DE102010062050A1 - Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level - Google Patents

Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level Download PDF

Info

Publication number
DE102010062050A1
DE102010062050A1 DE102010062050A DE102010062050A DE102010062050A1 DE 102010062050 A1 DE102010062050 A1 DE 102010062050A1 DE 102010062050 A DE102010062050 A DE 102010062050A DE 102010062050 A DE102010062050 A DE 102010062050A DE 102010062050 A1 DE102010062050 A1 DE 102010062050A1
Authority
DE
Germany
Prior art keywords
gas
flash
natural gas
plant
efg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102010062050A
Other languages
German (de)
Inventor
wird später genannt werden Erfinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102010062050A priority Critical patent/DE102010062050A1/en
Publication of DE102010062050A1 publication Critical patent/DE102010062050A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage

Abstract

he liquefied natural gas plant (LNGP) has a gas liquefaction plant (GLP) with a flash drum (FD) for decompression of gaseous natural gas (GNG) by a higher pressurization level to a liquefied natural gas (LNG) on a lower pressurization level. An expansion gas unit is designed in such a manner that a common collector is provided, to which evaporation gas (BOG) and extension gas (EFG) are supplied as collected gas (CG) in a collector (COL). An independent claim is also included for a method for operating a liquefied natural gas plant.

Description

Die Erfindung betrifft eine Flüssigerdgasanlage umfassend eine Gasverflüssigungsanlage mit einer Entspannungstrommel zur Entspannung von gasförmigem Erdgas von einem höheren Druckniveau zu flüssigem Erdgas auf einem niedrigeren Druckniveau, in welcher Entspannungstrommel Entspannungsgas anfällt bestehend aus gasförmig verbliebenen Anteilen des entspannten gasförmigen Erdgases, umfassend eine Treibstoffeinheit zur Speicherung von Treibstoff, umfassend eine Entspannungsgaseinheit, welche Entspannungsgas aus der Entspannungstrommel in die Treibstoffeinheit fördert, umfassend einen Speichertank zur Speicherung des flüssigen Erdgases, wobei die Flüssigerdgasanlage derart ausgebildet ist, dass Verdampfungsgas anfällt.The invention relates to a liquefied natural gas plant comprising a gas liquefaction plant with a relaxation drum for the expansion of gaseous natural gas from a higher pressure level to liquid natural gas at a lower pressure level, in which flash drum flash gas is obtained consisting of gaseous remaining portions of the expanded gaseous natural gas, comprising a fuel unit for storing fuel comprising a flash gas unit which conveys flashing gas from the flash drum into the fuel unit, comprising a storage tank for storing the liquid natural gas, the liquefied natural gas plant being arranged to produce evaporating gas.

Mittels Abkühlung auf –164°C wird Erdgas zu Transport- und Lagerungszwecken verflüssigt, wenn die zu überbrückende Entfernung zwischen der Erdgasquelle und dem Verbraucher verhältnismäßig groß ist und nicht mittels einer Pipeline überbrückt wird. Ein steigender Erdgasbedarf und zunehmende Ausbeutung von fernliegenden Erdgasquellen sorgen für eine wachsende Nachfrage nach effizienter Erdgasverflüssigungstechnologie. Die aufwendige Verflüssigung verbraucht etwa 10–25% des Energieinhaltes des geförderten Gases. Diese verhältnismäßig grobe Abschätzung des Energieaufwandes zeigt, welche Verbesserungspotentiale diese Technologie gegenwärtig aufweist, wobei mit steigender Tendenz mehr als 25% des weltweit transportierten Erdgases als Flüssigerdgas bewegt wird.By cooling to -164 ° C natural gas is liquefied for transport and storage purposes, if the distance to be bridged between the natural gas source and the consumer is relatively large and is not bridged by means of a pipeline. Growing demand for natural gas and increasing exploitation of distant natural gas sources are creating a growing demand for efficient natural gas liquefaction technology. The elaborate liquefaction consumes about 10-25% of the energy content of the extracted gas. This relatively rough estimation of energy expenditure shows what potential for improvement this technology currently has, with more than 25% of the world's natural gas being transported as liquefied natural gas with increasing tendency.

In den 1 bis 3 sind Flüssigerdgasanlagen LNGP dargestellt, wobei die 1 den Stand der Technik wiedergibt. Die Flüssigerdgasanlagen LNGP umfassen jeweils eine Gasverflüssigungsanlage GLP, welche unterschiedlichen Konzepten folgend ausgebildet sein kann und in den Figuren beispielhaft in einer speziellen Ausführung schematisch dargestellt ist.In the 1 to 3 LNGP liquefied natural gas plants are shown, with the 1 reflects the state of the art. The liquefied natural gas plants LNGP each comprise a gas liquefaction plant GLP, which can be embodied following different concepts and is shown schematically in the figures by way of example in a specific embodiment.

Die Gasverflüssigungsanlage GLP umfasst einen Hauptwärmetauscher MCHE, dem zum Zwecke der Abkühlung und Verflüssigung mittels eines Erdgasverdichter NGB komprimiertes gasförmiges Erdgas GNG zugeführt wird. Die erforderliche Kälteleistung bezieht der Hauptwärmetauscher MCHE in diesem Beispiel aus einem ersten Kältekreislauf PMR bzw. einem zweiten Kältekreislauf SMR, die jeweils einen mit jeweils einer Dampfturbine ST angetriebenen Verdichter, einen ersten Kälteverdichter COPMR für den ersten Kältekreislauf PMR und einen zweiten Kälteverdichter COFMR für den zweiten Kältekreislauf SMR aufweisen. Eine in dem Kältekreislauf PMR, SMR jeweils installierte Entspannungsdrossel ET sorgt für eine Abkühlung des jeweils zirkulierenden Kältemittels. Zusätzliche Entspannungsdrosseln AET sind jeweils in dem Hauptwärmetauscher MCHE für die beiden Kältekreisläufe PMR, SMR vorgesehen, so dass sich für den ersten Kältekreislauf PMR drei unterschiedliche Entspannungsdruckniveaus ergeben, die dem ersten Kälteverdichter COPMR in drei unterschiedlichen Einströmungen IN1, IN2, IN3 zugeführt werden. Der zweite Kälteverdichter COSMR weist in diesem speziellen Beispiel nur eine einzelne Einströmung IN1 auf.The gas liquefaction plant GLP comprises a main heat exchanger MCHE, to which for the purpose of cooling and liquefaction by means of a natural gas compressor NGB compressed gaseous natural gas GNG is supplied. The required cooling capacity of the main heat exchanger MCHE relates in this example from a first refrigeration cycle PMR and a second refrigeration cycle SMR, each with a steam turbine ST driven compressor, a first compressor COPMR for the first refrigeration circuit PMR and a second compressor COFMR for the second Have refrigeration circuit SMR. An expansion throttle ET installed in the refrigeration circuit PMR, SMR ensures cooling of the respective circulating refrigerant. Additional expansion throttles AET are respectively provided in the main heat exchanger MCHE for the two refrigeration circuits PMR, SMR, so that three different pressure relief levels result for the first refrigeration cycle PMR, which are supplied to the first refrigeration compressor COPMR in three different inflows IN1, IN2, IN3. The second refrigeration compressor COSMR has only a single inflow IN1 in this particular example.

Die meisten der einzelnen Verdichtungsaggregate werden in dem speziellen Beispiel mittels Dampfturbinen ST angetrieben, wobei insbesondere ein Antrieb mittels Gasturbinen GT ebenfalls zweckmäßig ist. Gegebenenfalls findet zur Wirkungsgradsteigerung auch bevorzugt eine Kombination aus Dampfturbine und Gasturbine mit. Nutzung der Gasturbinenabwärme durch die Dampfturbine (combined cycle) zum Antrieb einzelner Verdichter statt. Alternativ können Dampfturbinen und/oder Gasturbinen mindestens einen Generator antreiben, dessen elektrische Leistung zur Speisung der elektrischen Antriebe der einzelnen Verdichteraggregate verwendet wird.Most of the individual compression units are driven in the specific example by means of steam turbines ST, wherein in particular a drive by means of gas turbines GT is also expedient. Optionally, a combination of steam turbine and gas turbine is also preferred for increasing the efficiency. Utilization of the gas turbine waste heat by the steam turbine (combined cycle) to drive individual compressors instead. Alternatively, steam turbines and / or gas turbines can drive at least one generator whose electric power is used to feed the electric drives of the individual compressor units.

Während der Abkühlung des gasförmigen Erdgases GNG in dem Hauptwärmetauscher MCHE kondensiert bereits gasförmiges Erdgas GNG zu flüssigem Erdgas LNG und wird in einem Kondensatabscheider FC abgeschieden. Das auf etwa –140°C abgekühlte gasförmige Erdgas GNG tritt aus dem Hauptwärmetauscher MCHE in eine Entspannungstrommel FD ein und wird dort von 40 bar auf 1 bar entspannt, wobei sich in Folge der Entspannungskälte der größte Anteil des gasförmigen Erdgases GNG zu flüssigen Erdgas LNG verflüssigt. Während der rapiden Entspannung in der Entspannungstrommel FD scheidet sich gasförmiger Stickstoff N2 und gasförmiges Methan CH4 von dem flüssigen Erdgasstrom LNG ab. Diese gasförmigen abgeschiedenen Komponenten werden als Entspannungsgas EFG bezeichnet. Das flüssige Erdgas LNG aus der Entspannungstrommel FD wird einem Speichertank T zugeführt.During the cooling of the gaseous natural gas GNG in the main heat exchanger MCHE already gaseous natural gas GNG condenses to liquid natural gas LNG and is deposited in a condensate separator FC. The cooled to about -140 ° C gaseous natural gas GNG enters from the main heat exchanger MCHE in a relaxation drum FD and is there relaxed from 40 bar to 1 bar, which liquefies as a result of the expansion cooling the largest proportion of gaseous natural gas GNG to liquid natural gas LNG , During the rapid relaxation in the flash drum FD, gaseous nitrogen N2 and gaseous methane CH4 separate from the liquid natural gas stream LNG. These gaseous deposited components are referred to as flash gas EFG. The liquid natural gas LNG from the expansion drum FD is supplied to a storage tank T.

In der Praxis befindet sich eine Flüssigerdgasanlage LNGP regelmäßig an einer Verladestation, insbesondere an Häfen, die regelmäßig mittels einer längeren Pipeline für das gasförmige Erdgas GNG mit der Erdgasförderstätte in Verbindung stehen. Die kostenintensiven Flüssigerdgasanlagen LNGP sind in ihrer Ausbildung derart raumgreifend, dass zwischen der Entspannungstrommel FD und dem Speicher-Tank T eine Entfernung von 2 km liegen kann. Naturgemäß kompakter gebaut sind Flüssigerdgasanlagen, die auf dem offenen Meer (Offshore) betrieben werden.In practice, a liquefied natural gas (LNGP) plant is regularly located at a loading station, in particular at ports which are regularly connected to the natural gas production facility by means of a longer pipeline for the gaseous natural gas GNG. The cost-intensive liquefied natural gas LNGP systems are so extensive in their training that between the relaxation drum FD and the storage tank T can be a distance of 2 km. Liquefied natural gas plants operating on the open sea are naturally more compact.

Der Bereich der Flüssigerdgasanlagen LNGP, der Transport von flüssigem Erdgas LNG und die Speicherung vorsieht, insbesondere der Speicher-Tank T weisen einen permanenten Anfall von Verdampfungsgas BOG auf, welches Verdampfungsgas BOG aufgefangen und verdichtet wird. Der Anfall an Verdampfungsgas BOG ist stark schwankend, weil insbesondere bei der Verladung des flüssigen Erdgases LNG auf die sogenannten 2G-Tanker an dem Hafenterminal sich die Menge des Verdampfungsgases BOG gegenüber dem übrigen Zeitraum circa verdoppelt. Sowohl das Entspannungsgas EFG als auch das Verdampfungsgas BOG werden nach einer Verdichtung mittels einer Entspannungsgaseinheit EFGU bzw. einer Verdampfungsgaseinheit BOGU einer Treibstoffeinheit FGU auf einem höheren Druckniveau zugeführt. Die Entspannungsgaseinheit EFGU und die Verdampfungsgaseinheit BOGU empfangen das zuströmende Gas jeweils bei etwa atmosphärischen Druck und verdichten das Gas (EFG, BOG) auf das Druckniveau der Treibstoffeinheit FGU, welches je nach Anforderungen der Treibstoffverbraucher ein Druckniveau zwischen ca. 5 bar und 30 bar aufweist. Als Treibstoffverbraucher kommen insbesondere Dampferzeuger für Dampfturbinen ST oder Gasturbinen in Frage, die im Wesentlichen die benötigte Leistung zur Erdgasverflüssigung erzeugen.The area of liquefied natural gas LNGP, which provides transport of liquid natural gas LNG and storage, especially the Storage tank T have a permanent attack of evaporation gas BOG, which evaporation gas BOG is collected and compressed. The accumulation of evaporation gas BOG is highly fluctuating because, in particular, when loading the liquid natural gas LNG onto the so-called 2G tankers at the port terminal, the amount of the evaporation gas BOG approximately doubles over the remaining period. Both the expansion gas EFG and the evaporation gas BOG are fed to a fuel unit FGU at a higher pressure level after compression by means of a flash gas unit EFGU or an evaporation gas unit BOGU. The expansion gas unit EFGU and the evaporation gas unit BOGU receive the incoming gas at about atmospheric pressure and compress the gas (EFG, BOG) to the pressure level of the fuel unit FGU, which has a pressure level between about 5 bar and 30 bar depending on the requirements of the fuel consumer. As a fuel consumers in particular steam generators for steam turbines ST or gas turbines in question, which generate substantially the required power for natural gas liquefaction.

Die Verdichter der Entspannungsgaseinheit EFGU und die Verdampfungsgaseinheit BOGU sind hier schematisch vereinfacht von Elektromotoren angetrieben dargestellt, wobei auch ein anderer Antrieb mittels beispielsweise einer Dampfturbine oder Gasturbine zweckmäßig sein kann.The compressors of the expansion gas unit EFGU and the evaporation gas unit BOGU are here shown schematically simplified driven by electric motors, wherein also another drive by means of, for example, a steam turbine or gas turbine may be appropriate.

In der Regel wird das Entspannungsgas EFG bevor es in einen Verdichter der Entspannungsgaseinheit EFGU eintritt durch einen Entspannungsgaswärmetauscher EFGHEX geleitet, der das niedrige Temperaturniveau des Entspannungsgases EFG als zusätzliche Wärmesenke für die Gasverflüssigungsanlage GLP, insbesondere den Hauptwärmetauscher MCHE nutzt. In dem Entspannungsgaswärmetauscher EFGHEX zirkuliert ein Kältemittel, das in dem nicht im Detail dargestellten Kreislauf einer mehrstufigen Verdichtung und Entspannung unterzogen wird.In general, the flash gas EFG before it enters a compressor of the flash gas unit EFGU is passed through a flash gas heat exchanger EFGHEX, which uses the low temperature level of the flashing gas EFG as an additional heat sink for the gas liquefaction plant GLP, in particular the main heat exchanger MCHE. In the expansion gas heat exchanger EFGHEX circulates a refrigerant which is subjected in the non-illustrated circuit of a multi-stage compression and relaxation.

Die starke Schwankung des Anfalls des Verdampfungsgases erfordert eine hohe Flexibilität der Verdampfungsgaseinheit, so dass beispielsweise die Verdampfungsgaseinheit herkömmlich zwei separate Verdichter aufweist, die die Höchstmenge an anfallendem Verdampfungsgas zu jeweils 50% abdecken. Je nach Außentemperatur und Betriebsmodus (reine Speicherung oder Verladen) schwankt die Auslastung der Verdampfungsgaseinheit trotzdem so stark, dass wirkungsgradschwache Teillastbetriebe unvermeidlich sind. Hinzukommt ein hoher apparativer Aufwand, weil die Abdeckung der hohen Schwankungsbreite des Verdampfungsgases den geregelten Einsatz mehrerer Verdichter erfordert. Die erforderliche Flexibilität hinsichtlich des Verdampfungsgases führt zusätzlich zu einem beachtlichen Aufwand der Regelung.The large fluctuation of the seizure of the evaporating gas requires a high flexibility of the evaporating gas unit, so that, for example, the evaporating gas unit conventionally has two separate compressors each covering the maximum amount of evaporating gas at 50%. Depending on the outside temperature and operating mode (pure storage or loading), the utilization of the evaporation gas unit nevertheless fluctuates so much that low-efficiency partial load operations are unavoidable. In addition, a high expenditure on equipment, because the coverage of the high fluctuation of the evaporation gas requires the controlled use of multiple compressors. The required flexibility with respect to the evaporation gas also leads to a considerable effort of the control.

Ausgehend von den erwähnten Nachteilen konventioneller Flüssigerdgasanlagen hat es sich die Erfindung zur Aufgabe gemacht, den Umgang mit dem Verdampfungsgas effizienter zu gestalten.Based on the mentioned disadvantages of conventional LNG systems, the invention has made it its task to make the handling of the evaporation gas more efficient.

Zur Lösung wird erfindungsgemäß eine Flüssigerdgasanlage der eingangs genannten Art mittels der zusätzlichen kennzeichnenden Merkmalen des Anspruchs 1 weitergebildet. Im Geiste der gleichen Erfindung wird eine Weiterbildung des in der Präambel des Anspruchs 6 definierten Verfahrens durch die zusätzlichen kennzeichnenden Merkmale des Anspruchs 6 vorgeschlagen. Die jeweils rückbezogenen Ansprüche beinhalten vorteilhafte Weiterbildungen der Erfindung, wobei unabhängig von den expliziten Rückbezügen eine beliebige Kombination der Unteransprüche mit dem jeweiligen Hauptanspruch von der Erfindung umfasst ist, soweit diese sinnvoll ist.For the solution according to the invention a liquefied natural gas plant of the type mentioned by means of the additional characterizing features of claim 1 further developed. In the spirit of the same invention, a development of the defined in the preamble of claim 6 method by the additional characterizing features of claim 6 is proposed. The respective dependent claims contain advantageous developments of the invention, wherein, regardless of the explicit back references, any combination of the subclaims with the respective main claim is encompassed by the invention, as far as it makes sense.

Erfindungsgemäß werden das Entspannungsgas und das Verdampfungsgas vor einem Eintritt in eine Fördervorrichtung zur Förderung in die Treibstoffeinheit zunächst in einem gemeinsamen Sammler zusammengeführt und dann mittels einer Sammelgasfördereinheit auf den Speicherdruck der Treibstoffeinheit verdichtet. Obwohl regelmäßig das Verdampfungsgas über eine verhältnismäßig weite Strecke zu diesem Zweck dem Sammler zugeführt werden muss, ergeben sich aus der Erfindung bemerkenswerte synergetische Vorteile. Sowohl das Verdampfungsgas als auch das Entspannungsgas weisen hinsichtlich ihrer chemischen Zusammensetzung eine gute Eignung als gasförmiger Treibstoff zum Betreiben von Dampfkesseln oder von Gasturbinen auf. Während das Verdampfungsgases im Vergleich zu dem Entspannungsgas mit einer nur verhältnismäßig geringen Menge anfällt, ist das Entspannungsgas während des im Wesentlichen ununterbrochenen Betriebes der Gasverflüssigungsanlage der Flüssigerdgasanlage von einem nahezu konstanten Mengenstrom. Die gewaltige Schwankung des Verdampfungsgases auszugleichen erfordert herkömmlich einen sehr flexiblen und damit sehr aufwendigen Verdichtungsapparat. Die erfindungsgemäße Zusammenführung des Verdampfungsgases und des Entspannungsgases ändert jedoch die relative Schwankungsbreite des Anfalls von dem sich aus Verdampfungsgas und Entspannungsgas zusammengesetzten Sammelgas gegenüber derjenigen des Entspannungsgases in sehr viel geringerem Ausmaß, weil die Menge des in etwa konstanten Entspannungsgasstromes dominiert. Dementsprechend ist ein Verdichter, wie er herkömmlich für Entspannungsgas eingesetzt wird, im Wesentlichen ausreichend für die Menge an Sammelgas und vermag auch die nur leicht erhöhten relativen Schwankungen problemlos zu kompensieren. Auch eine durch die Addition des Verdampfungsgases erhöhte erforderliche Kapazität des Sammelgasverdichters gegenüber dem Entspannungsgasverdichter beeinflusst die energetische Bilanz des Erfindungsgemäßen Systems nicht negativ. Neben der Einsparung der Investitionskosten für die Verdampfungsgaseinheit ergibt sich eine zusätzliche Synergie aus dem verbesserten Wirkungsgrad des Verdichters der Sammelgaseinheit im Vergleich zu dem kombinierten Wirkungsgrad herkömmlicher Verdampfungseinheiten und Entspannungsgaseinheiten.According to the invention, the expansion gas and the evaporation gas are first brought together prior to entry into a conveying device for delivery into the fuel unit in a common collector and then compressed by means of a collecting gas delivery unit to the storage pressure of the fuel unit. Although the evaporating gas must be regularly supplied to the collector over a relatively long distance for this purpose, the invention provides remarkable synergistic advantages. Both the vaporization gas and the expansion gas have a good suitability in terms of their chemical composition as a gaseous fuel for operating steam boilers or gas turbines. While the vaporization gas is relatively small in comparison to the flash gas, during the substantially continuous operation of the gas liquefaction plant of the liquefied natural gas plant, the flash gas is of a nearly constant flow rate. To compensate for the enormous fluctuation of the evaporation gas conventionally requires a very flexible and thus very complex compression apparatus. However, the merging of the vaporization gas and the flash gas of the invention changes the relative fluctuation range of the seizure of the header gas composed of evaporative gas and flash gas to that of the flash gas to a much lesser extent because the amount of the approximately constant flash gas flow dominates. Accordingly, a compressor conventionally used for flash gas is substantially sufficient for the amount of scavenging gas and also capable of only slightly increasing compensate for relative fluctuations without any problems. Also, an increased by the addition of the evaporation gas required capacity of the collecting gas compressor relative to the expansion gas compressor does not affect the energy balance of the inventive system is not negative. In addition to saving the investment costs for the evaporation gas unit, there is an additional synergy from the improved compressor efficiency of the collection gas unit compared to the combined efficiency of conventional evaporation units and flash gas units.

Dieses erfindungsgemäße Konzept ist besonders vorteilhaft bei kompakten Offshore-Flüssigerdgasanlagen, bei denen der räumliche Abstand zwischen dem Speichertank und der Entspannungstrommel geringer ist als bei üblichen Onshore-Anlagen.This inventive concept is particularly advantageous in compact offshore LNG plants, where the spatial distance between the storage tank and the expansion drum is lower than in conventional onshore facilities.

Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das Entspannungsgas mittels einer Entspannungsgasleitung, die sich von der Entspannungstrommel bis zum Sammler erstreckt, gefördert wird und die Entspannungsgasleitung gegenüber der Gasverflüssigungsanlage, insbesondere gegenüber dem Hauptwärmetauscher, isoliert ist (Anspruch 2 bzw. Anspruch 7). Eine derartige Isolierung schließt einen gezielten Wärmetausch zwischen der Gasverflüssigungsanlage und der Entspannungsgasleitung aus. Mit anderen Worten: es ist kein Wärmetauscher vorgesehen, der Wärme tauscht zwischen dem Strom des Entspannungsgases und der Gasverflüssigungsanlage und dem Hauptwärmetauscher. Herkömmliche Anlagenplanung geht davon aus, dass das kalte Entspannungsgas eine zu interessante Wärmesenke darstellt, als dass das Entspannungsgas einfach mittels einer Entspannungsgaseinheit oder einer Sammelgaseinheit in eine Treibstoffeinheit gefördert werden könnte ohne vorherigen Wärmetausch mit einem Kühlkreislauf, der bevorzugt mit dem Hauptwärmetauscher in Verbindung steht, so dass das Entspannungsgas als zusätzliche Wärmesenke genutzt werden kann. Die Weiterbildung der Erfindung kommt jedoch zu der überraschenden Erkenntnis, dass die Temperaturerhöhung des Entspannungsgases vor der Förderung auf dem Druck der Treibstoffeinheit einerseits und der Betrieb eines Wärmetauschers zur Nutzung des Entspannungsgases als Wärmesenke andererseits den Gesamtwirkungsgrad so stark beeinflussen, dass ein Verzicht auf einen derartigen Wärmeaustausch zwischen Entspannungsgas und der Gasverflüssigungsanlage im Gesamtwirkungsgrad zu dem im Wesentlichen gleichen Ergebnis führt. Die mit dieser Weiterbildung erreichte Absenkung des Temperaturniveaus am Eintritt in die Entspannungsgaseinheit bzw. Sammelgaseinheit hat einen wesentlichen Einfluss auf die Größe der dort erforderlichen Verdichtereinheit und deren Energiebedarf. Weiterhin vereinfacht sich der Anlagenaufbau durch die Fortlassung eines Wärmetauschers zwischen dem Strom des Entspannungsgases und der Gasverflüssigungsanlage derart, dass zusätzliche Verdichter zur Erhöhung der Effizienz des Wärmetauschers fortfallen, die einerseits verhältnismäßig klein und damit wirkungsgradschwach ausgebildet werden mussen und andererseits in Folge von kumulativen Regelungsschwankungen häufig im Teillastbetrieb zu betreiben sind. Zusätzlich entfallen Druckverluste, da weniger Bauteile insbesondere durch das Entspannungsgas durchströmt werden müssen und die Verfügbarkeit der Gesamtanlage erhöht sich.An advantageous development of the invention provides that the flash gas is conveyed by means of a flash gas line extending from the flash drum to the collector, and the flue gas line to the gas liquefaction plant, in particular with respect to the main heat exchanger, isolated (claim 2 or claim 7). Such insulation excludes a targeted heat exchange between the gas liquefaction plant and the expansion gas line. In other words, no heat exchanger is provided which exchanges heat between the flow of the expansion gas and the gas liquefaction plant and the main heat exchanger. Conventional plant planning assumes that the cold flash gas is too interesting a heat sink, as that the flash gas could be easily conveyed by means of a flash gas unit or a collecting gas unit in a fuel unit without prior heat exchange with a cooling circuit, which is preferably in communication with the main heat exchanger, so that the expansion gas can be used as an additional heat sink. The development of the invention, however, comes to the surprising finding that the temperature increase of the flash gas prior to promotion on the pressure of the fuel unit on the one hand and the operation of a heat exchanger to use the flash gas as a heat sink on the other hand affect the overall efficiency so much that a waiver of such heat exchange between flash gas and the gas liquefaction plant in overall efficiency leads to the substantially same result. The lowering of the temperature level achieved with this development at the entrance to the expansion gas unit or collecting gas unit has a significant influence on the size of the compressor unit required there and its energy requirement. Furthermore, the system structure is simplified by the omission of a heat exchanger between the flow of flash gas and the gas liquefaction plant such that additional compressors to increase the efficiency of the heat exchanger omitted, on the one hand must be made relatively small and thus low-efficiency and on the other hand, as a result of cumulative control fluctuations often in Part-load operation are to be operated. In addition, there is no pressure loss because fewer components have to be flowed through, in particular by the expansion gas, and the availability of the entire system increases.

Eine weitere vorteilhafte Weiterbildung sieht vor, dass ein Wärmetauscher der Gasverflüssigungsanlage, insbesondere zwischen dem Hauptwärmetauscher und dem Entspannungsgasstrom bevorzugt vor einer Zusammenführung des Entspannungsgases mit dem Verdampfungsgas in dem Sammler angeordnet ist (Anspruch 3, 4 bzw. Anspruch 8, 9). Auf diese Weise wird das niedrige Temperaturniveau des Entspannungsgases besonders effektiv ausgenutzt.A further advantageous embodiment provides that a heat exchanger of the gas liquefaction plant, in particular between the main heat exchanger and the flash gas stream is preferably arranged before merging the flash gas with the evaporation gas in the collector (claim 3, 4 or claim 8, 9). In this way, the low temperature level of the flash gas is used particularly effectively.

Einen besonders guten Wirkungsgrad erzielt die Sammelgaseinheit bei der Verdichtung, wenn dort ein nur eingehäusiger Verdichter zur Verdichtung des Wärmegases vorgesehen ist (Anspruch 5).A particularly good efficiency achieved by the collecting gas unit in the compression, if there is provided only one compressor compressor for compression of the heat gas (claim 5).

Im Folgenden ist die Erfindung anhand eines speziellen Ausführungsbeispiels unter Bezugnahme auf Zeichnungen zum Zwecke der Verdeutlichung näher beschrieben. Es zeigen:In the following the invention with reference to a specific embodiment with reference to drawings for the purpose of clarification is described in more detail. Show it:

1 eine schematische Darstellung einer herkömmlichen Flüssigerdgasanlage anhand eines Systemschaltplans, 1 a schematic representation of a conventional LNG plant based on a system diagram,

2, 3 jeweils eine schematische Darstellung eines erfindungsgemäßen Ausführungsbeispiels anhand eines Systemschaltplans. 2 . 3 in each case a schematic representation of an exemplary embodiment according to the invention on the basis of a system circuit diagram.

Die 1 bis 3 zeigen jeweils eine Flüssigerdgasanlage anhand eines schematischen Systemschaltplans. Die Flüssigerdgasanlage LNGP umfasst eine Gasverflüssigungsanlage GLP, die schon in der Einleitung beschrieben ist und für die drei gezeigten Ausbildungsformen identisch ist.The 1 to 3 each show a LNG system based on a schematic system diagram. The liquefied natural gas LNGP plant comprises a gas liquefaction plant GLP, which is already described in the introduction and is identical for the three forms of training shown.

Die herkömmliche Flüssigerdgasanlage LNGP gemäß der 1 weist einen Speichertank T für das flüssige Erdgas LNG auf, der mit erheblicher Schwankung in Abhängigkeit von dem Betriebsmodus Verdampfungsgas BOG absondert. Das aufgefangene Verdampfungsgas BOG wird mittels der Verdampfungsgaseinheit BOGU in eine Treibstoffeinheit FGU als Treibstoff FG gefördert. Die Verdampfungsgaseinheit BOGU umfasst zwei 50% Verdampfungsgasverdichter, die die Schwankungsbreite durch Teillastbetrieb und Ein- und Ausschalten abdecken.The conventional liquefied natural gas plant LNGP according to 1 has a storage tank T for the liquid natural gas LNG, which segregates with considerable variation depending on the operating mode evaporation gas BOG. The collected evaporation gas BOG is conveyed by means of the evaporation gas unit BOGU into a fuel unit FGU as fuel FG. The BOGU Evaporative Gas Unit includes two 50% Evaporative Gas Compressors that cover the range of variation by partial load operation and on and off.

Das anfallende Entspannungsgas EFG wird mittels der Entspannungsgaseinheit EFGU in die Treibstoffeinheit FGU gefördert.The resulting flash gas EFG is conveyed by means of the expansion gas unit EFGU into the fuel unit FGU.

Die erfindungsgemäße Ausbildung der Flüssigerdgasanlage gemäß der 2 und 3 sieht vor, dass das Verdampfungsgas BOG und das Entspannungsgas EFG in einem gemeinsamen Sammler COL als Sammelgas SG zusammengeführt werden und einer Sammelgasfördereinheit CGU mit einer Sammelgasverdichtereinheit COCGU der Treibstoffeinheit FGU zugeführt werden.The inventive design of the liquefied natural gas plant according to the 2 and 3 provides that the evaporation gas BOG and the expansion gas EFG are combined in a common collector COL as collecting gas SG and fed to a collecting gas delivery unit CGU with a collecting gas compressor unit COCGU of the fuel unit FGU.

Bevor das Entspannungsgas EFG den gemeinsamen Sammler Col erreicht, passiert es gemäß 2 den Entspannungsgaswärmetauscher EFGHEX und tauscht dort mittels des Kühlkreislaufs RL derart Wärmeenergie aus, dass der Hauptwärmetauscher MCHE gekühlt wird und das Entspannungsgas EFG erwärmt.Before the flash gas EFG reaches the common collector Col, it passes according to 2 there the expansion gas heat exchanger EFGHEX and replaced there by means of the cooling circuit RL such heat energy from that of the main heat exchanger MCHE is cooled and the flash gas heats EFG.

3 zeigt eine vorteilhafte Weiterbildung der Erfindung, bei der die sich von der Entspannungstrommel FD zu dem Sammler COL erstreckende Entspannungsgasleitung EFGL gegenüber der Gasverflüssigungsanlage GLP, insbesondere gegenüber dem Hauptwärmetauscher MCHE, isoliert ist. Diese Isolierung bedeutet, dass keine gezielte Wärmeübertragung von der Gasverflüssigungsanlage GLP auf das Entspannungsgas EFG erfolgt. 3 shows an advantageous development of the invention, in which the expansion gas extending from the expansion drum FD to the collector COL exhaust gas line EFGL with respect to the gas liquefaction plant GLP, in particular with respect to the main heat exchanger MCHE, is isolated. This isolation means that there is no targeted heat transfer from the gas liquefaction plant GLP to the flash gas EFG.

Claims (9)

Flüssigerdgasanlage (LNGP) – umfassend eine Gasverflüssigungsanlage (GLP) mit einer Entspannungstrommel (FD) zur Entspannung von gasförmigem Erdgas (GNG) von einem höheren Druckniveau zu flüssigem Erdgas (LNG) auf einem niedrigeren Druckniveau, in welcher Entspannungstrommel (FD) Entspannungsgas (EFG) anfällt bestehend aus gasförmig verbliebenen Anteilen des entspannten gasförmigen Erdgases (GNG), – umfassend eine Treibstoffeinheit (FGU) zur Speicherung von Treibstoff (FG), – umfassend eine Entspannungsgaseinheit (EFGU), welche Entspannungsgas (EFG) aus der Entspannungstrommel (FD) in die Treibstoffeinheit (FGU) fördert, – umfassend einen Speichertank (T) zur Speicherung des flüssigen Erdgases (LNG), – wobei die Flüssigerdgasanlage derart ausgebildet ist, dass Verdampfungsgas (BOG) anfällt, dadurch gekennzeichnet, dass die Entspannungsgaseinheit (EFGU) derart ausgebildet ist, dass ein gemeinsamer Sammler (COL) vorgesehen ist, dem das Verdampfungsgas (BOG) und das Entspannungsgas (EFG) als in dem Sammler (COL) sich vereinendes Sammelgas (CG) zugeleitet werden, – eine Sammelgasverdichtereinheit (CGU) vorgesehen ist, die das Sammelgas (CG) aus dem Sammler (COL) der Treibstoffeinheit (FGU) zufördert.Liquefied Natural Gas (LNGP) plant comprising a gas liquefaction plant (GLP) with a flash drum (FD) for expanding gaseous natural gas (GNG) from a higher pressure level to liquefied natural gas (LNG) at a lower pressure level, in which expansion drum (FD) flash gas (EFG) obtained from gaseous residual portions of the expanded natural gas (GNG), comprising - a fuel unit (FGU) for storing fuel (FG), - comprising a flash gas unit (EFGU), the expansion gas (EFG) from the expansion drum (FD) in the Fuel unit (FGU), comprising - a storage tank (T) for storing the liquid natural gas (LNG), - wherein the LNG plant is formed such that evaporation gas (BOG) is obtained, characterized in that the expansion gas unit (EFGU) is designed such a common collector (COL) is provided to which the evaporation gas (BOG) and the Flash gas (EFG) is supplied as collecting gas (CG) combining in the collector (COL), - a collecting gas compressor unit (CGU) is provided, which feeds the collecting gas (CG) from the collector (COL) of the fuel unit (FGU). Flüssigerdgasanlage (LNGP) nach Anspruch 1, wobei die Flüssigerdgasanlage (LNGP) eine Leitung (EFGL) umfasst, die sich von der Entspannungstrommel (FD) bis zum Sammler (COL) erstreckt, welche Entspannungseinleitung (EFGL) gegenüber der Gasverflüssigungsanlage (GLP) isoliert ist und das Entspannungsgas (EFG) mittels der Leitung (EFGL) zum Sammler (COL) gefördert wird.Liquefied natural gas (LNGP) plant according to claim 1, wherein the LNGP comprises a line (EFGL) extending from the flash drum (FD) to the collector (COL), which relaxation discharge (EFGL) is isolated from the gas liquefaction plant (GLP) and the flash gas (EFG) is delivered to the collector (COL) via the duct (EFGL). Flüssigerdgasanlage (LNGP) nach Anspruch 1, wobei die Flüssigerdgasanlage (LNGP) einen Entspannungsgaswärmetauscher (EFGHEX) aufweist der derart ausgebildet und angeordnet ist, dass er die Gasverflüssigungsanlage (GLP) kühlt und das Entspannungsgas (EFG) oder das Sammelgas (CG) wärmt.A liquefied natural gas (LNGP) plant according to claim 1, wherein the LNGP comprises a flash gas heat exchanger (EFGHEX) configured and arranged to cool the gas liquefaction plant (GLP) and heat the flash gas (EFG) or the collecting gas (CG). Flüssigerdgasanlage (LNGP) nach Anspruch 3, wobei der Entspannungsgaswärmetaucher (EFGHEX) in der Entspannungsgasleitung (EFGL) zwischen der Entspannungstrommel (FD) und dem Sammler (COL) angeordnet ist.A liquefied natural gas (LNGP) plant according to claim 3, wherein the flash gas heat exchanger (EFGHEX) is disposed in the flash gas line (EFGL) between the flash drum (FD) and the collector (COL). Flüssigerdgasanlage (LNGP) nach Anspruch 2, wobei diese Sammelgasfördereinheit (CGU) eine Verdichtereinheit (COCGU) aufweist, die nur einen eingehäusigen Sammelgasverdichter (SCCO) zur Verdichtung des Sammelgases (CG) aufweist.Liquefied Natural Gas (LNGP) plant according to claim 2, wherein said collecting gas delivery unit (CGU) comprises a compressor unit (COCGU) having only one common intake gas compressor (SCCO) for compressing the collecting gas (CG). Verfahren zum Betrieb einer Flüssigerdgasanlage (LNGP) mit den folgenden Schritten: – Betreiben einer Gasverflüssigungsanlage (GLP) mit einer Entspannungstrommel (FD) zur Entspannung von gasförmigen Erdgas (GNG) von einem höheren Druckniveau zu flüssigem Erdgas (LNG) auf einem niedrigeren Druckniveau unter Entstehung von Entspannungsgas (EFG) umfassend gasförmige Anteilen des entspannten gasförmigen Erdgases (GNG), – Speichern von Treibstoff (FG) mittels einer Treibstoffeinheit (FGU), – Fördern von des Entspannungsgases (EFG) aus der Entspannungstrommel (FD) in die Treibstoffeinheit (FGU), – Speichern des flüssigen Erdgases (LNG) in einen Speichertank (T) bei anfallendem Verdampfungsgas (BOG), – Fördern des Verdampfungsgases (BOG) in die Treibstoffeinheit (FGU), gekennzeichnet durch – Vereinigen des Verdampfungsgases (BOG) und des Entspannungsgases (EFG) zu einem Sammelgas (CG) in einem gemeinsamen Sammler (COL) – Fördern des Sammelgases (CG) aus dem Sammler (COL) zu der Treibstoffeinheit (FGU).Method of operating a liquefied natural gas (LNGP) plant comprising the following steps: - Operating a gas liquefaction plant (GLP) with a relaxation drum (FD) for the expansion of gaseous natural gas (GNG) from a higher pressure level to liquid natural gas (LNG) at a lower pressure level with the formation of flash gas (EFG) comprising gaseous portions of the expanded gaseous natural gas ( GNG) Storing fuel (FG) by means of a fuel unit (FGU), Conveying the flash gas (EFG) from the flash drum (FD) to the fuel unit (FGU), - storing the liquid natural gas (LNG) in a storage tank (T) in the event of evaporation gas (BOG), Conveying the vaporization gas (BOG) into the fuel unit (FGU), marked by - combining the evaporation gas (BOG) and the expansion gas (EFG) into a collecting gas (CG) in a common collector (COL) - Carrying the collection gas (CG) from the collector (COL) to the fuel unit (FGU). Verfahren nach Anspruch 6, wobei eine Zuleitung des Entspannungsgases (EFG) von der Entspannungstrommel (FD) bis zum Sammler (COL) mittels einer Leitung (EFGL) erfolgt die gegenüber der Gasverflüssigungsanlage (GLP) isoliert ist. A method according to claim 6, wherein a supply line of the flash gas (EFG) from the flash drum (FD) to the collector (COL) by means of a line (EFGL) which is isolated from the gas liquefaction plant (GLP). Verfahren nach Anspruch 6, wobei ein Wärmetausch zwischen der Gasverflüssigungsanlage (GLP) und dem Entspannungsgas (EFG) oder Sammelgas (CG) mittels eines Entspannungsgaswärmetauschers (EFGHEX) erfolgt, bevor das Entspannungsgas (EFG) oder das Sammelgas (CG) der Sammelgasfördereinheit (CGU) zugeführt wird.A method according to claim 6, wherein a heat exchange between the gas liquefaction plant (GLP) and the expansion gas (EFG) or collecting gas (CG) by means of a flash gas heat exchanger (EFGHEX) before the flash gas (EFG) or the collecting gas (CG) of the collecting gas delivery unit (CGU) is supplied. Verfahren nach Anspruch 8, wobei der Wärmetausch zwischen der Gasverflüssigungsanlage (GLP) und dem Entspannungsgas (EFG) mittels des Entspannungsgaswärmetauschers (EFGHEX) erfolgt, der zwischen der Entspannungstrommel (FD) und dem Sammler (COL) angeordnet ist.A method according to claim 8, wherein the heat exchange between the gas liquefaction plant (GLP) and the expansion gas (EFG) is effected by means of the expansion gas heat exchanger (EFGHEX) disposed between the flash drum (FD) and the collector (COL).
DE102010062050A 2010-11-26 2010-11-26 Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level Ceased DE102010062050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102010062050A DE102010062050A1 (en) 2010-11-26 2010-11-26 Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010062050A DE102010062050A1 (en) 2010-11-26 2010-11-26 Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level

Publications (1)

Publication Number Publication Date
DE102010062050A1 true DE102010062050A1 (en) 2012-05-31

Family

ID=46049816

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010062050A Ceased DE102010062050A1 (en) 2010-11-26 2010-11-26 Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level

Country Status (1)

Country Link
DE (1) DE102010062050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009341A1 (en) 2015-07-13 2017-01-19 Technip France Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA655278A (en) * 1963-01-01 J. French Michael Processes for the liquefaction of gases
GB2147984A (en) * 1983-10-11 1985-05-22 Exxon Production Research Co A process for the liquefaction of natural gas
US6658892B2 (en) * 2002-01-30 2003-12-09 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
US20090301131A1 (en) * 2006-05-19 2009-12-10 Shell Oil Company Method and apparatus for treating a hydrocarbon stream
US20100126186A1 (en) * 2006-08-29 2010-05-27 Shell Internationale Research Maatschappij B.V. Method and apparatus for generating a gaseous hydrocarbon stream from a liquefied hydrocarbon stream
GB2455658B (en) * 2006-09-22 2010-07-21 Shell Int Research Method and apparatus for producing a cooled hydrocarbon stream

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA655278A (en) * 1963-01-01 J. French Michael Processes for the liquefaction of gases
GB2147984A (en) * 1983-10-11 1985-05-22 Exxon Production Research Co A process for the liquefaction of natural gas
US6658892B2 (en) * 2002-01-30 2003-12-09 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
US20090301131A1 (en) * 2006-05-19 2009-12-10 Shell Oil Company Method and apparatus for treating a hydrocarbon stream
US20100126186A1 (en) * 2006-08-29 2010-05-27 Shell Internationale Research Maatschappij B.V. Method and apparatus for generating a gaseous hydrocarbon stream from a liquefied hydrocarbon stream
GB2455658B (en) * 2006-09-22 2010-07-21 Shell Int Research Method and apparatus for producing a cooled hydrocarbon stream

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009341A1 (en) 2015-07-13 2017-01-19 Technip France Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant
US10995910B2 (en) 2015-07-13 2021-05-04 Technip France Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant

Similar Documents

Publication Publication Date Title
EP0563553B1 (en) Air cooling of turbines
EP2748434B1 (en) Assembly for storing thermal energy
DE102009006959B4 (en) Energy recovery system
DE102004039164A1 (en) Method for generating energy in a gas turbine comprehensive power generation plant and power generation plant for performing the method
DE2823395A1 (en) METHOD AND DEVICE FOR DEFROSTING A COOLING SYSTEM
DE3202279A1 (en) GAS TRANSFER STATION
DE1551617A1 (en) Natural gas liquefaction with controlled BTU content
DE2602081A1 (en) PROCEDURE FOR REGULATING THE POWER IN A THERMAL CLOSED PROCESS, SYSTEM FOR EXECUTING AND APPLYING THE PROCESS
EP0874188B2 (en) Process for the treatment of cryogenic liquefied gas
EP2867599A2 (en) Process and apparatus for generating electric energy
DE102011014678A1 (en) Process and apparatus for treating a carbon dioxide-containing gas stream
EP2622289A1 (en) Heat pump
WO2018184612A1 (en) Method and system of facilities for energy conversion using carbon dioxide
EP1892457B1 (en) Method and device for storing fuel gas, in particular natural gas
WO2006136269A1 (en) Method for liquefying a hydrocarbon-rich flow
DE2434238A1 (en) System to store and retrieve stored energy - has gas type auxiliary energy storage medium which is liquefied when energy requirements are low
DE102010062044A1 (en) Liquefied natural gas (LNG) plant has relaxation gas line that is extended from relaxation drum to relaxation gas unit and is isolated from gas liquefaction plant to conduct relaxation gas to relaxation gas unit
DE4223160C2 (en) Process and plant for gas compression
DE102010062050A1 (en) Liquefied natural gas plant has gas liquefaction plant with flash drum for decompression of gaseous natural gas by higher pressurization level to liquefied natural gas on lower pressurization level
DE60309603T2 (en) POWER SYSTEM
EP0489270A1 (en) Method for pressure reduction of a gas in a primary net
DE102012018712A1 (en) Air conveying device for supplying air to fuel cell system in vehicle, has compressor propelled with electric machine and intercooler, where electric machine is cooled by cooling medium in cooling circuit at intercooler
DE102006021620A1 (en) Method for liquefying hydrocarbon-rich flow, particularly natural gas flow, involves subjecting hydrocarbon-rich flow to absorptive water separation, before its liquefaction, where cooling of liquefied hydrocarbon-rich flow is up streamed
WO2013185783A1 (en) Energy transformation system
WO2018029371A1 (en) Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part

Legal Events

Date Code Title Description
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20120627