DE102010050232A1 - Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine - Google Patents

Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine Download PDF

Info

Publication number
DE102010050232A1
DE102010050232A1 DE102010050232A DE102010050232A DE102010050232A1 DE 102010050232 A1 DE102010050232 A1 DE 102010050232A1 DE 102010050232 A DE102010050232 A DE 102010050232A DE 102010050232 A DE102010050232 A DE 102010050232A DE 102010050232 A1 DE102010050232 A1 DE 102010050232A1
Authority
DE
Germany
Prior art keywords
valve
section
acceleration
function
boundary conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010050232A
Other languages
English (en)
Inventor
Jan Piewek
Dr. Schwenger Andreas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE102010050232A priority Critical patent/DE102010050232A1/de
Priority to EP11754302.5A priority patent/EP2633172A1/de
Priority to PCT/EP2011/004447 priority patent/WO2012055457A1/de
Publication of DE102010050232A1 publication Critical patent/DE102010050232A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/40Methods of operation thereof; Control of valve actuation, e.g. duration or lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/02Formulas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung (131) zum Steuern eines Ventils (132) einer Brennkraftmaschine. Das Ventil (132) wird unter Verwendung einer Sollhubkurve (121, 141, 151) gesteuert, welche einen Verlauf eines Sollhubwerts des Ventils (132) über einem Zeitintervall oder einem Winkel einer Kurbelwelle der Brennkraftmaschine beschreibt. Die Sollhubkurve (121, 141, 151) wird automatisch bestimmt, indem das Zeitintervall in mehrere Abschnitte geteilt wird und für jeden der mehreren Abschnitte jeweilige Randbedingungen festgelegt werden. Für jeden der mehreren Abschnitte wird jeweils eine einfach oder mehrfach stetig differenzierbare Funktion für den Verlauf des Sollhubwerts definiert. Die jeweilige stetig differenzierbare Funktion erfüllt die jeweiligen Randbedingungen des jeweiligen Abschnitts. Durch Aneinanderreihen der stetig differenzierbaren Funktionen der mehreren Abschnitte wird die Sollhubkurve (121, 141, 151) gebildet.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine, insbesondere ein Verfahren und eine Vorrichtung zum Steuern eines Ventils mit einem variablen Ventiltrieb, wobei das Ventil unter Verwendung einer Sollhubkurve mithilfe eines Ventilaktors gesteuert wird.
  • Bei Brennkraftmaschinen wird ein Ladungswechsel, d. h. ein Befüllen eines Verbrennungsraums mit einem Kraftstoffluftgemisch und ein Entleeren des Verbrennungsraums nach einem Verbrennungsvorgang, üblicherweise über Ventile gesteuert, welche entsprechende Öffnungen zu dem Verbrennungsraum zu geeigneten Zeitpunkten öffnen und schließen. Herkömmlicherweise werden bei Hubkolbenmotoren, wie z. B. Ottomotoren oder Dieselmotoren, die Ventile mit Hilfe einer Nockenwelle betätigt, welche von einer Kurbelwelle des Hubkolbenmotors angetrieben wird. Um eine flexiblere Ansteuerung der Ventile zu ermöglichen, werden sogenannte variable Ventiltriebe oder vollvariable Ventiltriebe verwendet, welche über eine geeignete Steuerung elektrisch oder hydraulisch angesteuert werden. Dabei kann eine Ansteuerung unter Berücksichtigung der Motorlastzustände wesentlich flexibler als über eine mechanische Ansteuerung über die Nockenwelle durchgeführt werden. Mit einem variablen Ventiltrieb kann somit eine Öffnungszeit, ein Ventilhub und/oder eine Schließzeit des Ventils variabel eingestellt werden. Dadurch kann die Gemischaufbereitung, ein Ladungswechsel und/oder eine Abgasrückführung verbessert werden und somit der Wirkungsgrad der Brennkraftmaschine erhöht werden. Darüber hinaus kann gegebenenfalls sogar eine Drosselklappe entfallen, wodurch die Ladungswechselarbeit verringert werden kann und somit der Wirkungsgrad der Brennkraftmaschine weiter verbessert werden kann.
  • Bei einem elektromotorischen vollvariablen Ventiltrieb wird die Kraft auf das Ventil durch einen Strom in den elektrischen Motor-Teilkreisen oder Aktoren des Ventiltriebs bestimmt. Der Zusammenhang zwischen Strom und Kraft des Ventiltriebs ist häufig wegabhängig. Daher ist der Strom im Aktor ein Maß für die wegabhängige Beschleunigung, welche proportional zur Kraft ist. Durch die Induktivität des elektromotorischen vollvariablen Ventiltriebs ist eine sprunghafte direkte Vorgabe des Stroms nicht möglich. Vielmehr ergibt sich durch Vorgabe einer Klemmenspannung an dem elektromotorischen vollvariablen Ventiltrieb ein Stromgradient. Somit ermöglicht der Aktor keine sprunghaften Stromverläufe, keine sprunghaften Kraftverläufe und somit auch keine sprunghaften Beschleunigungsverläufe. Eine ähnliche Problematik ergibt sich bei hydraulisch gesteuerten vollvariablen Ventiltrieben, da hydraulische Drücke ebenfalls keine sprunghaften Veränderungen erlauben. Diese typischen Eigenschaften der vollvariablen Ventiltriebe sind bei einer Ansteuerung der Ventiltriebe zu berücksichtigen. Darüber hinaus ist bei der Ansteuerung eines vollvariablen Ventiltriebs zu berücksichtigen, dass die physikalischen Belastungen auf den Ventilaktor, das Ventil und den Ventilsitz möglichst gering zu halten sind, um eine lange Lebensdauer und einen zuverlässigen Betrieb sicherzustellen. Schließlich ist es wünschenswert, insbesondere bei einem elektromotorischen vollvariablen Ventiltrieb, den Energieverbrauch des Ventiltriebs möglichst gering zu halten und eine einfache und flexible Ansteuerung des vollvariablen Ventiltriebs auch bei sich schnell ändernden Lastsituationen der Brennkraftmaschine zu ermöglichen.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine Steuerung für einen vollvariablen Ventiltrieb bereitzustellen, welche die zuvor genannten Probleme löst.
  • Gemäß der vorliegenden Erfindung wird diese Aufgabe durch ein Verfahren zum Steuern eines Ventils einer Brennkraftmaschine nach Anspruch 1, eine Vorrichtung zum Steuern einer Brennkraftmaschine nach Anspruch 12 und ein Fahrzeug nach Anspruch 14 gelöst. Die abhängigen Ansprüche definieren bevorzugte und vorteilhafte Ausführungsformen der Erfindung.
  • Gemäß der vorliegenden Erfindung wird ein Verfahren zum Steuern eines Ventils einer Brennkraftmaschine bereitgestellt. Das Ventil wird unter Verwendung einer Sollhubkurve gesteuert. Die Sollhubkurve beschreibt einen Verlauf eines Sollhubwerts des Ventils über einem Zeitintervall. Die Sollhubkurve kann auch einen Verlauf eines Sollhubwerts des Ventils über einem Drehwinkel einer Kurbelwelle der Brennkraftmaschine beschreiben, da der Drehwinkel der Kurbelwelle über die Drehzahl der Brennkraftmaschine direkt im Verhältnis zur Zeit steht. Die Sollhubkurve wird automatisch bestimmt, indem das Zeitintervall in mehrere Abschnitte geteilt wird und für jeden der mehreren Abschnitte jeweilige Randbedingungen festgelegt werden. Für jeden der mehreren Abschnitte wird jeweils eine stetig differenzierbare Funktion, eine sogenannte Hubfunktion, definiert, welche den Verlauf des Sollhubwerts beschreibt. Die Funktion kann einfach oder mehrfach stetig differenzierbar sein. Die jeweilige stetig differenzierbare Funktion erfüllt die jeweiligen Randbedingungen des jeweiligen Abschnitts. Die Sollhubkurve wird durch Aneinanderreihen der stetig differenzierbaren Funktionen der mehreren Abschnitte gebildet.
  • Da die Ableitung der Sollhubkurve einer Geschwindigkeit des Ventils entspricht, kann mit einer stetig differenzierbaren Funktion des Verlaufs des Sollhubwerts eine sprunghafte Veränderung der Geschwindigkeit des Ventils vermieden werden. Sprunghafte Veränderungen der Geschwindigkeit des Ventils sind technisch nicht realisierbar und annähernd sprunghafte Veränderungen erfordern im Allgemeinen einen erhöhten Energieeinsatz zur Ansteuerung des Ventils. Darüber hinaus wird durch eine annähernd sprunghafte Veränderung der Geschwindigkeit des Ventils, beispielsweise beim Schließen des Ventils, die mechanische Belastung auf das Ventil erhöht. Daher können die vorher genannten Probleme durch Verwenden der stetig differenzierbaren Funktion für den Verlauf des Sollhubwerts wirksam vermieden werden. Durch Aufteilen des Zeitintervalls in mehrere Abschnitte und Festlegen von mehreren Randbedingungen für jeden der mehreren Abschnitte kann ein gesamter Bewegungsablauf des Ventils in mehrere einfach handzuhabende Abschnitte aufgeteilt werden, beispielsweise einen Abschnitt zum Einleiten eines Öffnungsvorgangs des Ventils, einen Abschnitt zum Beenden des Öffnungsvorgangs (Abbremsen) des Ventils, einen Abschnitt zum Offenhalten des Ventils usw. Durch die Randbedingungen der jeweiligen Abschnitte werden die Anfangs- und Endzustände des Ventils zu Beginn und am Ende des Abschnitts definiert und können somit bei der Definition der stetig oder mehrfach stetig differenzierbaren Funktion für den Verlauf des Sollhubwerts über dem Abschnitt auf einfache Art und Weise berücksichtigt werden.
  • Gemäß einer Ausführungsform ist die stetig differenzierbare Funktion für den Verlauf des Sollhubwerts eine zweifach stetig differenzierbare Funktion. Da die zweite Ableitung der Sollhubkurve einer Beschleunigung des Ventils entspricht, stellt die zweifach stetig differenzierbare Funktion sicher, dass keine sprunghafte Veränderung der Beschleunigung erforderlich ist, um das Ventil gemäß der Sollhubkurve zu steuern. Da sprunghafte Veränderungen mit üblichen Ventilaktoren nicht oder nur schwierig zu realisieren sind und darüber hinaus einen hohen Energieeinsatz fordern und hohe mechanische Belastungen an sowohl dem Aktor als auch dem Ventil bewirken können, kann durch die Verwendung der zweifach stetig differenzierbaren Funktion für den Verlauf des Sollhubwerts eine Sollhubkurve definiert werden, welche mit geringem Energieeinsatz und geringen mechanischen Belastungen mit herkömmlichen Ventilaktoren durchfahren werden kann.
  • Gemäß einer weiteren Ausführungsform wird die zweifach stetig differenzierbare Funktion definiert, indem für jeden Abschnitt eine jeweilige Beschleunigungsfunktion definiert wird, welche eine stückweise lineare Funktion ist. Die stückweise lineare Funktion weist in einem ersten Teilabschnitt eine erste Steigung, in einem zweiten Teilabschnitt einen konstanten Wert und in einem dritten Teilabschnitt eine zweite Steigung auf. Auf der Grundlage der jeweiligen Beschleunigungsfunktion des jeweiligen Abschnitts wird eine Geschwindigkeitsfunktion für den jeweiligen Abschnitt durch Integrieren der Beschleunigungsfunktion unter Berücksichtigung der jeweiligen Randbedingungen des jeweiligen Abschnitts bestimmt. Weiterhin wird auf der Grundlage der jeweiligen Geschwindigkeitsfunktion des jeweiligen Abschnitts die zweifach stetig differenzierbare Funktion des Abschnitts durch Integrieren der Geschwindigkeitsfunktion unter Berücksichtigung der jeweiligen Randbedingungen des jeweiligen Abschnitts bestimmt. Da die Beschleunigungsfunktion stückweise linear ist, d. h. aus zusammenhängenden geraden Strecken zusammengesetzt ist, können entsprechende Stammfunktionen sowie Stammfunktionen der Stammfunktionen einfach gebildet werden, welche der Geschwindigkeitsfunktion bzw. der gesuchten zweifach stetig differenzierbaren Hubfunktion entsprechen. Die Integration kann daher numerisch oder analytisch durchgeführt werden. Die jeweiligen Randbedingungen des jeweiligen Abschnitts definieren in diesem Zusammenhang freie Parameter der Stammfunktionen.
  • Gemäß einer weiteren Ausführungsform weist die jeweilige Beschleunigungsfunktion am Anfang des ersten Teilabschnitts den Wert null auf und am Ende des dritten Teilabschnitts ebenfalls den Wert null auf. Die Beschleunigungsfunktion hat somit über dem jeweiligen Abschnitt eine Trapezform. Vorzugsweise hat die zweite Steigung den negativen Wert der ersten Steigung, d. h. die erste und die zweite Steigung sind betragsmäßig gleich und unterscheiden sich lediglich durch ihre Vorzeichen. In diesem Fall ist die jeweilige Beschleunigungsfunktion eines Abschnitts ein symmetrisches Trapez, wodurch sich die Bestimmung der Stammfunktionen weiter vereinfacht. Die Länge des ersten Teilabschnitts der Beschleunigungsfunktion und die Länge des dritten Teilabschnitts der Beschleunigungsfunktion können gleich sein und als Randbedinung des Abschnitts vorgebbar sein. Die Längen des ersten Teilabschnitts, des zweiten Teilabschnitts, und des dritten Teilabschnitts können beispielsweise gleich groß gewählt werden. Dadurch werden weitere freie Parameter der Stammfunktionen festgelegt, sodass die Stammfunktionen beim Durchführen des Verfahrens schnell, einfach, robust und sicher bestimmt werden können.
  • Die Randbedingungen der mehreren Abschnitte betreffen beispielsweise eine Anfangshubwert des Ventils am Anfang des Abschnitts, eine Länge des Abschnitts, einen Endhubwert des Ventils am Ende des Abschnitts, einen Maximalhubwert des Ventils innerhalb des Abschnitts, eine Geschwindigkeit des Ventils am Anfang des Abschnitts, eine Geschwindigkeit des Ventils am Ende des Abschnitts oder eine maximale Beschleunigung des Ventils innerhalb des Abschnitts. Je nach gewünschtem Sollhubkurvenverlauf können eine oder mehrere der zuvor genannten Randbedingungen für den jeweiligen Abschnitt vorgegeben werden. Die Randbedingungen können derart gewählt werden, dass Randbedingungen am Ende eines Abschnitts mit den Randbedingungen am Anfang des folgenden Abschnitts übereinstimmen. Dadurch können auf einfache Art und Weise sprunghafte Veränderungen der Beschleunigung, Geschwindigkeit und der Lage des Ventils zwischen zwei Abschnitten vermieden werden.
  • Gemäß einer Ausführungsform wird der Verlauf des Sollhubwerts des Ventils über dem Zeitintervall zu einem Kurbelwellendrehwinkel einer Kurbelwelle der Brennkraftmaschine in Bezug gesetzt. Da eine Steuerung der Ventile der Brennkraftmaschine üblicherweise in Bezug auf eine aktuelle Position der Kurbelwelle der Brennkraftmaschine durchgeführt wird, ist es vorteilhaft, die aktuelle Position, Geschwindigkeit und Beschleunigung eines Ventils in Bezug auf einen Drehwinkel der Kurbelwelle zu betrachten anstatt in Bezug zur Zeit. Da der Kurbelwellendrehwinkel bei einer bestimmten Drehzahl der Brennkraftmaschine in einer festen Beziehung zur Zeit steht, können die Position, Geschwindigkeit und Beschleunigung des Ventils gleichermaßen als Funktionen des Drehwinkels der Kurbelwelle betrachtet werden.
  • Gemäß einer weiteren Ausführungsform wird die Sollhubkurve des Ventils in einer Sollhubkurve-Bestimmungseinheit bestimmt und über beispielsweise eine Kommunikationsverbindung zu einer mit dem Ventil gekoppelten Ventilsteuervorrichtung übertragen. Gemäß dieser Ausführungsform werden dabei nur Sollhubwerte an Grenzen der Abschnitte von der Sollhubkurve-Bestimmungseinheit zu der Ventilsteuervorrichtung übertragen. Das bedeutet, dass von der Sollhubkurve-Bestimmungseinheit nur eine Länge des jeweiligen Abschnitts als Zeit oder Kurbelwellendrehwinkel und die entsprechenden Sollhubwerte zu Beginn und am Ende des Abschnitts zu der Ventilsteuervorrichtung übertragen werden. Die Ventilsteuervorrichtung kann dann durch Definieren von jeweils einer stetig definierbaren Funktion für den Verlauf des Sollhubwerts für jeden der mehreren Abschnitte eine Sollhubkurve für den Abschnitt wie zuvor beschrieben bestimmen. Die Sollhubkurve-Bestimmungseinheit kann beispielsweise Teil einer Motorelektronik der Brennkraftmaschine sein, wohingegen die Ventilsteuervorrichtung eine eigene Einheit sein kann, welche über die Kommunikationsverbindung mit der Motorelektronik gekoppelt ist. Dadurch kann ein Kommunikationsaufwand zwischen der Motorelektronik und der Ventilsteuervorrichtung minimiert werden.
  • Im Rahmen der vorliegenden Erfindung wird ferner eine Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine bereitgestellt. Die Vorrichtung umfasst eine Ventilsteuervorrichtung zum Steuern des Ventils unter Verwendung einer Sollhubkurve und eine Sollhubkurve-Bestimmungseinheit. Die Sollhubkurve beschreibt einen Verlauf des Sollhubwerts des Ventils über einem Zeitintervall bzw. einem Drehwinkel einer Kurbelwelle der Brennkraftmaschine. Die Sollhubkurve-Bestimmungseinheit ist ausgestaltet, dass Zeitintervall in mehrere Abschnitte zu teilen und jeweilige Randbedingungen für jeden der mehreren Abschnitte festzulegen. Weiterhin ist die Sollhubkurve-Bestimmungseinheit ausgestaltet, für jeden der mehreren Abschnitte jeweils eine stetig differenzierbare Funktion für den Verlauf des Sollhubwerts zu definieren. Die jeweilige stetig differenzierbare Funktion erfüllt dabei die jeweiligen Randbedingungen des jeweiligen Abschnitts. Durch Aneinanderreihen der stetig differenzierbaren Funktionen der mehreren Abschnitte bildet die Sollhubkurve-Bestimmungseinheit schließlich die Sollhubkurve. Die Vorrichtung kann zum Durchführen des zuvor beschriebenen Verfahrens oder einer seiner Ausführungsformen ausgestaltet sein und umfasst daher auch die zuvor beschriebenen Vorteile.
  • Schließlich wird gemäß der vorliegenden Erfindung ein Fahrzeug bereitgestellt, welches eine Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine umfasst, wie sie zuvor beschrieben wurde.
  • Die vorliegende Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand bevorzugter Ausführungsformen erläutert werden.
  • 1 zeigt eine Beschleunigungsfunktion für Ventil, welche zur Definition einer zweifach stetig differenzierbaren Funktion für den Verlauf des Sollhubwerts des Ventils verwendet werden kann.
  • 211 zeigen verschiedene Hubkurvendefinitionen welche auf Beschleunigungsgeraden basieren, gemäß verschiedener Ausführungsformen der vorliegenden Erfindung.
  • 12 zeigt eine Hubkurvendefinition, welche auf Beschleunigungsgeraden basiert und aus mehreren Abschnitten zusammengesetzt ist, gemäß einer Ausführungsform der vorliegenden Erfindung.
  • 13 zeigt schematisch eine Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine gemäß einer Ausführungsform der vorliegenden Erfindung.
  • 14 zeigt eine Hubkurvendefinition für ein Ventil gemäß einer Ausführungsform der vorliegenden Erfindung mit Sollhubwerten an Grenzen von Abschnitten, welche zu einer Ventilsteuervorrichtung übertragen werden.
  • 15 zeigt eine Hubkurvendefinition gemäß einer Ausführungsform der vorliegenden Erfindung, welche auf den übertragenen Sollhubwerten der 14 basiert.
  • Der Hub, die Geschwindigkeit und die Beschleunigung eines Ventils einer Brennkraftmaschine werden in dieser Beschreibung zumeist als Funktion eines Kurbelwellendrehwinkels statt als Funktion der Zeit beschrieben, da diese Darstellung im Zusammenhang mit einer Brennkraftmaschine vorteilhaft ist und bei Brennkraftmaschinen üblicherweise der Hub des Ventils in Bezug auf eine Position der Kurbelwelle der Brennkraftmaschine interessiert. Da der Kurbelwellendrehwinkel über die Drehzahl der Brennkraftmaschine direkt in Beziehung zur Zeit steht, können die Bezugsgrößen Zeit und Kurbelwellendrehwinkel einfach gegeneinander ausgetauscht werden.
  • Bei einem elektromotorischen vollvariablen Ventiltrieb wird eine Kraft auf ein Ventil durch einen Strom in Motor-Teilkreisen eines Ventilaktors bestimmt. Der Zusammenhang zwischen Strom und Kraft ist hierbei im Allgemeinen wegabhängig. Somit ist der Strom im Aktor ein Maß für die wegabhängige Beschleunigung, welche gemäß F = m × a proportional zur Kraft und somit proportional zum Strom ist. Die Induktivitäten des elektromotorischen vollvariablen Ventiltriebs erlauben keine direkte Vorgabe des Stroms und somit ist der Strom eine Zustandsgröße des Ventiltriebs. Durch Vorgabe einer Klemmenspannung an dem Ventiltrieb ergibt sich daher ein Stromgradient. Somit ermöglicht der Aktor keine sprunghaften Stromverläufe, keine sprunghaften Kraftverläufe und auch keine sprunghaften Beschleunigungsverläufe.
  • Aus diesem Grunde wird gemäß der vorliegenden Erfindung zum Definieren einer Sollhubkurve, unter deren Verwendung das Ventil gesteuert wird, eine beschleunigungskontinuierliche Ventilhub-Sollwertvorgabe verwendet. Dazu werden, wie in 1 dargestellt ist, Beschleunigungsgeraden 18 aneinandergereiht. Jede der Beschleunigungsgeraden oder Beschleunigungsstrecken 18 weist eine konstante Steigung auf. Die Beschleunigungsstrecken 18 sind derart aneinandergereiht, dass sich ein stetiger Verlauf der Beschleunigung a über dem Winkel φ ergibt. Die Sollhubkurve für das Ventil wird dann durch zweimalige Integration der Beschleunigungsgeraden 18 über dem Winkel φ berechnet. a = m·φ + b (1) v = ∫adφ (2) s = ∫∫adφ2 (3)
  • Die Verwendung von Geraden in der physikalischen Dimension Beschleunigung bietet den Vorteil, dass sowohl Ventilhub als auch Ventilgeschwindigkeit analytisch berechnet werden können. Umgekehrt ist dadurch der Ventilhub zweimal stetig differenzierbar, was Vorteile bei einer Reglerauslegung und Reglervorsteuerung für den Ventiltrieb bietet. Weiterer Vorteil ist, dass sich die physikalischen Eigenschaften der Aktoren, beispielsweise eine Massenträgheit des Ventils und des Ventiltriebs sowie der wegabhängige Strom-Kraft-Zusammenhang, gut durch die Beschleunigungsgeraden berücksichtigen lassen. Die Sollhubkurve lässt sich daher mit dem Aktor einfach mit verhältnismäßig geringen Strömen realisieren. Darüber hinaus bietet die Beschreibung auf der Grundlage von Beschleunigungsgeraden die Möglichkeit, beliebige Hubkurvenverläufe zu realisieren. Dazu sind lediglich hinreichend viele Geraden aneinanderzureihen.
  • Häufig wiederkehrende Folgen von Beschleunigungsgeraden können als Abschnitte oder Sequenzen dargestellt werden und somit als Baukasten zum Zusammenstellen von Sollhubkurven verwendet werden. Dabei kann insbesondere ein Beschleunigungstrapez verwendet werden, welches aus drei Beschleunigungsgeraden zusammengesetzt ist. Das Beschleunigungstrapez weist in einem ersten Teilabschnitt eine erste Steigung, in einem zweiten Teilabschnitt einen konstanten Wert, und in einem dritten Teilabschnitt eine zweite Steigung auf, welche betragsmäßig gleich der ersten Steigung ist, aber ein umgekehrtes Vorzeichen aufweist. Der erste Teilabschnitt und der dritte Teilabschnitt haben eine gleiche Länge, sodass die Beschleunigung am Anfang und am Ende des Trapezes gleich ist. Vorzugsweise ist die Beschleunigung am Anfang des Trapezes und am Ende des Trapezes identisch null.
  • Unter Bezugnahme auf 211 werden nachfolgend einige derartige Sequenzen oder Abschnitte im Detail beschrieben werden.
  • Sequenz 1: Gerade mit Beschleunigung null
  • 2 zeigt eine Sequenz, bei der zwischen einem Anfangskurbelwellendrehwinkel φi und einem Endkurbelwellendrehwinkel φi+1 die Beschleunigung a den konstanten Wert null aufweist. Die Beschleunigungsfunktion stellt somit ein entartetes Trapez mit Höhe null dar. Die Geschwindigkeit v des Ventils ändert sich somit zwischen dem Anfangskurbelwellendrehwinkel φi und dem Endkurbelwellendrehwinkel φi+1 nicht, sondern bleibt konstant auf dem Geschwindigkeitswert vi, welcher zu Beginn der Sequenz bei φi vorlag. Unter der Annahme einer positiven Geschwindigkeit vergrößert sich der Hub s des Ventils somit zwischen dem Anfangskurbelwellendrehwinkel φi und dem Endkurbelwellendrehwinkel φi+1 von si auf Bei dieser Sequenzkönnen beispielsweise der Anfangshub si, der Endhub si+1 sowie die Anfangsgeschwindigkeit vi als Randbedingungen vorgegeben werden. Gemäß der Gleichung
    Figure 00080001
    kann die Länge Δφ der Sequenz bestimmt werden.
  • Sequenz 2: Hubänderung in vorbestimmter Zeit
  • 3 zeigt eine Sequenz, bei welcher ausgehend von einem Anfangshub si und einer Anfangsgeschwindigkeit vi innerhalb einer vorbestimmten Zeit bzw. eines vorbestimmten Kurbelwellendrehwinkels Δφ ein Endhub si+1 erreicht werden soll. Neben den Randbedingungen Anfangshub si, Endhub si+1, Anfangsgeschwindigkeit vi und dem Kurbelwellendrehwinkel Δφ zum Erreichen des Endhubs, wird ein Faktor f vorgegeben, welcher eine Länge eines Teilabschnitts der Sequenz angibt, in welcher die Beschleunigung a von null auf ihren Maximalwert aMax ansteigt. Der Faktor f kann beispielsweise 0.2, 1/3 oder 0.4 betragen. Der Faktor f wird darüber hinaus dazu verwendet, die Länge des Teilabschnitts zu definieren, welche verwendet wird, um die Beschleunigung von aMax auf null am Ende der Sequenz wieder herunterzufahren. Aus diesen Randbedingungen kann gemäß der Gleichung
  • Figure 00090001
  • Die maximale Beschleunigung aMax und somit die Steigung der ersten Geraden des Beschleunigungstrapezes und die Steigung der letzten Geraden des Beschleunigungstrapezes bestimmt werden.
  • Sequenz 3: vorbestimmten Hub mit Geschwindigkeit und Beschleunigung null erreichen
  • 4 zeigt eine Sequenz bei der ein vorgegebener Endhub si+1 bei vorgegebenem Anfangshub si und vorgegebener Anfangsgeschwindigkeit vi derart erreicht wird, dass bei Erreichen des Endhubs si+1 die Geschwindigkeit vi+1 und die Beschleunigung ai des Ventils jeweils null betragen. Gemäß der Gleichungen
    Figure 00090002
    werden aus den Randbedingungen die maximale Beschleunigung aMax und die Länge der Sequenz als Kurbelwellendrehwinkel Δφ berechnet.
  • Sequenz 4: Erreichen eines Maximalhubs und Rückkehr zum Anfangshub
  • 5 zeigt eine Sequenz, bei welcher der Hub s des Ventils ausgehend von einem Anfangshub si auf einen vorgegebenen Maximalhub sMax vergrößert wird und anschließend wieder auf den Anfangshub si zurückgesteuert wird. Weitere Randbedingungen für diese Sequenz ist eine geeignete Ausgangsgeschwindigkeit vi. Mit Hilfe der Gleichungen
    Figure 00100001
    werden eine Maximalbeschleunigung aMax für das Beschleunigungstrapez und eine Länge der Sequenz Δφ bestimmt. Wie in 5 schematisch gezeigt ist, ergibt sich aus dem so gewählten Beschleunigungstrapez der gewünschte Verlauf des Ventilhubs s.
  • Sequenz 5: Gerade mit Beschleunigung null
  • Diese Sequenz entspricht dem Prinzip der Sequenz 1, wobei jedoch bei dieser Sequenz die Länge der Sequenz Δφ = φi+1 – φi angegeben wird und daraus und aus der Anfangsgeschwindigkeit vi und dem Anfangshub si der Endhub si+1 gemäß der Gleichung (4) bestimmt wird (6).
  • Sequenz 6: Öffnungsdauer des Ventils gewährleisten
  • Wie in 7 gezeigt ist, sind bei dieser Sequenz sowohl die Geschwindigkeit v als auch die Beschleunigung a gleich null. Der Hub des Ventils ändert sich während dieser Sequenz somit nicht und bleibt konstant bei si. Als Randbedingungen wird der Abstand bzw. Kurbelwellendrehwinkel zwischen einem Ventilöffnungspunkt und einem Ventilschließpunkt angegeben. Darüber hinaus werden die Hubhöhen, welche das Öffnen des Ventils bzw. das Schließen des Ventils angeben, als Randbedingungen vorgegeben. Als Ergebnis wird bei dieser Sequenz die Länge Δφ der Sequenz derart bestimmt, dass die Randbedingungen für das Öffnen und Schließen des Ventils erfüllt werden und somit die gewünschte Öffnungsdauer des Ventils gewährleistet wird. Dazu sind gegebenenfalls vorhergehende Sequenzen oder nachfolgende Sequenzen zu berücksichtigen, um den Zeitpunkt bzw. Kurbelwellendrehwinkel zu bestimmen, zu denen das Ventil öffnet bzw. schließt. Diese Sequenz stellt somit die gewünschte Öffnungsdauer sicher und wird daher vorzugsweise nur einmal pro Sollhubkurve für einen Zyklus des Ventils verwendet.
  • Sequenz 7: Geschwindigkeitsaufnahme in vorbestimmter Zeit
  • In 8 ist ein Hubverlauf, ein Geschwindigkeitsverlauf und ein Beschleunigungsverlauf für eine Sequenz dargestellt, in welcher die Geschwindigkeit des Ventils ausgehend von einer Anfangsgeschwindigkeit vi innerhalb einer vorgegebenen Zeit oder innerhalb eines vorgegebenen Kurbelwellendrehwinkels Δφ auf eine Endgeschwindigkeit vi+1 erhöht wird. Das Beschleunigungstrapez gibt einen entsprechenden Verlauf der Beschleunigung für das Ventil an, wobei der Maximalwert der Beschleunigung aMax gemäß der folgenden Gleichung
    Figure 00110001
    bestimmt wird. Des Weiteren ist in 8 der Verlauf des Hubes s des Ventils über dem Kurbelwellendrehwinkel Δφ der Sequenz gezeigt.
  • Sequenz 8: Geschwindigkeitsaufnahme mit vorgegebener Beschleunigung
  • 9 zeigt eine Sequenz, bei welcher das Ventil mit einer vorgegebenen maximalen Beschleunigung aMax und einer Anfangsgeschwindigkeit vi von null auf eine vorgegebene Endgeschwindigkeit vi+1 beschleunigt wird. Gemäß der nachfolgenden Gleichungen
    Figure 00110002
    werden der dazu erforderliche Kurbelwellendrehwinkel Δφ und der Endhub si+1 des Ventils bestimmt (unter der Annahme, dass der Anfangshub si des Ventils null beträgt).
  • Sequenz 9: Geschwindigkeitsaufnahme innerhalb eines vorbestimmten Hubs
  • 10 zeigt eine Sequenz, bei welcher ausgehend von einem Anfangshub si und einer Anfangsgeschwindigkeit vi eine vorbestimmte Endgeschwindigkeit vi+1 und ein vorgegebener Endhub si+1 erreicht werden. Gemäß den nachfolgenden Gleichungen
    Figure 00110003
    wird eine Länge der Sequenz als Kurbelwellendrehwinkel Δφ und einer Maximalbeschleunigung aMax bestimmt. Durch Ansteuern des Ventiltriebs gemäß dem in 10 gezeigten Beschleunigungstrapezes wird die gewünschte Geschwindigkeitsaufnahme innerhalb des Hubs erreicht.
  • Sequenz 10: Erreichen eines vorbestimmten Hubs mit Geschwindigkeit und Beschleunigung gleich null
  • 11 zeigt eine Sequenz, bei welcher ein Ventil, welches sich mit einer Anfangsgeschwindigkeit vi bei einem Anfangshub si bewegt, mit Hilfe eines Beschleunigungstrapezes derart angesteuert wird, dass es einen vorgegebenen Endhub si+1 mit einer kontinuierlich abnehmenden Geschwindigkeit und Endgeschwindigkeit v–i+1 = 0 erreicht. Die Maximalbeschleunigung aMax und die Länge der Sequenz als Kurbelwellendrehwinkel Δφ wird gemäß der folgenden Gleichungen bestimmt:
    Figure 00120001
  • Durch Aneinanderreihen der zuvor beschriebenen beispielhaften Sequenzen können nahezu beliebige Sollhubkurven für das Ventil erzeugt werden. Dabei wird sichergestellt, dass weder die Beschleunigung noch die Geschwindigkeit eine sprunghafte Veränderung aufweist. Darüber hinaus beträgt die Beschleunigung sowohl am Anfang als auch am Ende einer jeder Sequenz jeweils null. Durch die analytische Beschreibung der Beschleunigungs-, Geschwindigkeits- und Hubkurven ist der Gesamtzustand des Ventils zu jedem beliebigen Zeitpunkt und zu jeder beliebigen Winkelstellung der Kurbelwelle exakt berechenbar.
  • 12 zeigt eine Sollhubkurve 121 für ein Ventil zum Öffnen und Schließen des Ventils, welche aus sieben Sequenzen zusammengesetzt ist. Zwischen 0 und näherungsweise 60° des Kurbelwellendrehwinkels φ wird die Sequenz 2 durchgeführt, welche das Ventil beginnend von einem Ausgangshub von näherungsweise 0 mm auf einen Endhub von näherungsweise 3 mm öffnet. Mit Hilfe der Sequenz 1, d. h. ohne weitere Beschleunigung des Ventils, öffnet sich das Ventil bei konstanter Geschwindigkeit weiter bis auf näherungsweise 7 mm bei einem Kurbelwellendrehwinkel von näherungsweise 80°. Dort beginnt Sequenz 3 wodurch das Ventil auf einen vorgegebenen Hub von näherungsweise 10 mm derart geöffnet wird, dass es bei Erreichen des vorgegebenen Hubs eine Geschwindigkeit von 0 m/s aufweist. Auch die Beschleunigung beträgt zu diesem Zeitpunkt, d. h. bei einem Kurbelwellendrehwinkel von näherungsweise 130°, null. Bei dem Kurbelwellendrehwinkel von näherungsweise 130° beginnt Sequenz 6, welche das Ventil so lange in der geöffneten Position lässt, dass eine vorgegebene Öffnungsdauer gewährleistet wird. Die Öffnungsdauer wird durch einen Zeitpunkt einer Ventilöffnung und einem Zeitpunkt eines Ventilschließens definiert. Dazu kann beispielsweise eine Hubhöhe festgelegt werden, ab welcher das Ventil als geöffnet gilt. In 12 ist diese Hubhöhe bei näherungsweise 0,5 mm als Linie 124 eingezeichnet. Der so definierte Öffnungsbeginn liegt bei näherungsweise 20° Kurbelwellendrehwinkel und das Ventil schließt bei näherungsweise 270° Kurbelwellendrehwinkel. Unter Berücksichtigung des Sollhubkurvenverlaufs der nachfolgenden Sequenzen wird die Länge der Sequenz 6 derart bestimmt, dass eine Öffnungsdauer von näherungsweise 250° Kurbelwellendrehwinkel gewährleistet wird. Die Länge der Sequenz 6 beträgt bei diesem Beispiel näherungsweise 30° und endet somit bei näherungsweise 160° Kurbelwellendrehwinkel. An dieser Stelle beginnt eine weitere Sequenz 2, wodurch der Hub des Ventils zum Kurbelwellendrehwinkel bei näherungsweise 210° auf einen Wert von näherungsweise 7 mm verringert wird. Darauf folgt eine weitere Sequenz 1, wodurch das Ventil bei konstanter Geschwindigkeit auf einen Wert von näherungsweise 3 mm eingestellt wird. Diese Ventileinstellung wird bei einem Kurbelwellendrehwinkel von näherungsweise 230° erreicht. Abschließend wird die Sequenz 3 verwendet, um das Ventil auf einen Endhub von 0 mm derart zu steuern, dass dieser Endhub mit einer Geschwindigkeit von null und einer Beschleunigung von null erreicht wird. Dieser Zustand des Ventils wird bei näherungsweise 290° Kurbelwellendrehwinkel erreicht.
  • Wie aus 12 ersichtlich ist, werden zum Steuern des Ventils gemäß der Sollhubkurve 121 keine sprunghaften Beschleunigungs- oder Geschwindigkeitsänderungen benötigt. Daher lässt sich die Sollhubkurve 121 mit einem elektromotorischen vollvariablen Ventiltrieb realisieren. Der Strom zur Ansteuerung des Aktors kann im Wesentlichen proportional zur Beschleunigung sein. Wie aus der Beschleunigungskurve 123 der 12 ersichtlich ist, wird zur Realisierung der Sollhubkurve 121 keine sprunghafte Beschleunigung und somit auch keine sprunghafte Stromveränderung benötigt. Der Geschwindigkeitsverlauf 122 des Ventils, wie er in 12 dargestellt ist, verdeutlicht, dass das Ventil seine Endpositionen, d. h. den voll geöffneten Zustand und den geschlossenen Zustand mit Geschwindigkeit null und Beschleunigung null erreicht. Demzufolge setzt das Ventil sanft im Zylinderkopf auf, wodurch mechanische Belastungen am Ventil und der Verbrennungskraftmaschine minimiert werden können.
  • 13 zeigt schematisch eine Vorrichtung 131 zum Steuern eines Ventils 132 einer Brennkraftmaschine. Die Vorrichtung 131 umfasst eine Ventilsteuervorrichtung 133, welche über einen Aktor 134 das Ventil 132 unter Verwendung einer Sollhubkurve steuert. Die Sollhubkurve beschreibt einen Verlauf eines Sollhubwertes des Ventils über einem Zeitintervall oder einem Kurbelwellendrehwinkel, wie es zuvor beschrieben wurde. Die Vorrichtung 131 umfasst eine Sollhubkurve-Bestimmungseinheit 135, welche mit der Ventilsteuervorrichtung 133 über eine Kommunikationsverbindung 136 gekoppelt ist und welche ausgestaltet ist, die Sollhubkurve wie zuvor beschrieben in Abhängigkeit von einem Zustand der Brennkraftmaschine zu bestimmen. Der Zustand der Brennkraftmaschine kann beispielsweise einen Belastungszustand, ein aktuelles Drehmoment, eine aktuelle Drehzahl, einen aktuellen Ladedruck eines Turboladers der Brennkraftmaschine oder eine aktuelle Temperatur der Brennkraftmaschine umfassen. Die Sollhubkurve-Bestimmungseinheit 135 kann beispielsweise Teil einer Motorelektronik der Brennkraftmaschine sein, wohingegen die Ventilsteuervorrichtung 133 eine eigene Steuervorrichtung zum Steuern der Ventile der Brennkraftmaschine ist. Über die Kommunikationsverbindung 136 werden daher Informationen zur Steuerung des Ventils 132 von der Sollhubkurve-Bestimmungseinheit 135 zu der Ventilsteuervorrichtung 133 übertragen. Beispielsweise können über die Kommunikationsverbindung 136 die zuvor beschriebenen Sequenzen und ihre spezifischen Parameter (Randbedingungen) übertragen werden. Alternativ können über die Kommunikationsverbindung 136 auch beispielsweise Start- und Endpunktewertepaare der Beschleunigungsgeraden, welche die Beschleunigungskurve bilden, also beispielsweise Eckpunkte der Beschleunigungskurve 123 der 12 übertragen werden.
  • Um die Übertragung auf der Kommunikationsverbindung 136 effizient zu gestalten, kann darüber hinaus ein Verfahren zur Datenreduktion verwendet werden. Dieses Verfahren wird beispielhaft anhand der 14 und 15 nachfolgend beschrieben. Bei dem Datenreduktionsverfahren werden Wertepaare, welche jeweils einen Kurbelwellendrehwinkel und einen dazugehörigen Ventilsollhub umfassen, über die Kommunikationsverbindung 136 übertragen. Dabei werden diese Wertepaare nur für Kurbelwellendrehwinkel übertragen, bei denen eine Sequenz beginnt bzw. endet. Das heißt, es werden nur die Sollhubwerte und die entsprechenden Kurbelwellendrehwinkel an den Endpunkten der Beschleunigungstrapeze über die Kommunikationsverbindung 136 übertragen. Aufgrund der Tatsache, dass die Beschleunigungstrapeze am Anfang und am Ende jeweils den Wert null aufweisen, lassen sich die Beschleunigungstrapeze allein aus der Information über den Kurbelwellendrehwinkel und den zugehörigen Ventilsollhub rekonstruieren. Somit werden neben dem Startwertepaar des ersten Beschleunigungstrapezes nur noch Wertepaare an den Endpunkte der nachfolgenden Beschleunigungstrapeze übertragen. Die Übertragung von Ventilsollhub und Kurbelwellendrehwinkel weist den Vorteil auf, dass ein Integrationsfehler des Hubs bzw. der Geschwindigkeit minimiert wird.
  • 14 zeigt beispielhaft eine Ventilsollhubkurve 141 mit zugehöriger Geschwindigkeitskurve 142 und Beschleunigungskurve 143, wie sie in der Sollhubkurve-Bestimmungseinheit 135 erzeugt wurde. Die Sollhubkurve-Bestimmungseinheit 135 kann diese Kurven unter Verwendung der Sequenzen wie im Zusammenhang mit 12 beschrieben wurde erzeugen. Darüber hinaus zeigt 14 eine weitere Kurve 144, welche die Ableitung der Beschleunigung über dem Kurbelwellendrehwinkel φ darstellt.
  • Wie zuvor beschrieben, werden von der Sollhubkurve-Bestimmungseinheit 135 nur Wertepaare am Anfang bzw. am Ende einer Sequenz an die Ventilsteuervorrichtung 133 übertragen. Wie aus der Beschleunigungskurve 143 der 14 ersichtlich ist, besteht die Beschleunigungskurve 143 aus fünf Sequenzen, wovon die erste, dritte und fünfte Sequenz jeweils ein echtes Beschleunigungstrapez darstellen, wohingegen die zweite und vierte Sequenz entartete Trapeze darstellen, welche einen konstanten Wert von null aufweisen. Das erste Trapez beginnt bei einem Kurbelwellendrehwinkel von 0°, das zweite bei einem Kurbelwellendrehwinkel von näherungsweise 60°, das dritte bei näherungsweise 80°, das vierte bei näherungsweise 170° und das fünfte bei näherungsweise 190°. Das fünfte Beschleunigungstrapez endet bei näherungsweise 250°. Demzufolge werden sechs Wertepaare mit Kurbelwellendrehwinkel und Sollhubwert an die Ventilsteuervorrichtung 133 übertragen. Die zu übertragenden Sollhubwerte sind in 14 mit den Bezugszeichen 141a141f gekennzeichnet. Unter der Voraussetzung, dass die Beschleunigungstrapeze zu Beginn und am Ende einer jeden Sequenz jeweils den Wert null aufweisen und bei der Rekonstruktion in der Ventilsteuervorrichtung 133 und der Sollhubkurve-Bestimmungseinheit 135 der gleiche Faktor f, welcher in Zusammenhang mit 3 zuvor beschrieben wurde, verwendet wird, kann aus den übertragenen Wertepaaren die Beschleunigungskurve 143 und daraus die Geschwindigkeitskurve 142 und die Sollhubkurve 141 in der Ventilsteuervorrichtung 133 rekonstruiert werden. Zusätzlich kann die Ventilsteuervorrichtung 133 aus der Beschleunigungskurve 143 die Ableitung der Beschleunigung (Kurve 144) bestimmen, um eine Reglervorsteuerung für den Aktor 134 bereitzustellen.
  • Sogar wenn die Ventilsteuervorrichtung 133 einen anderen Faktor f verwendet, beispielsweise weil der mit der Ventilsteuervorrichtung 133 gekoppelte Aktor 134 andere mechanische Charakteristika und somit beispielsweise eine andere maximale Beschleunigung aufweist kann mit Hilfe der übertragenen Wertepaare im Wesentlichen die gleiche oder eine zumindest sehr ähnliche Sollhubkurve für das Ventil 133 rekonstruiert, wie unter Bezugnahme auf 15 gezeigt wird. In der Sollhubkurve 151 sind die Wertepaare 141a141f, welche gemäß 14 in der Sollhubkurve-Bestimmungseinheit 135 (Kurve 141 der 14) erzeugt wurden, dargestellt. Die Ventilsteuervorrichtung der 15 verwendet beispielsweise einen Faktor f von näherungsweise 0,4, wohingegen in der Sollhubkurve-Bestimmungseinheit 135 ein Faktor von näherungsweise 0,2 verwendet wurde. Demzufolge ergibt sich in der Ventilsteuervorrichtung 133 bei der Rekonstruktion die in 15 gezeigte Beschleunigungskurve 153, welche gegenüber der 14 veränderte Beschleunigungstrapeze aufweist. Die Beschleunigungskurve 153 ist jedoch derart ausgestaltet, dass die Stützstellen 141a141f der Sollhubkurve erreicht werden. Dementsprechend ergibt sich eine Geschwindigkeitskurve 152, welche der Geschwindigkeitskurve 142 schon sehr ähnlich ist und eine Sollhubkurve 151, welche nur noch sehr geringe Abweichungen gegenüber der Sollhubkurve 141 aufweist. Aufgrund des geänderten Faktors f ergibt sich eine starke Veränderung bei der Ableitung der Beschleunigungskurve, wodurch eine angepasste Reglervorsteuerung in der Ventilsteuervorrichtung 133 erreicht wird.

Claims (14)

  1. Verfahren zum Steuern eines Ventils einer Brennkraftmaschine, wobei das Ventil (132) unter Verwendung einer Sollhubkurve (121, 141, 151) gesteuert wird, welche einen Verlauf eines Sollhubwerts des Ventils (132) über einem Zeitintervall beschreibt, und wobei die Sollhubkurve (121, 141, 151) automatisch bestimmt wird durch: – Teilen des Zeitintervalls in mehrere Abschnitte und Festlegen von jeweiligen Randbedingungen für jeden der mehreren Abschnitte, – Definieren von jeweils einer stetig differenzierbaren Funktion für den Verlauf des Sollhubwerts für jeden der mehreren Abschnitte, wobei die jeweilige stetig differenzierbare Funktion die jeweiligen Randbedingungen des jeweiligen Abschnitts erfüllt, und – Bilden der Sollhubkurve (121, 141, 151) durch Aneinanderreihen der stetig differenzierbaren Funktionen der mehreren Abschnitte.
  2. Verfahren nach Anspruch 1, wobei die stetig differenzierbare Funktion eine zweifach stetig differenzierbare Hubfunktion für den Verlauf des Sollhubwerts ist.
  3. Verfahren nach Anspruch 2, wobei das Definieren der jeweiligen zweifach stetig differenzierbaren Hubfunktion umfasst: – Definieren einer jeweiligen Beschleunigungsfunktion (123, 143, 153), welche eine stückweise lineare Funktion ist, die in einem ersten Teilabschnitt des jeweiligen Abschnitts eine erste Steigung aufweist, in einem zweiten Teilabschnitt des jeweiligen Abschnitts einen konstanten Wert aufweist, und in einem dritten Teilabschnitt des jeweiligen Abschnitts eine zweite Steigung aufweist, – Bestimmen einer Geschwindigkeitsfunktion (122, 142, 152) durch Integrieren der Beschleunigungsfunktion (123, 143, 153) unter Berücksichtigung der jeweiligen Randbedingungen des jeweiligen Abschnitts, und – Bestimmen der zweifach stetig differenzierbaren Hubfunktion durch Integrieren der Geschwindigkeitsfunktion (122, 142, 152) unter Berücksichtigung der jeweiligen Randbedingungen des jeweiligen Abschnitts.
  4. Verfahren nach Anspruch 3, wobei die jeweilige Beschleunigungsfunktion am Anfang des ersten Teilabschnitts den Wert 0 aufweist und am Ende des dritten Teilabschnitts den Wert null aufweist.
  5. Verfahren nach Anspruch 3 oder 4, wobei in dem jeweiligen Abschnitt die zweite Steigung den negativen Wert der ersten Steigung aufweist.
  6. Verfahren nach einem der Ansprüche 3–5, wobei in dem jeweiligen Abschnitt der erste Teilabschnitt und der dritte Teilabschnitt eine gleiche Länge aufweisen, wobei die Länge als Randbedingung f des Abschnitts vorgebbar ist.
  7. Verfahren nach einem der Ansprüche 3–5, wobei in dem jeweiligen Abschnitt der erste Teilabschnitt, der zweite Teilabschnitt und der dritte Teilabschnitt eine gleiche Länge aufweisen.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Randbedingungen der mehreren Abschnitte einen Anfangshubwert si des Ventils am Anfang des Abschnitts, eine Länge des Abschnitts Δφ, einen Endhubwert si+1 des Ventils am Ende des Abschnitts, einen Maximalhubwert sMax des Ventils innerhalb des Abschnitts, eine Geschwindigkeit vi des Ventils am Anfang des Abschnitts, eine Geschwindigkeit vi+1 des Ventils am Ende des Abschnitts und/oder eine maximale Beschleunigung aMax des Ventils innerhalb des Abschnitts aufweist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Randbedingungen derart gewählt werden, dass die Randbedingungen am Ende eines Abschnitts mit den Randbedingungen am Anfang des folgenden Abschnitts übereinstimmen.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Verlauf des Sollhubwerts des Ventils über dem Zeitintervall mit einem Kurbelwellendrehwinkel φ einer Kurbelwelle der Brennkraftmaschine in Bezug gesetzt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Sollhubkurve (121, 141, 151) des Ventils (132) in einer Sollhubkurve-Bestimmungseinheit (135) bestimmt wird und zu einer mit dem Ventil (132) gekoppelten Ventilsteuervorrichtung (133) übertragen wird, und wobei nur Sollhubwerte an Grenzen der Abschnitte von der Sollhubkurve-Bestimmungseinheit (135) zu der Ventilsteuervorrichtung (133) übertragen werden.
  12. Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine mit einer Ventilsteuervorrichtung (133) zum Steuern des Ventils (132) unter Verwendung einer Sollhubkurve (121, 141, 151), wobei die Sollhubkurve (121, 141, 151) einen Verlauf eines Sollhubwerts des Ventils (132) über einem Zeitintervall beschreibt, und mit einer Sollhubkurve-Bestimmungseinheit (135), welche ausgestaltet ist, – das Zeitintervall in mehrere Abschnitte zu teilen und jeweilige Randbedingungen für jeden der mehreren Abschnitte festzulegen, – für jeden der mehreren Abschnitte jeweils eine stetig differenzierbare Funktion für den Verlauf des Sollhubwerts zu definieren, wobei die jeweilige stetig differenzierbare Funktion die jeweiligen Randbedingungen des jeweiligen Abschnitts erfüllt, und – die Sollhubkurve (121, 141, 151) durch Aneinanderreihen der stetig differenzierbaren Funktionen der mehreren Abschnitte zu bilden.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Vorrichtung (131) zur Durchführung des Verfahrens nach einem der Ansprüche 1–11 ausgestaltet ist.
  14. Fahrzeug, umfassend eine Vorrichtung (131) zum Steuern eines Ventils (132) einer Brennkraftmaschine nach Anspruch 12 oder 13.
DE102010050232A 2010-10-30 2010-10-30 Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine Withdrawn DE102010050232A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102010050232A DE102010050232A1 (de) 2010-10-30 2010-10-30 Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine
EP11754302.5A EP2633172A1 (de) 2010-10-30 2011-09-03 Verfahren und vorrichtung zum steuern eines ventils einer brennkraftmaschine
PCT/EP2011/004447 WO2012055457A1 (de) 2010-10-30 2011-09-03 Verfahren und vorrichtung zum steuern eines ventils einer brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010050232A DE102010050232A1 (de) 2010-10-30 2010-10-30 Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
DE102010050232A1 true DE102010050232A1 (de) 2012-05-03

Family

ID=44582871

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010050232A Withdrawn DE102010050232A1 (de) 2010-10-30 2010-10-30 Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP2633172A1 (de)
DE (1) DE102010050232A1 (de)
WO (1) WO2012055457A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051569A1 (fr) * 2016-05-17 2017-11-24 Peugeot Citroen Automobiles Sa Procede et systeme de controle d'un actionneur electromagnetique de soupape d'un moteur thermique a loi d'accostage optimisee
CN109344562A (zh) * 2018-12-18 2019-02-15 重庆红江机械有限责任公司 一种船用柴油机供油凸轮升程曲线设计方法
CN113625657A (zh) * 2021-08-18 2021-11-09 深圳市英威腾电气股份有限公司 一种基于电子凸轮曲线的运动控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025619A1 (de) * 2007-06-01 2008-12-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines hydraulischen Stellers
DE102008052255A1 (de) * 2008-10-18 2010-04-22 Volkswagen Ag Verfahren zum Ansteuern eines elektromotorischen Aktuators eines Gaswechselventils
DE102008061236A1 (de) * 2008-12-09 2010-06-10 Man Diesel Se Verfahren und Ventilnocke zur Ventilsteuerung eines Verbrennungsmotors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514774A (ja) * 1996-09-02 1999-12-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 設定値生成器を用いての制御
DE19902664A1 (de) * 1999-01-25 2000-08-10 Daimler Chrysler Ag Verfahren zur Regelung der Zufuhr elektrischer Energie zu einer elektromagnetischen Einrichtung und Verwendung eines Sliding-Mode-Reglers
JP4244526B2 (ja) * 2001-03-13 2009-03-25 トヨタ自動車株式会社 電磁駆動弁の制御装置及び制御方法
US7919940B2 (en) * 2007-10-21 2011-04-05 Ge Intelligent Platforms, Inc. System and method for jerk limited trajectory planning for a path planner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025619A1 (de) * 2007-06-01 2008-12-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines hydraulischen Stellers
DE102008052255A1 (de) * 2008-10-18 2010-04-22 Volkswagen Ag Verfahren zum Ansteuern eines elektromotorischen Aktuators eines Gaswechselventils
DE102008061236A1 (de) * 2008-12-09 2010-06-10 Man Diesel Se Verfahren und Ventilnocke zur Ventilsteuerung eines Verbrennungsmotors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051569A1 (fr) * 2016-05-17 2017-11-24 Peugeot Citroen Automobiles Sa Procede et systeme de controle d'un actionneur electromagnetique de soupape d'un moteur thermique a loi d'accostage optimisee
CN109344562A (zh) * 2018-12-18 2019-02-15 重庆红江机械有限责任公司 一种船用柴油机供油凸轮升程曲线设计方法
CN113625657A (zh) * 2021-08-18 2021-11-09 深圳市英威腾电气股份有限公司 一种基于电子凸轮曲线的运动控制方法及装置
CN113625657B (zh) * 2021-08-18 2022-12-16 深圳市英威腾电气股份有限公司 一种基于电子凸轮曲线的运动控制方法及装置

Also Published As

Publication number Publication date
EP2633172A1 (de) 2013-09-04
WO2012055457A1 (de) 2012-05-03

Similar Documents

Publication Publication Date Title
DE10297129B4 (de) Verfahren zum Steuern des Ladedrucks eines turbogeladenen Verbrennungsmotors und zugehöriger Verbrennungsmotor
DE2915927C2 (de) Hubkolben-Brennkraftmaschine mit Mitteln zur Leistungsregelung
DE1916167A1 (de) Vorrichtung zum Regeln eines Verbrennungsmotors
DE102009038109A1 (de) Aktive Kompressionsverhältnismodulation durch Phasenverstellung des Einlassventils und Klopfsensorrückkopplung
DE102016209506B4 (de) Verfahren zum Bestimmen der Luft pro Zylinder
DE102008011613A1 (de) Turbolader mit einer Betätigungseinrichtung zum Öffnen und Schließen eines Wastegate-Kanals
DE102010050232A1 (de) Verfahren und Vorrichtung zum Steuern eines Ventils einer Brennkraftmaschine
DE102013014962A1 (de) Brennkraftmaschine und zugehöriges Betriebsverfahren
DE102014211160A1 (de) Verfahren und Steuereinheit zum Ausführen eines Gaswechsels in einem Zylinder einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine mit einer solchen Steuereinheit
DE102015209012B3 (de) Verfahren zur stoßfreien Lastaufschaltung bei aktivierter Zylinderabschaltung einer Brennkraftmaschine
EP2976512B1 (de) Brennkraftmaschine und verfahren zum betreiben einer solchen brennkraftmaschine
DE102019116341A1 (de) Verfahren zur VCR-Ansteuerung
DE19807763A1 (de) Vorrichtung und Verfahren zur Regelung oder Steuerung eines Stellgliedes
WO2016016228A1 (de) Verbrennungskraftmaschine mit einstellbarem verdichtungsverhaeltnis und zuschaltnocken und verfahren zum betreiben einer derartigen verbrennungskraftmaschine
DE102007024129A1 (de) Verfahren und Vorrichtung für ein Ölkreislaufmanagement in einer Verbrennungskraftmaschine
DE112017003751T5 (de) Steuern von einlassventilen in einem verbrennungsmotor
DE102016120607A1 (de) Systeme und Verfahren zur Kühlmitteltemperatur-Korrektur
DE102014002737B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors
DE102015218775A1 (de) Brennkraftmaschine
DE102017211961A1 (de) Verfahren zum Durchführen einer Positionsregelung für ein Stellsystem
DE102021132950B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102017112871A1 (de) Rastnocken zum Halten eines Ladedruckregelventils in geschlossener Position
DE102011017181A1 (de) Verfahren zum Betreiben einer Stelleinrichtung zum variablen Einstellen eines Verdichtungsverhältnisses einer Verbrennungskraftmaschine
DE60003644T2 (de) Methode für das regeln der leerlaufdrehzahl einer verbrennungsmaschine mit ventilen ohne nockenwellen
DE102015122537A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee