für ein thermisches Durchflussmessgerät

Country Status (1)

Country Link
DE (1) DE102011089596A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709675A (zh) * 2017-06-08 2020-01-17 恩德斯+豪斯流量技术股份有限公司 热流量计

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155055A (ja) * 1998-11-20 2000-06-06 Toshiba Corp 温度検出器および温度検出システム
US6971274B2 (en) 2004-04-02 2005-12-06 Sierra Instruments, Inc. Immersible thermal mass flow meter
WO2009115452A2 (de) 2008-03-20 2009-09-24 Endress+Hauser Flowtec Ag Temperatursensor und verfahren zu dessen herstellung
DE102009028848A1 (de) 2009-08-24 2011-03-03 Endress + Hauser Flowtec Ag Aufbau und Herstellungsverfahrens eines Sensors eines thermischen Durchflussmessgeräts
DE102010018947A1 (de) * 2010-04-30 2011-11-03 Abb Technology Ag Thermischer Massendurchflussmesser mit metallgekapselter Sensorik

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155055A (ja) * 1998-11-20 2000-06-06 Toshiba Corp 温度検出器および温度検出システム
US6971274B2 (en) 2004-04-02 2005-12-06 Sierra Instruments, Inc. Immersible thermal mass flow meter
US7197953B2 (en) 2004-04-02 2007-04-03 Sierra Instruments, Inc. Immersible thermal mass flow meter
WO2009115452A2 (de) 2008-03-20 2009-09-24 Endress+Hauser Flowtec Ag Temperatursensor und verfahren zu dessen herstellung
DE102009028848A1 (de) 2009-08-24 2011-03-03 Endress + Hauser Flowtec Ag Aufbau und Herstellungsverfahrens eines Sensors eines thermischen Durchflussmessgeräts
DE102010018947A1 (de) * 2010-04-30 2011-11-03 Abb Technology Ag Thermischer Massendurchflussmesser mit metallgekapselter Sensorik

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709675A (zh) * 2017-06-08 2020-01-17 恩德斯+豪斯流量技术股份有限公司 热流量计

Also Published As

Publication number Publication date
DE102011089596A8 (de) 2013-09-05

Similar Documents

Publication Publication Date Title
EP2282179B1 (de) Verfahren zur Herstellung eines Temperatursensors
DE102009028850A1 (de) Herstellungsverfahren eines Sensors eines thermischen Durchflussmessgeräts
DE102013110291A1 (de) Verfahren zur Herstellung eines Rußsensors mit einem Laserstrahl
EP2909639A1 (de) Thermisches durchflussmessgerät
EP3237851B1 (de) Thermisches durchflussmessgerät
EP2909593B1 (de) Temperatursensor und thermisches durchflussmessgerät
DE102009028848A1 (de) Aufbau und Herstellungsverfahrens eines Sensors eines thermischen Durchflussmessgeräts
DE102010061731A1 (de) Gehäuse eines Temperatursensors, insbesondere eines thermischen Durchflussmessgeräts
EP0590449A2 (de) Kalorimetrischer Strömungswächter
EP2591318B1 (de) Messaufnehmer eines thermischen durchflussmessgeräts zur ermittlung des durchflusses eines mediums durch ein messrohr und verfahren zu dessen herstellung
DE10118781B4 (de) Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip und Verwendung einer Potentialfläche auf einem Sensorchip
DE102011089597A1 (de) Distanzstück für ein thermisches Durchflussmessgerät
DE202016107242U1 (de) Sensoreinrichtung zur Bestimmung eines Massenstroms eines flüssigen Heißschmelzklebstoffes
DE102011089596A1 (de) Distanzstück für ein thermisches Durchflussmessgerät
DE19610885B4 (de) Wärmeübergangsmeßgerät
EP2795264A1 (de) Distanzstück für ein thermisches durchflussmessgerät
DE102016114963B3 (de) Sensor für ein thermisches Durchflussmessgerät, ein thermisches Durchflussmessgerät und ein Verfahren zum Herstellen eines Sensors eines thermischen Durchflussmessgeräts
EP1048935A2 (de) Strömungssensor
DE102013204470B4 (de) Wärmeübergangsmessgerät
WO2018157984A1 (de) Sensorelement und thermischer strömungssensor zur bestimmung einer physikalischen grösse eines messmediums
DE19802296A1 (de) Verfahren und Temperaturfühler zur Messung von Oberflächentemperaturen
DE102016111701A1 (de) Sensor für ein thermisches Durchflussmessgerät, ein thermisches Durchflussmessgerät und ein Verfahren zum Herstellen eines Sensors eines thermischen Durchflussmessgeräts
DE202006001883U1 (de) Widerstandsthermometer
DE102009045811A1 (de) Sensor eines thermischen Durchflussmessgeräts
DE102021126747A1 (de) Dreidimensionaler Schaltungsträger, Anordnung aus einem solchen Schaltungsträger und einer metallischen Hülse, Messgerät der Prozessmesstechnik mit einer solchen Anordnung sowie Verwendung einer solchen Anordnung

Legal Events

Date Code Title Description
R163 Identified publications notified
R005 Application deemed withdrawn due to failure to request examination