DE102010060280B4 - Schaufelblatthitzeschild - Google Patents

Schaufelblatthitzeschild Download PDF

Info

Publication number
DE102010060280B4
DE102010060280B4 DE102010060280.9A DE102010060280A DE102010060280B4 DE 102010060280 B4 DE102010060280 B4 DE 102010060280B4 DE 102010060280 A DE102010060280 A DE 102010060280A DE 102010060280 B4 DE102010060280 B4 DE 102010060280B4
Authority
DE
Germany
Prior art keywords
heat shield
blade
layer
sheet
shield device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102010060280.9A
Other languages
English (en)
Other versions
DE102010060280A1 (de
Inventor
Victor John Morgan
David Richard Johns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of DE102010060280A1 publication Critical patent/DE102010060280A1/de
Application granted granted Critical
Publication of DE102010060280B4 publication Critical patent/DE102010060280B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Hitzeschildeinrichtung (100) für ein Blatt (34), wobei die Hitzeschildeinrichtung (100) aufweist:Ummantelungswände (105), die eingerichtet sind, um an einem Gehäuse einer Turbine (20) positioniert zu werden und von diesem entfernbar zu sein;eine Wand (110), die zwischen den Ummantelungswänden (105) angeordnet und mit den Ummantelungswänden (105) integral ausgebildet ist, wobei die Wand (110) enthält:eine Basisschicht (102), die benachbart zu dem Blatt (34) angeordnet ist; undeine thermische Schicht (103), die benachbart zu dem Blatt (34) angeordnet ist, wobei die thermische Schicht (103) zu einem Umriss des Blatts (34) passt;wobei die Hitzeschildeinrichtung (100) von dem Blatt (34) verschieden und eingerichtet ist, um an dem Blatt (34) austauschbar montiert zu werden; undwobei die Hitzeschildeinrichtung (100) gestaltet ist, um eine Anströmkante, einen überwiegenden Teil der Druckseite und einen Teil der Saugseite des Blattes (34) zu bedecken.

Description

  • HINTERGRUND ZU DER ERFINDUNG
  • Die hierin beschriebene Erfindung betrifft Turbinenblätter und spezieller Schaufelblatthitzeschilde.
  • Blätter (d.h. Leitschaufeln und Laufschaufeln) sind gewöhnlich in Heißgaspfaden von Gasturbinen angeordnet. Eine Laufschaufel, die auch als „Schaufel“ oder „Rotor“ bezeichnet sein kann, kann ein Blatt aufweisen, das an einem Laufrad, einer Scheibe oder einem Rotor befestigt ist, um eine Welle drehend anzutreiben. Eine Leitschaufel, die als ein „Leitapparat“ oder „Stator“ bezeichnet sein kann, kann ein Blatt aufweisen, das in einer Ummantelung eingebaut ist, die die Welle umgibt oder bedeckt, um die die Schaufel sich dreht. Typischerweise ist an einer speziellen Stelle entlang der Welle eine Reihe von Laufschaufeln um das Laufrad befestigt. Stromaufwärts (in Bezug auf eine allgemeine Strömungsrichtung) der Reihe von Laufschaufeln kann eine Reihe von Leitschaufeln angebracht sein, um z.B. den Wirkungsgrad eines Gasstroms zu verbessern. Leitschaufeln, auf die Laufschaufeln folgen, werden als eine Stufe der Gasturbine bezeichnet. Stufen in einem Verdichter verdichten Gas, das beispielsweise mit Brennstoff vermischt und gezündet wird, um einem Einlass der Gasturbine zugeführt zu werden. Die Gasturbine kann Stufen aufweisen, um dem gezündeten Gas und Brennstoff Energie zu entziehen. Das Hinzufügen des Brennstoffs zu dem verdichteten Gas kann einen Energiebeitrag in die Verbrennungsreaktion einbringen. Das Produkt dieser Verbrennungsreaktion strömt anschließend durch die Gasturbine. Um den durch die Verbrennung erzeugten hohen Temperaturen standzuhalten, müssen die Blätter in der Turbine gekühlt werden. Eine unzureichende Kühlung führt zu einer übermäßigen Belastung des Blatts, und mit der Zeit führt diese mechanische Spannung zu Materialermüdung und Ausfall des Blatts oder trägt dazu bei. Um einen durch Betriebstemperaturen verursachten Ausfall von Turbinenschaufeln in Gasturbinen zu verhindern, wurde bisher in Schaufelkonstruktionen Filmkühlung verwendet. Bei Filmkühlung wird Kühlluft aus der Verdichterstufe abgezapft, zu den inneren Kammern der Turbinenschaufeln geleitet und durch kleine Bohrungen in den Schaufelwänden ausgestoßen. Diese Luft erzeugt eine dünne, kühle, isolierende Schicht entlang der Außenfläche der Turbinenschaufel. Filmkühlung ist möglicherweise ineffizient, da sie dazu neigt, ungleichmäßig zu kühlen, weil die Filmtemperatur in der Nähe der Löcher wesentlich kühler ist als in größerer Entfernung von den Löchern. Dementsprechend besteht ein Bedarf nach einer verbesserten Kühlung des Blatts.
  • US 2 994 124 A beschreibt eine Hitzeschildeinrichtung für ein Turbinenschaufelblatt, das aus Cermet hergestellt ist, mit einer Nickelbeschichtung, die um das Schaufelblatt herum aufgebracht ist, und einer äußeren wärme- und oxidationsbeständigen Bahn, die über ein gewelltes Zwischenblech jeweils miteinander fest verbunden sind.
  • US 2 914 300 A beschreibt Leitschaufelträger für Turbinen zur Halterung von Enden von Leitschaufeln an einem äußeren und einem inneren Gehäuse einer Turbomaschine. Die Leitschaufelträger umfassen ein eckiges Flanschelement mit einem Flanschschenkel zur Montage an dem äußeren oder inneren Turbinengehäuse und einem Tragabschnitt, der ein gewelltes Tragelement umgibt, das ein Leitschaufelende umgibt und aus einem dünnen federnden metallischen Material gebildet ist.
  • DE 33 24 755 A1 beschreibt eine keramische Schaufelanordnung mit einem Basiselement, einem keramischen Schaufelelement, das auf das Basiselement aufgesteckt ist und dieses allseits umschließt, und einem nachgiebigen gewellten Trennelement, das zwischen dem Basiselement und dem keramischen Schaufelelement eingefügt ist und zur Aufnahme von mechanischen Spannungen in dem keramischen Schaufelelement während der aerodynamischen und thermischen Belastungen des Schaufelelementes dient.
  • US 4 904 542 A beschreibt eine erosions- und korrosionsbeständige Beschichtung für Turbinenschaufeln, die aus mehreren abwechselnden Lagen von metallischen und keramischen Materialien gebildet ist.
  • US 4 786 234 A beschreibt ein mehrstückiges Turbinenschaufelblatt mit einem zentralen Pfosten und mehreren an dem zentralen Pfosten angebrachten Seitenteilen, die Seiten des zentralen Pfostens bedecken, wobei zwischen dem zentralen Pfosten und den Seitenteilen Zwischenräume vorhanden sind, die eine relative Wärmeausdehnung zwischen den Teilen im Betrieb ermöglichen.
  • US 6 261 422 B1 , DE 699 03 595 T2 und US 6 514 046 B1 beschreiben verschiedene mehrlagige wärmedämmende Beschichtungen und Beschichtungssysteme für Laufschaufeln.
  • KURZBESCHREIBUNG DER ERFINDUNG
  • Gemäß der Erfindung ist eine Hitzeschildeinrichtung für ein Blatt geschaffen. Die Hitzeschildeinrichtung weist Ummantelungswände, die eingerichtet sind, um an einem Gehäuse einer Turbomaschine positioniert zu werden und von diesem entfernbar zu sein, und eine Wand auf, die zwischen den Ummantelungswänden angeordnet und mit den Ummantelungswänden integral ausgebildet ist. Die Wand enthält eine zu dem Blatt benachbarte Basisschicht und eine thermische Schicht, wobei die thermische Schicht zu einem Umriss des Blatts passt. Die Hitzeschildeinrichtung ist von dem Blatt verschieden und eingerichtet, um an dem Blatt austauschbar montiert zu werden. Die Hitzeschildeinrichtung ist gestaltet, um eine Anströmkante, einen überwiegenden Teil der Druckseite und einen Teil der Saugseite des Blattes zu bedecken.
  • Diese und andere Vorteile und Merkmale werden anhand der nachfolgenden Beschreibung in Verbindung mit den Zeichnungen verständlicher.
  • Figurenliste
  • Der als die Erfindung erachtete behandelte Gegenstand, wird in den der Beschreibung beigefügten Patentansprüchen speziell aufgezeigt und gesondert beansprucht. Die vorausgehend erwähnten und sonstige Merkmale und Vorteile der Erfindung werden nach dem Lesen der folgenden detaillierten Beschreibung in Verbindung mit den beigefügten Figuren verständlich:
    • 1 veranschaulicht ein Gasturbinensystem, in dem exemplarische Blatthitzeschilde verwendet werden können.
    • 2 veranschaulicht die Turbine nach 1.
    • 3 zeigt eine perspektivische Seitenansicht eines exemplarischen Hitzeschilds.
    • 4 veranschaulicht das Blatt von 2, das einen exemplarischen Hitzeschild aufweist.
    • 5 veranschaulicht eine geschnittene Draufsicht eines Blattes, das einen exemplarischen Hitzeschild aufweist.
    • 6 veranschaulicht eine geschnittene Draufsicht eines Blattes, das einen exemplarischen Hitzeschild in der Nähe des Blatts aufweist.
    • 7 veranschaulicht eine Querschnittsansicht eines exemplarischen Hitzeschilds.
    • 8 veranschaulicht die gewellte Schicht des Hitzeschilds isoliert.
    • 9 veranschaulicht ein Ausführungsbeispiel des Hitzeschilds, der eine Schwalbenschwanzbefestigungsanordnung aufweist.
  • Die detaillierte Beschreibung erläutert anhand der Zeichnungen Ausführungsbeispiele der Erfindung, zusammen mit Vorteilen und Merkmalen.
  • DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
  • 1 zeigt ein Gasturbinensystem 10, in dem exemplarische Blatthitzeschilde verwendet werden können. Die hierin beschriebenen exemplarischen Blatthitzeschilde sind mit Bezug auf eine Gasturbine erläutert. In weiteren Ausführungsbeispielen können die hierin beschriebenen Blatthitzeschilde in Verbindung mit sonstigen Systemen genutzt werden, in denen ein Hitzeschildschutz erwünscht ist, beispielsweise, jedoch ohne darauf beschränkt zu sein, Dampfturbinen und Verdichter. Das Gasturbinensystem 10 ist kreisförmig um eine Triebwerksmittellinie 12 angeordnet veranschaulicht. Das Gasturbinensystem 10 kann einen Verdichter 16, einen Verbrennungsabschnitt 18 und eine Turbine 20 aufweisen, die in serieller Strömungsbeziehung stehen. Der Verbrennungsabschnitt 18 und die Turbine 20 werden häufig als der heiße Abschnitt der Gasturbine 10 bezeichnet. Eine Laufradwelle 26 verbindet betriebsmäßig die Turbine 20 mit dem Verdichter 16. In dem Verbrennungsabschnitt 18 wird Brennstoff verbrannt, wobei ein Heißgasstrom 28 entsteht, der beispielsweise eine Temperatur im Bereich zwischen ungefähr 3000 bis ungefähr 3500 Grad Fahrenheit aufweisen kann. Der Heißgasstrom 28 wird durch die Turbine 20 geleitet, um das Gasturbinensystem 10 anzutreiben.
  • 2 veranschaulicht die Turbine 20 von 1. Die Turbine 20 kann eine Turbinenleitschaufel 30 und eine Turbinenlaufschaufel 32 aufweisen. Für die Leitschaufel 30 kann ein Blatt 34 verwendet werden, wobei das Blatt 34 in einem Abschnitt des Verdichters 16, in einem Abschnitt des Verbrennungsabschnitts 18 oder in einem Abschnitt der Turbine angeordnet sein kann. Die Leitschaufel 30 weist eine äußere Wand 36 (oder Anströmkante) auf, die dem Heißgasstrom 28 ausgesetzt ist. Die Turbinenleitschaufeln 30 können durch Luft gekühlt sein, die durch eine Ummantelung 38 der Maschine 10 hindurch von ein oder mehreren Stufen des Verdichters 16 abgezweigt wird. Darüber hinaus kann die äußere Wand 36 des Blatts 34 mit einem exemplarischen abnehmbaren Hitzeschild versehen sein, wie es im Folgenden beschrieben ist.
  • 3 zeigt eine perspektivische Seitenansicht eines exemplarischen Hitzeschilds 100. In Ausführungsbeispielen kann der Hitzeschild 100 ein einzelnes integrales Teil sein, das dazu eingerichtet ist, wie im Vorausgehenden beschrieben, an dem Blatt 34 befestigt zu werden. Wie hierin eingehender erörtert, kann das als ein einzelnes integrales Teil beschriebene Hitzeschild auch eine mehrschichtige Konstruktion sein. Der Hitzeschild 100 kann auch an anderen Abschnitten des Gasturbinensystems 10 angebracht sein, die Wärmeschutz erfordern. In Ausführungsbeispielen ist der Hitzeschild 100 dazu eingerichtet, mit minimaler Ausfallzeit an dem Gasturbinensystem 10 angebracht bzw. von diesem entfernt zu werden, da der Hitzeschild ein modulares Teil des Blatts 34 ist, und er kann, wie es hierin beschrieben ist, entfernt werden. In Ausführungsbeispielen kann der Hitzeschild 100 reibschlüssig an dem Blatt befestigt sein. Dementsprechend weist der Hitzeschild 100 mehrere reibschlüssige Elemente auf. In Ausführungsbeispielen weist der Hitzeschild 100 (obere und untere) Ummantelungswände 105 auf, die dazu eingerichtet sind, mit der Ummantelung 38 des Gasturbinensystems 10 mechanisch in Eingriff zu kommen. Die Ummantelung 38 kann vielfältige Formen und Krümmungen aufweisen. Als solche können die Ummantelungswände 105 in Abhängigkeit von der Gestalt der Ummantelung 38 entsprechende Formen und Krümmungen aufweisen. Der Hitzeschild 100 kann ferner eine Wand 110 aufweisen, die zwischen den Ummantelungswänden 105 angeordnet ist. Die Wand 110 kann senkrecht zu den Ummantelungswänden 105 ausgerichtet sein. Außerdem weisen die Ummantelungswände 105 einen Ausschnitt 106 mit einer Krümmung auf, die zu einer Krümmung des Blatts 34 passt. Der Ausschnitt 106 passt außerdem zu einer Krümmung der Wand 110. In Ausführungsbeispielen weist die Wand 110 ferner eine Anströmkante 111 und eine Abströmkante 112 auf. Die Anströmkante 111 ist ein äußerer konvexer Abschnitt der Wand 110, der anfänglich den Heißgasstrom 28 unter unterschiedlichen Angriffswinkeln aufnimmt. Dem Fachmann ist klar, dass die Anströmkante 111 eine Anströmkante des Blatts 34 bedeckt.
  • 4 veranschaulicht das Blatt 34 von 2, das einen exemplarischen Hitzeschild 100 aufweist. Wie hierin beschrieben, ist der Hitzeschild 100 über Reibkräfte zwischen der Ummantelung 38 und den Ummantelungswänden 105 und zwischen dem Blatt 34 und der Wand 110 mechanisch an dem Blatt 34 befestigt. In weiteren Ausführungsbeispielen können mechanische Befestigungsmittel, beispielsweise Schrauben, jedoch ohne darauf beschränkt zu sein, verwendet werden, um den Hitzeschild 100 an dem Blatt 34 zu befestigen. In Ausführungsbeispielen kann ferner ein oberer Verschluss 115 an einem Abschnitt der Ummantelung 38 befestigt sein. Der obere Verschluss 115 kann eine Reihe von Zinken 116 aufweisen, die benachbart zu dem Blatt 34 angeordnet sind. Der Hitzeschild 100 kann, wenn er an dem Blatt 34 angebracht wird, über den Zinken 116 befestigt werden, so dass dadurch die Reibkräfte zwischen dem Hitzeschild 100 und dem Blatt 34 erhöht werden. In Ausführungsbeispielen können mehrere sonstige reibschlüssige Flächen und Einrichtungen auf dem Blatt 34 und dem Hitzeschild vorhanden sein, um ein Anbringen und Abnehmen des Hitzeschilds 100 zu erleichtern. Beispielsweise kann eine Reihe passender Schwalbenschwänze auf dem Blatt 34 und dem Hitzeschild 100 angeordnet sein.
  • Wie hierin erörtert, kann der Hitzeschild 100 in Verbrennungsintervallen vor Ort ausgetauscht werden. Der aufsteckbare Hitzeschild 100 bedeckt die Anströmkante der inneren Seitenwand und der äußeren Seitenwand des Blatts 34 sowie den überwiegenden Teil der Druckseite und bis zu der Stelle ausgeprägter Wölbung auf der Saugseite. Der Hitzeschild 100 kann mittels einer Kombination von Druckseitenabströmkantenzinken 116, die mit Ausnehmungen auf den Leitapparaten in Eingriff kommen, und Stiften, die an der Stelle ausgeprägter Wölbung der Saugseite angeordnet sind, fixiert sein. Obwohl jede Art positiver Halterungsvorrichtungen verwendet werden kann, kann die Reihe gekrümmter Schwalbenschwänze die innere Seitenwand und/oder die äußere Seitenwand des Blatts 34 bedecken. Das Blatt 34 kann dann zu einer passenden Reihe von Schwalbenschwänzen an dem Hitzeschild 100 passen. Die Schwalbenschwänze können in Richtung des Leitapparats gekrümmt sein, um das gleitende Aufstecken des austauschbaren Hitzeschilds 100 zu erlauben. Außerdem können Schrauben oberhalb einer Übergangsstückdichtung (die mit der Brennkammer 18 in Eingriff steht) auf der Anströmkante des Blatts 34 angeordnet sein. Folglich kann der Hitzeschild 100 zeitgleich in den Verbrennungsintervallen ausgetauscht werden, wenn das Übergangsstück der Brennkammer 18 und Brennkammerwände entfernt werden.
  • 5 veranschaulicht eine geschnittene Draufsicht eines Blattes 34, das einen exemplarischen Hitzeschild 100 aufweist. 6 veranschaulicht eine geschnittene Draufsicht eines Blattes 34, das einen exemplarischen Hitzeschild 100 in der Nähe des Blatts 34 aufweist. 5 und 6 veranschaulichen den Hitzeschild 100 mit einem Umriss, der zu dem Umriss des Blatts 34 passt. Wie zu sehen, kann das Blatt 34 herkömmliche Prallöffnungen 41 entlang des Blattes 34 aufweisen. Wie hierin erörtert, können die Prallöffnungen 41 für eine herkömmliche Aufprallkühlung des Hitzeschilds 100 ausgebildet sein. Das Blatt 34 kann ferner Spalte 42 aufweisen, die zwischen dem Blatt 34 und dem Hitzeschild 100 ausgebildet sind. Die Spalte 42 können Kühlluft aufnehmen, die mit Blick auf Filmkühlung zu den Prallöffnungen 41 strömt. Wie hierin eingehender beschrieben, weist der Hitzeschild 100 eine gewellte Schicht 101 auf, durch die die Kühlluft strömen kann. Das Blatt 34 kann ferner eine vertiefte Fläche 43 aufweisen. Die vertiefte Fläche 43 ermöglicht die Befestigung des Hitzeschilds 100 an dem Blatt 34. Weiter kann das Blatt 34 Abströmkantenkühlkanäle 44 aufweisen, die die Kühlluft aufnehmen. Wie hierin näher beschrieben, stellt ein Abschnitt der gewellten Fläche 101 des Hitzeschilds 100 Durchflusskanäle für die Abströmkantenkühlkanäle 44 bereit.
  • In Ausführungsbeispielen weist der Hitzeschild 100 mehrere Schichten auf. Wie oben erörtert, weist der Hitzeschild 100 eine gewellte Schicht 101 auf, die eine Reihe von Luftkanälen entlang des Blattes 34 erzeugt, so dass dadurch mehrere Kühlluftströme für die Prallöffnungen 41 und die Kühlkanäle 44 bereitgestellt sind, wobei die Kühlluft in den Spalten 42 aufgenommen wird. Der Hitzeschild 100 kann ferner eine äußere (thermische) Schicht 103 aufweisen. Die äußere (thermische) Schicht 103 basiert auf einem Material mit thermischer Beständigkeit gegenüber dem Heißgasstrom (z.B. eine thermisch isolierende Keramikbeschichtung oder eine Wärmebarrierebeschichtung (TBC, Thermal Barrier Coating), die aufgesprüht oder, wie hierin näher erläutert, mittels einer Bindungsschicht befestigt sein kann. Die gewellte Schicht 101 erhält einen Abstand zwischen dem Leitapparat und dem Hitzeschild 100 aufrecht und verleiht dem Hitzeschild 100 sowie der Reihe von Kühlluftkanälen, wie hierin beschrieben, Steifigkeit.
  • 7 veranschaulicht eine Querschnittsansicht eines exemplarischen Hitzeschilds 100. 7 veranschaulicht das Blatt 34 in mechanischer Berührung mit der gewellten Schicht 101, die eine Basisschicht 102 aufweisen kann, die mit der gewellten Schicht 101 starr verbunden ist. In Ausführungsbeispielen kann die gewellte Schicht 101 und die Basisschicht 102 ein einzelnes integrales Teil sein. In Ausführungsbeispielen kann die Basisschicht 102 aus einer Hochtemperatursuperlegierung hergestellt sein, die dem Hitzeschild 100 strukturelle Festigkeit verleiht, und stellt sowohl ein Strömungsprofil als auch eine ebenmäßige nicht gewellte Oberfläche für eine anzubringende äußere (thermische) Schicht 103 bereit.
  • 7 veranschaulicht außerdem die (z.B. auf die TBC versprühte) äußere Schicht 103, die eine Bindemittelschicht 104 aufweisen kann, die zwischen der Basisschicht 102 und der äußeren (thermischen) Schicht 103 angeordnet ist.
  • 8 zeigt die gewellte Schicht 101 des Hitzeschilds 100 isoliert, um die Wellungslinien zu veranschaulichen. Für Zwecke der Veranschaulichung sind die Basisschicht 102 und die thermische (äußere) Schicht 103 nicht gezeigt. In Ausführungsbeispielen weist die gewellte Schicht 101 Wellungsabschnitte auf. Die Wellungsabschnitte können vielfältige Muster aufweisen. Falls beispielsweise Bereiche hoher struktureller Belastung an dem Hitzeschild 100 identifiziert sind, können Muster der Wellungslinien 107 dichter oder nahe beabstandet sein, während in Bereichen, die als geringere mechanische Spannung aufweisend identifiziert sind, kann die Dichte von Wellungslinien 107 geringer sein oder diese können weiter voneinander beabstandet angeordnet sein. Darüber hinaus ermöglicht eine geringere Dichte und eine größere Beabstandung von Wellungslinien 107 eine verbesserte Kühlung in dem Hitzeschild 100 und auf diese Weise in dem Blatt 34. In Ausführungsbeispielen sind die Prallöffnungen 41 orthogonal zu den Wellungslinien angeordnet. Eine erste Serie 108 und eine zweite Serie 109 von Wellungslinien sind dargestellt. Wie oben beschrieben, empfängt die erste Serie 108 von Wellungslinien einen Luftstrom für die Prallöffnungen 41, und die zweite Serie 109 von Wellungslinien empfängt den Luftstrom für die Abströmkantenkühlkanäle 44. In dem veranschaulichten Beispiel ist die erste Serie 108 senkrecht zu der zweiten Serie 109 ausgerichtet. In weiteren Ausführungsbeispielen kommen vielfältige anderer Konstruktionen von Wellungslinien und Serien von Wellungslinien in Betracht.
  • 9 veranschaulicht ein Ausführungsbeispiel des Hitzeschilds 100 mit einer Schwalbenschwanzbefestigungsanordnung. Für Zwecke der Veranschaulichung sind lediglich die gewellte Schicht 101 und die Basisschicht 102 des Hitzeschilds 100 dargestellt. Obwohl jede Bauart positiver Halterungsvorrichtungen verwendet werden kann, können, wie hierin beschrieben, Schwalbenschwänze 113 die innere Seitenwand und/oder die äußere Seitenwand des Blatts 34 bedecken. Die Schwalbenschwänze 113 des Blatts 34 können an passende Hitzeschildschwalbenschwänze 117 auf dem Hitzeschild 100 angepasst sein. In Ausführungsbeispielen können die Hitzeschildschwalbenschwänze 117 auf der Basisschicht 102 benachbart zu Wellungen auf der gewellten Schicht 101 angeordnet sein. In weiteren Ausführungsbeispielen können die Hitzeschildschwalbenschwänze 117 auf der gewellten Schicht 101 angeordnet sein.
  • Technische Effekte beinhalten die rasche Vor-Ort-Reparatur der Blätter, die die hierin beschriebene Hitzeschilde verwenden. Eine solche Vor-Ort-Reparatur kann in Verbrennungsintervallen stattfinden. Ein Beispiel, in dem das exemplarische Hitzeschild verwendet werden kann, ist auf der Stufe Eins einer Gasturbine, die häufig als SIN bezeichnet wird. Die ersten Stufen der Gasturbinen konvergieren und beschleunigen den Strom hinter der Brennkammer sowie den Heißgasstrom, und im Ergebnis sind die Strömungen kegelig zulaufend; d.h., breiter an dem Einlass als an dem Auslass. Wie oben erläutert, kann der Hitzeschild die SIN auf der Anströmkante sowie einen überwiegenden Teil der Druckseite des Blatts bedecken, und er erstreckt sich bis zu einer Stelle starker Wölbung auf der Saugseite des Blatts. Die hierin beschriebenen Hitzeschilde in Verbindung mit der SIN ermöglichen, dass das SIN-System anstelle einer einteiligen Konstruktion, wie in herkömmlichen Systemen, ein modulares/austauschbares System ist. Wartungskosten sind auf diese Weise reduziert und die Lebensdauer des Leitapparats könnte steigen; wenn der Hitzeschild zu verschleißen beginnt, kann er entfernt und ausgetauscht werden.
  • Darüber hinaus unterbricht die mehrschichtige Konstruktion des Hitzeschilds eine Verbindung zwischen dem Hochtemperaturabschnitt des Leitapparats und dem strukturellen/lasttragenden Abschnitt des Leitapparats. Wie oben beschrieben, weist die äußere Wand des Leitapparats ein Material hoher Temperaturfestigkeit auf, das anschließend an der gewellten Schicht befestigt wird, die dem Hitzeschild einen Luftstrom zuführt und ihm Festigkeit verleiht. Durch Unterbrechen der Verbindung zwischen dem Hochtemperaturabschnitt des Leitapparats und dem strukturellen/lasttragenden Abschnitt des Leitapparats wird die aufgrund von Temperaturgradienten vorhandene beträchtliche mechanische Spannung reduziert. Die mehrschichtige Konstruktion des Hitzeschilds fängt den Kühlluftstrom zwischen der Basisschicht und dem Blatt bzw. der Hochtemperaturwärmeübertragungsschicht ein. Dieses Verfahren zum Kühlen ist erheblich wirkungsvoller als Filmkühlung, da die Kühlluft zwischen den beiden Schichten eingeschlossen ist, anstatt mit der Heißgaspfadluft vermischt zu werden, die den Kühlwirkungsgrad verringert, wie es bei Filmkühlungsluft der Fall ist, während sie sich von dem Lochauslass stromabwärts bewegt. Die Verringerung von Kühlluft für die S1N kann genutzt werden, um die Verbrennungstemperatur bei gleicher Ausgangsleistung zu reduzieren, so dass dadurch die Entstehung von NOx reduziert ist, und der Wirkungsgrad der Gasturbine steigt. Die mehrschichtige Konstruktion des Hitzeschilds ermöglicht außerdem einen spannungsfreien Betrieb in dem Schaufelblatt und senkt die Grundmetalltemperaturen der strukturellen Leitapparatkomponenten beträchtlich, indem ein mäßiger Anstieg von dem Wärmeübertragungsschild hin zu dem Basismetall erlaubt ist, und indem die Kühlluft zwischen dem Hitzeschild und dem Basismetall gefangen ist. Dementsprechend ist für den Leitapparat weniger Kühlluft erforderlich, so dass dadurch der Wirkungsgrad des Triebwerks verbessert und der NOx-Ausstoß verringert wird.
  • Während die Erfindung lediglich anhand einer beschränkten Anzahl von Ausführungsbeispielen im Einzelnen beschrieben wurde, sollte es ohne weiteres verständlich sein, dass die Erfindung nicht auf derartige beschriebene Ausführungsbeispiele beschränkt ist. Vielmehr kann die Erfindung modifiziert werden, um eine beliebige Anzahl von bisher nicht beschriebenen Veränderungen, Abänderungen, Substitutionen oder äquivalenten Anordnungen zu verkörpern, die jedoch dem Schutzbereich der Erfindung entsprechen. Während vielfältige Ausführungsbeispiele der Erfindung beschrieben wurden, ist es ferner selbstverständlich, dass Aspekte der Erfindung möglicherweise lediglich einige der beschriebenen Ausführungsbeispiele beinhalten. Dementsprechend ist die Erfindung nicht als durch die vorausgehende Beschreibung beschränkt anzusehen, sondern ist lediglich durch den Schutzumfang der beigefügten Patentansprüche beschränkt.
  • Ausführungsbeispiele beinhalten einen mehrschichtigen, modularen und austauschbaren Hitzeschild 100 für Gasturbinen. Die Hitzeschildeinrichtung 100 kann eine Basisschicht 102, die benachbart zu einem Blatt 34 angeordnet ist, und eine thermische Schicht 103 aufweisen, die mit der Basisschicht 102 verbunden ist, wobei die Basisschicht 102 und die thermische Schicht 103 zu einem Umriss des Blatts 34 passen.
  • Bezugszeichenliste
  • 10
    Gasturbinensystem
    12
    Triebwerksmittellinie
    16
    Verdichter
    18
    Verbrennungsabschnitt
    20
    Turbine
    26
    Laufradwelle
    28
    Heißgasstrom
    30
    Turbinenleitschaufel
    32
    Turbinenlaufschaufel
    34
    Blatt
    36
    Äußere Wand
    38
    Ummantelung
    41
    Prallöffnungen
    42
    Spalte
    43
    Vertiefte Fläche
    44
    Abströmkantenkühlkanäle
    100
    Hitzeschild, Hitzeschildeinrichtung
    101
    Gewellte Schicht
    102
    Basisschicht
    103
    Äußere (thermische) Schicht
    104
    Bindemittelschicht
    105
    Ummantelungswände
    106
    Ausschnitt
    107
    Wellungslinien
    108
    Erste Serie
    109
    Zweite Serie
    110
    Wände
    111
    Anströmkante
    112
    Abströmkante
    113
    Schwalbenschwänze
    115
    Oberer Verschluss
    116
    Zinken
    117
    Hitzeschildschwalbenschwänze

Claims (10)

  1. Hitzeschildeinrichtung (100) für ein Blatt (34), wobei die Hitzeschildeinrichtung (100) aufweist: Ummantelungswände (105), die eingerichtet sind, um an einem Gehäuse einer Turbine (20) positioniert zu werden und von diesem entfernbar zu sein; eine Wand (110), die zwischen den Ummantelungswänden (105) angeordnet und mit den Ummantelungswänden (105) integral ausgebildet ist, wobei die Wand (110) enthält: eine Basisschicht (102), die benachbart zu dem Blatt (34) angeordnet ist; und eine thermische Schicht (103), die benachbart zu dem Blatt (34) angeordnet ist, wobei die thermische Schicht (103) zu einem Umriss des Blatts (34) passt; wobei die Hitzeschildeinrichtung (100) von dem Blatt (34) verschieden und eingerichtet ist, um an dem Blatt (34) austauschbar montiert zu werden; und wobei die Hitzeschildeinrichtung (100) gestaltet ist, um eine Anströmkante, einen überwiegenden Teil der Druckseite und einen Teil der Saugseite des Blattes (34) zu bedecken.
  2. Hitzeschildeinrichtung nach Anspruch 1, wobei die Basisschicht (102) zwischen dem Blatt (34) und der thermischen Schicht (103) angeordnet ist.
  3. Hitzeschildeinrichtung nach Anspruch 1, ferner mit einer gewellten Schicht (101), die mit der Basisschicht (102) verbunden ist.
  4. Hitzeschildeinrichtung nach Anspruch 3, wobei sich die gewellte Schicht (101) in mechanischer Berührung mit dem Blatt (34) befindet.
  5. Hitzeschildeinrichtung nach Anspruch 3, wobei die Basisschicht (102) und die gewellte Schicht (101) ein einzelnes integrales Teil sind.
  6. Hitzeschildeinrichtung nach Anspruch 3, wobei die gewellte Schicht (101) eine oder mehrere Serien von Wellungslinien (107) aufweist, die Luftkanäle bilden.
  7. Hitzeschildeinrichtung nach Anspruch 3, wobei die gewellte Schicht eine erste Dichte und eine erste Beabstandung von Wellungslinien (107) mit Blick auf strukturelle Festigkeit aufweist.
  8. Hitzeschildeinrichtung nach Anspruch 7, wobei die gewellte Schicht (101) eine zweite Dichte und eine zweite Beabstandung von Wellungslinien (107) mit Blick auf den Luftstrom aufweist.
  9. Hitzeschildeinrichtung nach Anspruch 1, wobei die thermische Schicht (103) eine Druckseite aufweist.
  10. Hitzeschildeinrichtung nach Anspruch 9, wobei die thermische Schicht (103) eine Saugseite aufweist.
DE102010060280.9A 2009-11-10 2010-10-29 Schaufelblatthitzeschild Active DE102010060280B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/615,674 2009-11-10
US12/615,674 US9528382B2 (en) 2009-11-10 2009-11-10 Airfoil heat shield

Publications (2)

Publication Number Publication Date
DE102010060280A1 DE102010060280A1 (de) 2011-05-12
DE102010060280B4 true DE102010060280B4 (de) 2022-08-04

Family

ID=43853250

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010060280.9A Active DE102010060280B4 (de) 2009-11-10 2010-10-29 Schaufelblatthitzeschild

Country Status (5)

Country Link
US (1) US9528382B2 (de)
JP (1) JP5639852B2 (de)
CN (1) CN102052093B (de)
CH (1) CH702167B1 (de)
DE (1) DE102010060280B4 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329836A1 (en) * 2009-06-30 2010-12-30 Wayne Garcia Edmondson Method of operating a heated guide vane assembly
US20100326041A1 (en) * 2009-06-30 2010-12-30 Wayne Garcia Edmondson Heated guide vane
CN103184896B (zh) * 2011-12-27 2015-12-16 中航商用航空发动机有限责任公司 一种涡轮导向叶片
US10161691B2 (en) 2012-01-16 2018-12-25 The Boeing Company Multi-channel cooling plenum
US10458255B2 (en) * 2013-02-10 2019-10-29 United Technologies Corporation Removable film for airfoil surfaces
US9714611B2 (en) 2013-02-15 2017-07-25 Siemens Energy, Inc. Heat shield manifold system for a midframe case of a gas turbine engine
US9458725B2 (en) * 2013-10-04 2016-10-04 General Electric Company Method and system for providing cooling for turbine components
EP2949873A1 (de) * 2014-05-27 2015-12-02 Siemens Aktiengesellschaft Turbomaschine mit Aufnahmeschutz und Verwendung der Turbomaschine
US10196910B2 (en) * 2015-01-30 2019-02-05 Rolls-Royce Corporation Turbine vane with load shield
US10060272B2 (en) * 2015-01-30 2018-08-28 Rolls-Royce Corporation Turbine vane with load shield
US10358939B2 (en) * 2015-03-11 2019-07-23 Rolls-Royce Corporation Turbine vane with heat shield
US10502066B2 (en) 2015-05-08 2019-12-10 United Technologies Corporation Turbine engine component including an axially aligned skin core passage interrupted by a pedestal
US10323524B2 (en) * 2015-05-08 2019-06-18 United Technologies Corporation Axial skin core cooling passage for a turbine engine component
US9828915B2 (en) * 2015-06-15 2017-11-28 General Electric Company Hot gas path component having near wall cooling features
US9938899B2 (en) 2015-06-15 2018-04-10 General Electric Company Hot gas path component having cast-in features for near wall cooling
US9897006B2 (en) 2015-06-15 2018-02-20 General Electric Company Hot gas path component cooling system having a particle collection chamber
US9970302B2 (en) 2015-06-15 2018-05-15 General Electric Company Hot gas path component trailing edge having near wall cooling features
US10458251B2 (en) * 2016-04-15 2019-10-29 General Electric Company Airfoil cooling using non-line of sight holes
US10704395B2 (en) * 2016-05-10 2020-07-07 General Electric Company Airfoil with cooling circuit
US10480331B2 (en) * 2016-11-17 2019-11-19 United Technologies Corporation Airfoil having panel with geometrically segmented coating
US10309226B2 (en) * 2016-11-17 2019-06-04 United Technologies Corporation Airfoil having panels
US10577942B2 (en) * 2016-11-17 2020-03-03 General Electric Company Double impingement slot cap assembly
US10392945B2 (en) * 2017-05-19 2019-08-27 General Electric Company Turbomachine cooling system
EP3717746A1 (de) * 2017-12-01 2020-10-07 Siemens Energy, Inc. Eingelötetes wärmetransfermerkmal für gekühlte turbinenkomponenten
US10753210B2 (en) * 2018-05-02 2020-08-25 Raytheon Technologies Corporation Airfoil having improved cooling scheme
US10927707B2 (en) * 2018-12-07 2021-02-23 Raytheon Technologies Corporation Diffuser case heat shields
US11927137B2 (en) * 2022-03-21 2024-03-12 Ge Infrastructure Technology Llc System and method for insulating components in an exhaust gas flow from a gas turbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914300A (en) 1955-12-22 1959-11-24 Gen Electric Nozzle vane support for turbines
US2994124A (en) 1955-10-03 1961-08-01 Gen Electric Clad cermet body
DE3324755A1 (de) 1982-07-12 1984-01-12 Rockwell International Corp., 90245 El Segundo, Calif. Rotorblaetter und statorschaufeln mit keramikummantelung
US4786234A (en) 1982-06-21 1988-11-22 Teledyne Industries, Inc. Turbine airfoil
US4904542A (en) 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US6261422B1 (en) 2000-01-04 2001-07-17 Ionica, Llc Production of hollowed/channeled protective thermal-barrier coatings functioning as heat-exchangers
US6514046B1 (en) 2000-09-29 2003-02-04 Siemens Westinghouse Power Corporation Ceramic composite vane with metallic substructure
DE69903595T2 (de) 1998-06-12 2003-06-18 United Technologies Corp Wärmedämmendes Beschichtungssystem mit lokaler Auftragung einer Haftungsschicht

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528751A (en) * 1966-02-26 1970-09-15 Gen Electric Cooled vane structure for high temperature turbine
JPS54102412A (en) * 1978-01-31 1979-08-11 Denriyoku Chuo Kenkyusho Gas turbine vane
JPS54172105U (de) * 1978-05-26 1979-12-05
US4411597A (en) * 1981-03-20 1983-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tip cap for a rotor blade
JPS59120704A (ja) * 1982-12-27 1984-07-12 Toshiba Corp 超高温耐熱壁体
DE3327218A1 (de) * 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel
DE3327659A1 (de) * 1983-07-30 1985-02-14 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung eines verbundkoerpers aus keramik oder faserverstaerkter keramik sowie ein nach diesem verfahren gefertigtes sandwich-gebilde
US4793770A (en) * 1987-08-06 1988-12-27 General Electric Company Gas turbine engine frame assembly
US5090866A (en) * 1990-08-27 1992-02-25 United Technologies Corporation High temperature leading edge vane insert
JPH05288002A (ja) * 1992-04-07 1993-11-02 Mitsubishi Heavy Ind Ltd 空冷セラミック静翼
ES2063636B1 (es) * 1992-04-23 1997-05-01 Turbo Propulsores Ind Conjunto de alabes de estator para motores de turbina de gas.
JP2610381B2 (ja) * 1992-12-04 1997-05-14 日本碍子株式会社 焼成接合を用いた細孔付セラミック部品の製造方法
US5320483A (en) * 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine
US5348446A (en) * 1993-04-28 1994-09-20 General Electric Company Bimetallic turbine airfoil
JP3170135B2 (ja) * 1994-02-18 2001-05-28 三菱重工業株式会社 ガスタービン翼の製造方法
US5484258A (en) * 1994-03-01 1996-01-16 General Electric Company Turbine airfoil with convectively cooled double shell outer wall
US5464322A (en) * 1994-08-23 1995-11-07 General Electric Company Cooling circuit for turbine stator vane trailing edge
US5488825A (en) * 1994-10-31 1996-02-06 Westinghouse Electric Corporation Gas turbine vane with enhanced cooling
US5669759A (en) * 1995-02-03 1997-09-23 United Technologies Corporation Turbine airfoil with enhanced cooling
DE19617556A1 (de) * 1996-05-02 1997-11-06 Asea Brown Boveri Thermisch belastete Schaufel für eine Strömungsmaschine
EP0925426A1 (de) * 1996-09-04 1999-06-30 Siemens Aktiengesellschaft Turbinenschaufel, welche einem heissen gasstrom aussetzbar ist
JP3316405B2 (ja) * 1997-02-04 2002-08-19 三菱重工業株式会社 ガスタービン冷却静翼
DE19713268B4 (de) * 1997-03-29 2006-01-19 Alstom Gekühlte Gasturbinenschaufel
FR2765265B1 (fr) * 1997-06-26 1999-08-20 Snecma Aubage refroidi par rampe helicoidale, par impact en cascade et par systeme a pontets dans une double peau
DE19737845C2 (de) * 1997-08-29 1999-12-02 Siemens Ag Verfahren zum Herstellen einer Gasturbinenschaufel, sowie nach dem Verfahren hergestellte Gasturbinenschaufel
US6146091A (en) * 1998-03-03 2000-11-14 Mitsubishi Heavy Industries, Ltd. Gas turbine cooling structure
GB9901218D0 (en) * 1999-01-21 1999-03-10 Rolls Royce Plc Cooled aerofoil for a gas turbine engine
US6174133B1 (en) * 1999-01-25 2001-01-16 General Electric Company Coolable airfoil
US6261054B1 (en) * 1999-01-25 2001-07-17 General Electric Company Coolable airfoil assembly
US6241467B1 (en) * 1999-08-02 2001-06-05 United Technologies Corporation Stator vane for a rotary machine
US6254334B1 (en) * 1999-10-05 2001-07-03 United Technologies Corporation Method and apparatus for cooling a wall within a gas turbine engine
DE10001109B4 (de) * 2000-01-13 2012-01-19 Alstom Technology Ltd. Gekühlte Schaufel für eine Gasturbine
US6454526B1 (en) * 2000-09-28 2002-09-24 Siemens Westinghouse Power Corporation Cooled turbine vane with endcaps
US6843928B2 (en) * 2001-10-12 2005-01-18 General Electric Company Method for removing metal cladding from airfoil substrate
US6742991B2 (en) * 2002-07-11 2004-06-01 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
US6926496B2 (en) * 2002-12-31 2005-08-09 General Electric Company High temperature turbine nozzle for temperature reduction by optical reflection and process for manufacturing
US6981846B2 (en) * 2003-03-12 2006-01-03 Florida Turbine Technologies, Inc. Vortex cooling of turbine blades
US7080971B2 (en) * 2003-03-12 2006-07-25 Florida Turbine Technologies, Inc. Cooled turbine spar shell blade construction
US6884036B2 (en) * 2003-04-15 2005-04-26 General Electric Company Complementary cooled turbine nozzle
US6808367B1 (en) * 2003-06-09 2004-10-26 Siemens Westinghouse Power Corporation Cooling system for a turbine blade having a double outer wall
US6955523B2 (en) * 2003-08-08 2005-10-18 Siemens Westinghouse Power Corporation Cooling system for a turbine vane
US6955525B2 (en) * 2003-08-08 2005-10-18 Siemens Westinghouse Power Corporation Cooling system for an outer wall of a turbine blade
US7281895B2 (en) * 2003-10-30 2007-10-16 Siemens Power Generation, Inc. Cooling system for a turbine vane
US7090461B2 (en) * 2003-10-30 2006-08-15 Siemens Westinghouse Power Corporation Gas turbine vane with integral cooling flow control system
US7118326B2 (en) * 2004-06-17 2006-10-10 Siemens Power Generation, Inc. Cooled gas turbine vane
US7255534B2 (en) * 2004-07-02 2007-08-14 Siemens Power Generation, Inc. Gas turbine vane with integral cooling system
US7198458B2 (en) * 2004-12-02 2007-04-03 Siemens Power Generation, Inc. Fail safe cooling system for turbine vanes
US7316539B2 (en) * 2005-04-07 2008-01-08 Siemens Power Generation, Inc. Vane assembly with metal trailing edge segment
DE502006003548D1 (de) * 2006-08-23 2009-06-04 Siemens Ag Beschichtete Turbinenschaufel
US8167573B2 (en) * 2008-09-19 2012-05-01 Siemens Energy, Inc. Gas turbine airfoil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994124A (en) 1955-10-03 1961-08-01 Gen Electric Clad cermet body
US2914300A (en) 1955-12-22 1959-11-24 Gen Electric Nozzle vane support for turbines
US4786234A (en) 1982-06-21 1988-11-22 Teledyne Industries, Inc. Turbine airfoil
DE3324755A1 (de) 1982-07-12 1984-01-12 Rockwell International Corp., 90245 El Segundo, Calif. Rotorblaetter und statorschaufeln mit keramikummantelung
US4904542A (en) 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
DE69903595T2 (de) 1998-06-12 2003-06-18 United Technologies Corp Wärmedämmendes Beschichtungssystem mit lokaler Auftragung einer Haftungsschicht
US6261422B1 (en) 2000-01-04 2001-07-17 Ionica, Llc Production of hollowed/channeled protective thermal-barrier coatings functioning as heat-exchangers
US6514046B1 (en) 2000-09-29 2003-02-04 Siemens Westinghouse Power Corporation Ceramic composite vane with metallic substructure

Also Published As

Publication number Publication date
CN102052093A (zh) 2011-05-11
CH702167A8 (de) 2011-07-29
CN102052093B (zh) 2016-01-27
CH702167B1 (de) 2015-02-27
US9528382B2 (en) 2016-12-27
JP2011102582A (ja) 2011-05-26
US20110110771A1 (en) 2011-05-12
JP5639852B2 (ja) 2014-12-10
CH702167A2 (de) 2011-05-13
DE102010060280A1 (de) 2011-05-12

Similar Documents

Publication Publication Date Title
DE102010060280B4 (de) Schaufelblatthitzeschild
DE102008003412B4 (de) In einen Turbinenrotor eingebaute Turbinenschaufelabdeckung mit Prallkühlung sowie Kühlverfahren
DE102011000299A1 (de) Hitzeschild
DE102011053930B4 (de) Vorrichtung und Verfahren zur Kühlung von Plattformabschnitten von Turbinenrotorschaufeln
DE102011053048B4 (de) Abtragbare Laufschaufelummantelung und Verfahren zum Minimieren einer Leckströmung durch einen Laufschaufelspitzenspalt
DE69838081T2 (de) Turbinenschaufel
EP2580431B1 (de) Bauteilwand mit einem diffusorabschnitt zum kühlen einer turbomaschine
DE102011057077B4 (de) Strukturelle Turbinenmantelringvorrichtung geringer Duktilität
DE102011053891B4 (de) Vorrichtung und Verfahren zur Kühlung von Plattformabschnitten von Turbinenrotorschaufeln
DE102015101156A1 (de) Laufschaufel mit hoher Sehnenlänge, zwei Teilspannweiten-Dämpferelementen und gekrümmtem Schwalbenschwanz
DE60027390T2 (de) Gekühlte Gasturbinenschaufel und deren Herstellungsmethode
CH702553A2 (de) Turbinenleitapparatbaugruppe.
US9334755B2 (en) Airfoil with variable trip strip height
DE102008037390A1 (de) Luftgekühlte Laufschaufel für eine Turbine
CH706777A2 (de) System mit mindestens einer Turbinenschaufel und Verfahren zum Anordnen eines porösen Einsatzes in einer Ausnehmung einer Turbinenschaufel.
DE102011057129B4 (de) Einrichtung und Verfahren zum Kühlen von Plattformbereichen von Turbinenlaufschaufeln
DE102014115402A1 (de) Übergangskanalanordnung mit modifizierter Hinterkante in einem Turbinensystem
DE102008023424A1 (de) Verfahren für die mittige Anordnung von Zähnen auf Turbinenschaufeln mit Deckband
EP2084368B1 (de) Turbinenschaufel
DE102011056619B4 (de) Einrichtung und Verfahren zum Kühlen von Plattformbereichen von Turbinenlaufschaufeln
DE102014100087A1 (de) Innenaufbau einer Turbinenlaufschaufel
DE102014103089A1 (de) Turbinenschaufelanordnung
DE102012100660A1 (de) Turbinenschaufel zur Verwendung in Gasturbinen und Verfahren zur Herstellung derselben
EP2411631B1 (de) Dichtplatte und Laufschaufelsystem
DE102014102778B4 (de) Strömungshülse zur thermischen Steuerung eines doppelwandigen Turbinengehäuses und Turbinengehäuse mit derartiger Strömungshülse

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC CO., SCHENECTADY, N.Y., US

R082 Change of representative