DE102010049834A1 - Netzwerk und Verfahren zum Betreiben eines Netzwerks - Google Patents

Netzwerk und Verfahren zum Betreiben eines Netzwerks Download PDF

Info

Publication number
DE102010049834A1
DE102010049834A1 DE102010049834A DE102010049834A DE102010049834A1 DE 102010049834 A1 DE102010049834 A1 DE 102010049834A1 DE 102010049834 A DE102010049834 A DE 102010049834A DE 102010049834 A DE102010049834 A DE 102010049834A DE 102010049834 A1 DE102010049834 A1 DE 102010049834A1
Authority
DE
Germany
Prior art keywords
voltage
participant
subscriber
line
coupling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102010049834A
Other languages
English (en)
Inventor
Dr. Döring Martin
Olaf Krieger
Dr. Titze Andreas
Henning Harbs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE102010049834A priority Critical patent/DE102010049834A1/de
Priority to PCT/EP2011/005348 priority patent/WO2012055526A1/de
Priority to EP11775744.3A priority patent/EP2633641A1/de
Priority to US13/881,579 priority patent/US9442543B2/en
Priority to CN201180051090.1A priority patent/CN103181116B/zh
Publication of DE102010049834A1 publication Critical patent/DE102010049834A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40045Details regarding the feeding of energy to the node from the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40039Details regarding the setting of the power status of a node according to activity on the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle

Abstract

Die Erfindung betrifft ein Netzwerk, insbesondere in einem Kraftfahrzeug, wobei das Netzwerk (1) einen zentralen Teilnehmer (2) und mindestens einen ersten Teilnehmer (3) umfasst, wobei der zentrale Teilnehmer (2) und der mindestens eine erste Teilnehmer (3) über mindestens ein erstes Kabel (7) verbunden sind, wobei der zentrale Teilnehmer (2) mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit (14) umfasst, wobei mittels der Signalkopplungseinheit eine Wechselspannung auf mindestens eine erste Leitung (21) des ersten Kabels (7) aufprägbar oder von dieser abgreifbar ist, wobei mittels der Energiekopplungseinheit (14) eine Gleichspannung mit vorbestimmten Spannungsniveau auf die erste Leitung (21) des ersten Kabels (7) aufprägbar ist, wobei der mindestens erste Teilnehmer (3) mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit (15) umfasst, wobei mittels der Signalkopplungseinheit eine Wechselspannung von der mindestens ersten Leitung (21) des ersten Kabels (7) abgreifbar oder auf diese aufprägbar ist, wobei mittels der Energiekopplungseinheit (15) die Gleichspannung von der mindestens ersten Leitung (21) des ersten Kabels (7) abgreifbar und an mindestens einen ersten Eingang (23) des ersten Teilnehmers (3) anlegbar ist, wobei die Gleichspannung eine erste Betriebsspannung des ersten Teilnehmer (3) ist, wobei der erste Teilnehmer (3) eine Signalisierungseinheit umfasst oder dem ersten Teilnehmer (3) eine Signalisierungseinheit zugeordnet ist, wobei mittels der Signalisierungseinheit in einem abgeschalteten oder schlafenden Zustand des ersten Teilnehmers (3) ein Bedarfssignal erzeugbar ist, wobei das Bedarfssignal von der Signalisierungseinheit an den zentralen Teilnehmer (2) über mindestens eine den ersten und den zentralen Teilnehmer (3, 2) verbindende Leitung übertragbar ist, sowie ein Verfahren zum Betreiben eines Netzwerks (1).

Description

  • Die Erfindung betrifft ein Netzwerk sowie ein Verfahren zum Betreiben eines Netzwerks.
  • Steuergeräte in Kraftfahrzeugen können über verschiedene Bussysteme, wie z. B. CAN-, MOST-, FlexRay- oder LIN-Bussysteme, kommunizieren. Die genannten Bussysteme unterscheiden sich in ihren Eigenschaften, wie z. B. einer Datenrate von zu übertragenden Daten, Stecker- und Kabelarten, Anzahl der an das Bussystem anschließbaren Steuergeräte, maximal zulässige Kabellänge usw. Eine Energieversorgung der Steuergeräte kann aus einem Bordnetz heraus erfolgen, in der Regel über so genannte Klemmen. Hierbei können Steuergeräte nur bei Bedarf oder ständig aus einem Bordnetz heraus mit Energie versorgt werden.
  • Bei ständig versorgten Steuergeräten besteht die Problematik, dass derartige Steuergeräte die Energiespeicher im Kraftfahrzeug, insbesondere die Bordnetzbatterie, ständig belasten, was zu einer vollständigen Entleerung der Bordnetzbatterie führen kann. Es sind daher Verfahren zum Netzwerkmanagement entwickelt worden, durch welche Steuergeräte bei Bedarf in einen ausgeschalteten Zustand oder einen Schlafzustand versetzt werden können, aus welchem diese dann aufgeweckt werden können. Durch das Ausschalten oder das Versetzen in einen Schlafzustand kann ein Energieverbrauch der Steuergeräte reduziert werden, was zu einer Entlastung der Bordnetzbatterie führt.
  • Mit dem Ziel weiterer Energieeinsparung werden derzeit Verfahren zu einem Betreiben von Netzwerken in einem so genannten Teilnetzbetrieb entwickelt. Hierbei soll es möglich sein, ausgewählte Steuergeräte auch während eines Fahrbetriebs des Kraftfahrzeugs gezielt an- bzw. abzuschalten und somit nur bei Bedarf miteinander kommunizieren zu lassen. Zur Umsetzung eines derartigen Teilnetzbetriebes ist jedoch eine Integration komplexer Logik in die Transceiverbausteine und Steuergeräte des jeweiligen Bussystems notwendig. Weiterhin ist eine geeignete Steuerung zur Koordination des Netzwerkzustandes notwendig. Dies erhöht die ohnehin hohe Systemkomplexität und begründet ein erhöhtes Fehlerpotential.
  • Ethernet erlaubt im Gegensatz zu CAN-, FlexRay- und LIN-Bussystemen eine gleichstromfreie Kommunikation. Bei mittels Ethernet realisierten Bussystemen kann somit ein Kommunikationssignal, in der Regel ein Wechselspannungssignal, auf eine Gleichspannung aufmoduliert werden, ohne dass Einbußen bei einer Qualität der Kommunikation zu befürchten sind. Die DE 10 2008 030 222 A1 offenbart ein Steuergerät zur Kommunikation mit einem differenziellen Bus-System, wobei das Steuergerät eine Koppeleinheit zur Einspeisung und/oder zur Detektion eines Signals umfasst, wobei die Koppeleinheit ein gemeinsames Potential mit einer weiteren an das Bus-System angeschlossenen Einheit nutzt.
  • Werden Steuergeräte aus einem Bordnetz mit Energie versorgt, so kann ein Bedarf bestehen, ein Spannungsniveau der Bordnetzspannung auf ein Spannungsniveau einer Betriebsspannung des jeweiligen Steuergerätes zu transformieren. Für eine derartige Transformation können u. a. so genannte Schaltregler und so genannte Längsregler eingesetzt werden. Bei einem Schaltregler wird eine Eingangsspannung des Schaltreglers periodisch ein- bzw. ausgeschaltet und auf ein Speicherglied gegeben. Je nach dem Verhältnis von Ein- zur Ausschaltzeit stellt sich am Ausgang des Schaltreglers bzw. des Speichergliedes eine bestimmte Durchschnittsspannung ein. Vorteilhaft sind hierbei eine geringe Verlustleistung, nachteilig jedoch ein hoher Schaltungsaufwand und EMV-Störungen durch die schnellen Schaltvorgänge.
  • Längsregler bieten im Gegensatz hierzu den Vorteil einer störungsärmeren Ausgangsspannung, haben jedoch aufgrund höherer Verlustwärme einen schlechteren Wirkungsgrad als Schaltregler. Es besteht jedoch die Problematik, dass bei Versorgung der Steuergeräte aus einem Bordnetz einem jeden Steuergerät mindestens einer der vorhergehend beschriebenen Regler zugeordnet sein muss.
  • Es stellt sich das technische Problem, ein Netzwerk und ein Verfahren zum Betreiben eines Netzwerks zu schaffen, welche eine Reduktion von Netzwerkelementen, insbesondere Elementen zur Verkabelung, gewährleistet und einen einfachen und sicheren sowie energiesparenden Teilnetzbetrieb erlaubt.
  • Die Lösung des technischen Problems ergibt sich aus den Gegenständen mit den Merkmalen der unabhängigen Ansprüche 1 und 10. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Vorgeschlagen wird ein Netzwerk, insbesondere ein Netzwerk in einem Kraftfahrzeug. Das Netzwerk ist hierbei vorzugsweise ein gleichstromfreies Netzwerk, insbesondere ein Ethernet-Netzwerk.
  • Das Netzwerk umfasst einen zentralen Teilnehmer und mindestens einen ersten Teilnehmer. Der zentrale Teilnehmer kann hierbei ein zentrales Steuergerät, insbesondere ein so genanntes Gateway, sein. Der erste Teilnehmer kann ein peripheres Steuergerät sein. Selbstverständlich kann das Netzwerk noch weitere Teilnehmer neben dem ersten Teilnehmer umfassen. Der zentrale Teilnehmer und der mindestens eine erste Teilnehmer sind über mindestens ein erstes Kabel verbunden. Analog können weitere Teilnehmer über jeweils weitere Kabel mit dem zentralen Teilnehmer verbunden sein. Insgesamt ergibt sich somit eine so genannte Sterntopologie des erfindungsgemäßen Netzwerks.
  • Der zentrale Teilnehmer umfasst mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit. Mittels der Signalkopplungseinheit ist eine Wechselspannung auf mindestens eine erste Leitung des ersten Kabels aufprägbar oder von dieser abgreifbar. Die Wechselspannung dient hierbei der Übertragung von Daten zur Kommunikation zwischen dem zentralen Teilnehmer und dem ersten Teilnehmer. Eine Kommunikation ist hierbei bidirektional möglich. Beim Senden von Daten prägt z. B. der zentrale Teilnehmer eine entsprechende Wechselspannung auf die mindestens erste Leitung des ersten Kabels auf. Beim Empfangen von Daten greift der zentrale Teilnehmer die entsprechende Wechselspannung von der mindestens ersten Leitung des ersten Kabels ab.
  • Mittels der Energiekopplungseinheit ist eine Gleichspannung mit vorbestimmtem Spannungsniveau auf die erste Leitung des ersten Kabels aufprägbar. Die Wechselspannung und die Gleichspannung können daher gleichzeitig auf die erste Leitung des ersten Kabels aufgeprägt sein. Es kann also die Wechselspannung auf die Gleichspannung moduliert werden.
  • Auch der mindestens eine erste Teilnehmer umfasst eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit. Mittels der Signalkopplungseinheit ist eine Wechselspannung von der mindestens ersten Leitung des ersten Kabels abgreifbar oder auf diese aufprägbar. Die Signalkopplungseinheit dient hierbei der bidirektionalen Kommunikation mit dem zentralen Teilnehmer mittels einer auf die erste Leitung aufgeprägten Wechselspannung. Mittels der Energiekopplungseinheit des ersten Teilnehmers ist die Gleichspannung, die von dem zentralen Teilnehmer auf die erste Leitung des ersten Kabels aufprägbar ist, von der mindestens ersten Leitung des ersten Kabels abgreifbar.
  • Erfindungsgemäß ist die erste Gleichspannung eine erste Betriebsspannung des ersten Teilnehmers oder, beispielsweise mittels eines Spannungswandlers, der Teil der Energiekopplungseinheit des ersten Teilnehmers sein kann, in die erste Betriebsspannung des ersten Teilnehmers transformierbar. Weiter ist die erste Betriebsspannung an mindestens einen ersten Eingang des ersten Teilnehmers anlegbar.
  • Die erste Gleichspannung ist hierbei eine erste Betriebsspannung des ersten Teilnehmers oder in eine solche transformierbar. Sie entspricht somit einer zum Betrieb des Teilnehmers, z. B. eines Steuergeräts, notwendigen Versorgungsspannung, beispielsweise einer Versorgungsspannung von 5 V.
  • Der erste Teilnehmer kann hierbei über mehrere Eingänge verfügen, an die Spannungen mit unterschiedlichen Spannungsniveaus anlegbar sind. Beispielsweise kann die erste Betriebsspannung zur Versorgung eines Mikrocontrollers des ersten Teilnehmers dienen. Eine zweite Betriebsspannung kann einer Spannungsversorgung von Speichereinheiten des ersten Teilnehmers dienen.
  • Weiter erfindungsgemäß umfasst der erste Teilnehmer eine Signalisierungseinheit oder ist dem ersten Teilnehmer eine Signalisierungseinheit zugeordnet, wobei mittels der Signalisierungseinheit in einem abgeschalteten oder schlafenden Zustand des ersten Teilnehmers ein Bedarfssignal erzeugbar ist. Das Bedarfssignal ist von der Signalisierungseinheit an den zentralen Teilnehmer über mindestens eine den ersten und den zentralen Teilnehmer verbindende Leitung, beispielsweise die erste Leitung des ersten Kabels, übertragbar.
  • Ein Schlafzustand (Sleep-Modus) bezeichnet einen energiesparenden Zustand des ersten Teilnehmers. Hierbei erfolgt eine Energieversorgung des ersten Teilnehmers derart, dass er bei einem Aufwecken aus dem Schlafzustand in einen Betriebszustand versetzt wird, der dem Betriebszustand gleich ist, den der erste Teilnehmer bei der Aktivierung dieses Schlafzustandes hatte. Dies bildet den wesentlichen Unterschied zum abgeschalteten Zustand des Teilnehmers. Beim Anschalten aus dem abgeschalteten Zustand wird der erste Teilnehmer in einen Initialzustand versetzt, der in der Regel nicht dem Betriebszustand entspricht, in welchem der erste Teilnehmer abgeschaltet wurde. Auch ist ein Energiebedarf des ersten Teilnehmers im abgeschalteten Zustand geringer als im Schlafzustand.
  • Das Bedarfssignal dient hierbei zur Signalisierung eines Kommunikationsbedarfs des ersten Teilnehmers. In einem abgeschalteten Zustand oder Schlafzustand verringert sich also der Energieverbrauch des ersten Teilnehmers im Vergleich mit einem Betriebs- oder Kommunikationszustand, es kann jedoch keine Kommunikation zwischen dem zentralen Teilnehmer und dem ersten Teilnehmer stattfinden. Tritt ein Kommunikationsbedarf des ersten Teilnehmers in einem derartigen Zustand auf, so muss der erste Teilnehmer aus dem abgeschalteten Zustand oder Schlafzustand aufgeweckt werden. Erfindungsgemäß kann das Aufwecken auch oder ausschließlich bei Signalisierung eines Bedarfs zur Kommunikation durch den ersten Teilnehmer initiiert werden. Dieses so genannte Rückwärts-Wecken ermöglicht in vorteilhafter Weise einen einfachen und von einer Steuerungslogik her unaufwendigen Betrieb des Netzwerks im so genannten Teilnetzmodus. Der Begriff Rückwärts-Wecken umfasst hierbei das Aufwecken oder Anschalten bei Signalisierung eines Bedarfs zur Kommunikation des ersten Teilnehmer.
  • Ein Bedarfssignal kann beispielsweise erzeugt werden, falls ein Kommunikationsbedarf des ersten Teilnehmers detektiert wird. Beispielsweise kann ein Kommunikationsbedarf des ersten Teilnehmers durch Auswertung von Signalen eines Sensors erfolgen, der direkt dem ersten Teilnehmer zugeordnet ist. Unter einer direkten Zuordnung kann z. B. verstanden werden, dass der Sensor mit einer Eingabeschnittstelle mindestens des ersten Teilnehmers physikalisch, beispielsweise über mindestens eine Leitung, verbunden ist. Hierbei kann der Sensor direkt mit der Eingabeschnittstelle mindestens des ersten Teilnehmers verbunden sein, d. h. dass Signale des Sensors direkt an den ersten Teilnehmer und nicht über weitere Teilnehmer an den ersten Teilnehmer, wie z. B. bei einem Bussystem, übertragen werden. Auch kann der Sensor mit dem ersten Teilnehmer fest verdrahtet sein. Auch kann unter einer direkten Zuordnung verstanden werden, dass der Sensor ausschließlich mit dem ersten Teilnehmer physikalisch, beispielsweise über mindestens eine Leitung, verbunden ist.
  • Der Sensor kann hierbei auch ein Bedienelement sein, welches manuell, z. B. durch einen Kraftfahrzeugführer, bedienbar ist. Beispielsweise kann der Sensor ein Bedienelement eines elektrischen Fensterhebers sein, wobei das Bedienelement physikalisch mit einem Steuergerät des Servomotors zum Verstellen der Fensterscheibe verbunden ist. Das Steuergerät des Servomotors ist hierbei der erfindungsgemäße erste Teilnehmer. Betätigt z. B. ein Kraftfahrzeugführer das Bedienelement, so wird ein Kommunikationsbedarf des ersten Teilnehmers detektiert und folglich ein Bedarfssignal erzeugt.
  • Durch das aus einer Auswertung von Signalen eines dem ersten Teilnehmer direkt zugeordneten Sensors initiierte Erzeugen eines Bedarfssignals lässt sich in vorteilhafter Weise ein von einer zentralen Logik unabhängiges Rückwärts-Wecken realisieren. Insbesondere muss der Sensor nicht mehr mit einer zentralen Steuereinheit, beispielsweise dem zentralen Teilnehmer physikalisch, beispielsweise über Leitungen, verbunden sein, damit ein Kommunikationsbedarf festgestellt und der erste Teilnehmer aufgeweckt werden kann. Somit können in vorteilhafter Weise Elemente zur Verkabelung des dem ersten Teilnehmer zugeordneten Sensors mit einer zentralen Logik, beispielsweise einem zentralen Steuergerät, eingespart werden.
  • In einer weiteren Ausführungsform ist mittels des zentralen Teilnehmers das Bedarfssignal detektierbar, wobei mittels der Energiekopplungseinheit des zentralen Teilnehmers die erste Gleichspannung des ersten Teilnehmers mindestens auf die erste Leitung des ersten Kabels aufprägbar ist, falls das Bedarfssignal detektiert wird. Durch das Aufprägen der ersten Gleichspannung des ersten Teilnehmers wird dieser aus einem abgeschalteten Zustand eingeschaltet oder aus einem Schlafzustand aufgeweckt. In weiterer vorteilhafter Weise ergibt sich hierdurch, dass der erste Teilnehmer erst dann mit der ersten Betriebsspannung versorgt wird, also eingeschaltet oder aufgeweckt wird, falls der zentrale Teilnehmer das Bedarfssignal detektiert.
  • Im eingeschalteten bzw. aufgeweckten Zustand wird Energie zur Versorgung des ersten Teilnehmers über dieselbe Leitung übertragen, über welche auch ein Übertragen von Wechselspannungssignalen zur Kommunikation bzw. Datenübertragung zwischen den Teilnehmern erfolgt. Somit muss der erste Teilnehmer in vorteilhafter Weise nicht mehr an ein Bordnetz angeschlossen werden bzw. mit diesem zur Energieversorgung verbunden werden, wenn der erste Teilnehmer aufgeweckt oder eingeschaltet wird. Hierdurch ergibt sich in vorteilhafter Weise, dass Schaltelemente zur elektrischen Verbindung, insbesondere auch Elemente zur Verkabelung und/oder Regler, des ersten Teilnehmers mit dem Bordnetz entfallen können. Insbesondere, wenn der zentrale Teilnehmer neben dem ersten Teilnehmer mit weiteren Teilnehmern verbunden ist, kann eine zentrale Energieversorgung des ersten und der weiteren Teilnehmer vom zentralen Teilnehmer her erfolgen. Hierdurch können in vorteilhafter Weise für den ersten und alle weiteren Teilnehmer Schaltelemente zur elektrischen Verbindung des ersten und der weiteren Teilnehmer mit dem Bordnetz eingespart werden.
  • In einer weiteren Ausführungsform ist mittels der Signalisierungseinheit als Bedarfssignal eine Bedarfsspannung mit vorbestimmtem Spannungsniveau erzeugbar, wobei mittels der Energiekopplungseinheit des ersten Teilnehmers die Bedarfsspannung auf mindestens eine den ersten und den zentralen Teilnehmer verbindende Leitung, beispielsweise die erste Leitung des ersten Kabels, aufprägbar ist. Insbesondere kann die Bedarfsspannung eine Gleichspannung sein. Hierdurch ergibt sich in vorteilhafter Weise, dass das Bedarfssignal über bereits vorhandene Elemente zur elektrischen Verbindung zwischen dem zentralen Teilnehmer und dem ersten Teilnehmer übertragen werden kann.
  • In einer weiteren Ausführungsform ist mittels der Energiekopplungseinheit des zentralen Teilnehmers die Bedarfsspannung von der ersten Leitung abgreifbar und an einen Detektionseingang des zentralen Teilnehmers anlegbar. Mittels einer Auswerteeinheit des zentralen Teilnehmers ist auswertbar, ob die am Detektionseingang angelegte Spannung ein vorbestimmtes Spannungsniveau überschreitet. Weiter ist mittels der Energiekopplungseinheit des zentralen Teilnehmers die erste Gleichspannung auf mindestens die erste Leitung des ersten Kabels aufprägbar, falls die am Detektionseingang angelegte Spannung das vorbestimmte Spannungsniveau überschreitet. Hierdurch ergibt sich in vorteilhafter Weise eine einfach zu implementierende Funktionsweise des vorhergehend beschriebenen Rückwärts-Weckens. Insbesondere durch Vergleich der übertragenen Bedarfsspannung mit einem vorbestimmten Spannungsniveau lässt sich ein störspannungsunabhängigeres Wecken bzw. Anschalten realisieren.
  • In einer bevorzugten Ausführungsform ist ein Niveau der Bedarfsspannung kleiner als ein Niveau der ersten Betriebsspannung des ersten Teilnehmers und/oder einer Betriebsspannung des zentralen Teilnehmers. Ist z. B. ein Niveau der ersten Betriebsspannung des ersten Teilnehmers 5 V, so kann ein Niveau der Bedarfsspannung beispielsweise 2 V betragen. Ist ein Niveau der Bedarfsspannung kleiner als ein Niveau einer Betriebsspannung des zentralen Teilnehmers, so kann die Bedarfsspannung nicht zum Aufwecken oder Einschalten des zentralen Teilnehmers und insbesondere nicht zur Energieversorgung des zentralen Teilnehmers dienen. In diesem Fall ist also der zentrale Teilnehmer nicht mittels der Bedarfsspannung oder einer vom ersten Teilnehmer zum zentralen Teilnehmer übertragenen Gleichspannung mit Energie versorgbar. Auch kann ein Niveau der Bedarfsspannung kleiner sein als die Niveaus aller Betriebsspannungen des ersten Teilnehmers. Hierdurch ergibt sich in vorteilhafter Weise, dass wenig Energie zum Signalisierungen eines Kommunikationsbedarfs vom ersten Teilnehmer an den zentralen Teilnehmer übertragen werden muss, wodurch das Rückwärts-Wecken energiesparend ausgelegt ist.
  • In einer weiteren Ausführungsform umfasst die Signalisierungseinheit des ersten Teilnehmers mindestens eine Schalteinheit. Mittels der Schalteinheit ist die Signalisierungseinheit mit einer Spannungsquelle verbindbar. Die Spannungsquelle kann hierbei eine Batterie oder ein Akkumulator sein, dessen Ausgangsspannung das Niveau der Bedarfsspannung aufweist. Auch kann die Signalisierungseinheit zusätzlich mindestens einen Spannungswandler umfassen, wobei der Spannungswandler mittels der Schalteinheit mit der Spannungsquelle verbindbar ist. In diesem Fall kann eine Ausgangsspannung der Spannungsquelle höher oder niedriger sein als das Niveau der Bedarfsspannung. In diesem Fall kann die Spannungsquelle z. B. das Bordnetz bzw. die Bordnetzbatterie sein. Mittels des Spannungswandlers ist ein Niveau der Ausgangsspannung der Spannungsquelle auf das Niveau der Bedarfsspannung wandelbar. Die Bedarfsspannung wird also dann an mindestens die erste Leitung des ersten Kabels angelegt, wenn die Schalteinheit eine elektrische Verbindung zwischen der Signalisierungseinheit und der Spannungsquelle herstellt. Die Schalteinheit kann hierbei mittels einer Steuereinheit gesteuert werden, wobei die Steuereinheit z. B. Signale eines Sensors auswertet, der direkt dem ersten Teilnehmer zugeordnet ist. Auch kann die Schalteinheit direkt mit dem Sensor verbunden sein, der direkt dem ersten Teilnehmer zugeordnet ist. Hierdurch ergibt sich in vorteilhafter Weise, dass ein Bedarfssignal unabhängig von einem Zustand des ersten Teilnehmers, insbesondere unabhängig von einem ausgeschalteten Zustand oder einem Schlafzustand des ersten Teilnehmers, an den zentralen Teilnehmer übertragen werden kann.
  • In einer weiteren Ausführungsform umfasst die Energiekopplungseinheit des ersten Teilnehmers mindestens einen Spannungswandler, wobei mittels des mindestens einen Spannungswandlers die erste Betriebsspannung in ihrem Spannungsniveau veränderbar ist. Die in ihrem Spannungsniveau veränderte erste Betriebsspannung ist an mindestens einen weiteren Eingang des ersten Teilnehmers anlegbar. Umfasst der erste Teilnehmer z. B. einen ersten Eingang zur Energieversorgung eines Mikrocontrollers und einen zweiten Eingang zur Versorgung von Speichereinheiten, so kann mittels des Spannungswandlers die von der ersten Leitung des ersten Kabels abgegriffene Gleichspannung, die in diesem Fall der ersten Betriebsspannung entspricht, derart transformiert werden, dass sie an den zweiten Eingang anlegbar ist, wodurch Energie zur Versorgung der Speichereinheiten ebenfalls über die erste Leitung des ersten Kabels übertragen werden kann. Selbstverständlich kann die Energiekopplungseinheit des ersten Teilnehmers weitere Spannungswandler umfassen, mittels derer die abgegriffene Gleichspannung auf ein Spannungsniveau von weiteren Eingängen des ersten Teilnehmers transformierbar ist.
  • In einer weiteren Ausführungsform umfasst das erste Kabel eine zweite Leitung, wobei mittels der Energiekopplungseinheit des zentralen Teilnehmers eine weitere Gleichspannung des ersten Teilnehmers auf die zweite Leitung des ersten Kabels aufprägbar ist. Mittels der Energiekopplungseinheit des ersten Teilnehmers ist die weitere Gleichspannung von der zweiten Leitung des ersten Kabels abgreifbar. Die weitere Gleichspannung kann eine weitere Betriebsspannung des ersten Teilnehmers sein oder in die weitere Betriebsspannung transformierbar sein, beispielsweise mittels eines Spannungswandlers, der Teil der Energiekopplungseinheit des ersten Teilnehmers sein kann.
  • Hierbei sind zwei Szenarien denkbar: Im ersten Szenario ist ein Spannungsniveau der weiteren Gleichspannung gleich dem Spannungsniveau der ersten Gleichspannung, wobei die weitere Gleichspannung ebenfalls an den ersten Eingang des ersten Teilnehmers anlegbar ist. In diesem Szenario ergibt sich in vorteilhafter Weise, dass eine identische Gleichspannung auf beiden Leitungen übertragen werden kann. Hierdurch ergibt sich eine Verdoppelung des Leitungsquerschnittes, wodurch in vorteilhafter Weise eine höhere Leistung vom zentralen Teilnehmer zum ersten Teilnehmer, insbesondere zum ersten Eingang des ersten Teilnehmers, übertragen werden kann.
  • In einem zweiten Szenario ist das Spannungsniveau der weiteren Gleichspannung vom Spannungsniveau der ersten Gleichspannung verschieden, wobei die weitere Gleichspannung in diesem Szenario als weitere Betriebsspannung an einen weiteren Eingang des ersten Teilnehmers anlegbar ist. Hierdurch ergibt sich in vorteilhafter Weise, dass die erste Leitung des ersten Kabels zur Energieversorgung des ersten Eingangs des ersten Teilnehmers, beispielsweise zur Energieversorgung eines Mikrocontrollers des ersten Teilnehmers, genutzt werden kann, wobei die zweite Leitung zur Energieversorgung des zweiten Eingangs des ersten Teilnehmers, beispielsweise zur Energieversorgung von Speichereinheiten des weiteren Teilnehmers, genutzt werden kann.
  • Selbstverständlich kann die Energiekopplungseinheit des ersten Teilnehmers mindestens einen weiteren Spannungswandler umfassen, wobei mittels des mindestens einen weiteren Spannungswandlers die weitere Betriebsspannung in ihrem Spannungsniveau veränderbar ist, wobei die in ihrem Spannungsniveau veränderte Spannung an den weiteren Eingang oder an den ersten Eingang des ersten Teilnehmers anlegbar ist.
  • In einer weiteren Ausführungsform entspricht das vorbestimmte Spannungsniveau der auf die zweite Leitung des ersten Kabels aufgeprägten zweiten Gleichspannung einem Massepotential, wobei mittels der Energiekopplungseinheit des ersten Teilnehmers die zweite Gleichspannung von der zweiten Leitung des ersten Kabels abgreifbar und an einen Masseeingang des ersten Teilnehmers anlegbar ist. Hierdurch ergibt sich in vorteilhafter Weise, dass der erste Teilnehmer nicht an einen Fahrzeugmasse-Anschluss angeschlossen werden muss, da ein entsprechendes Massepotential mittels der zweiten Leitung des ersten Kabels vom zentralen Teilnehmer zur Verfügung gestellt wird.
  • Die Leitungen des ersten Kabels dienen hauptsächlich einer Kommunikation zwischen dem zentralen Teilnehmer und dem ersten Teilnehmer. Beim Aufprägen der ersten Betriebsspannung vom zentralen Teilnehmer auf die erste und/oder zweite Leitung des ersten Kabels ist zu beachten, dass die angelegte Betriebsspannung abhängig von einem Gleichstromwiderstand, einer Länge und einem Stromfluss durch die erste und/oder zweite Leitung zu wählen ist. Insbesondere sollte eine vom zentralen Teilnehmer aufgeprägte erste Betriebsspannung derart gewählt werden, dass ein Spannungsabfall über der ersten und/oder zweiten Leitung berücksichtigt wird.
  • Der Spannungswandler kann hierbei ein vorhergehend erläuterter Längsregler sein. Insbesondere kann mittels des Spannungswandlers, insbesondere des Längsreglers, die von der ersten Leitung des ersten Kabels abgegriffene Gleichspannung in ihrem Spannungsniveau erniedrigbar sein.
  • Weiter vorgeschlagen wird ein Verfahren zum Betreiben eines Netzwerkes, insbesondere in einem Kraftfahrzeug. Das Netzwerk ist hierbei entsprechend den vorhergehend geschilderten Ausführungsformen des Netzwerks ausgebildet. In einem Kommunikationszustand des ersten Teilnehmers wird mittels einer Signalkopplungseinheit des zentralen Teilnehmers eine Wechselspannung auf mindestens eine erste Leitung eines ersten Kabels aufgeprägt oder davon abgegriffen, wobei mittels einer Energiekopplungseinheit des zentralen Teilnehmers eine erste Gleichspannung mit vorbestimmtem Spannungsniveau auf die erste Leitung des ersten Kabels aufgeprägt wird. Der Kommunikationszustand bezeichnet hierbei einen aktiven Zustand des ersten Teilnehmers, der nicht einem abgeschatteten Zustand bzw. einem Schlafzustand des ersten Teilnehmers entspricht. Insbesondere wird der erste Teilnehmer im Kommunikationszustand mit elektrischer Energie über mindestens die erste Leitung des ersten Kabels versorgt. Erfindungsgemäß umfasst der erste Teilnehmer eine Signalisierungseinheit, wobei mittels der Signalisierungseinheit in einem abgeschalteten oder schlafenden Zustand des ersten Teilnehmers im Falle eines Kommunikationsbedarfs ein Bedarfssignal erzeugt wird, wobei das Bedarfssignal von der Signalisierungseinheit an den zentralen Teilnehmer über mindestens eine den zentralen und den ersten Teilnehmer verbindende Leitung übertragen wird.
  • Die Erfindung wird anhand mehrerer Ausführungsbeispiele näher erläutert. Die Fig. zeigen:
  • 1 eine schematische Übersicht über ein erfindungsgemäßes Netzwerk,
  • 2 eine schematische Darstellung eines zentralen Teilnehmers,
  • 3 eine schematische Darstellung eines ersten Teilnehmers,
  • 4 eine schematische Darstellung eines zentralen und eines ersten Teilnehmers,
  • 5 eine schematische Darstellung einer weiteren Ausführungsform eines ersten Teilnehmers,
  • 6 eine schematische Darstellung einer weiteren Ausführungsform eines ersten Teilnehmers,
  • 7 eine schematische Darstellung einer weiteren Ausführungsform eines ersten Teilnehmers und
  • 8 eine schematische Darstellung einer weiteren Ausführungsform eines Teilnehmers.
  • Nachfolgend bezeichnen gleiche Bezugszeichen Elemente mit gleichen oder ähnlichen technischen Eigenschaften.
  • In 1 ist ein erfindungsgemäßes Netzwerk 1 dargestellt. Das erfindungsgemäße Netzwerk 1 umfasst einen zentralen Teilnehmer 2, der auch als Gateway bezeichnet werden kann. Weiter umfasst das Netzwerk 1 einen ersten Teilnehmer 3, einen zweiten Teilnehmer 4, einen dritten Teilnehmer 5 und einen vierten Teilnehmer 6. Der zentrale Teilnehmer 2 ist mit dem ersten Teilnehmer 3 über ein erstes Kabel 7 verbunden. Analog ist der zentrale Teilnehmer 2 mit den Teilnehmern 4, 5, 6 über ein zweites Kabel 8, ein drittes Kabel 9 und ein viertes Kabel 10 verbunden. Der zentrale Teilnehmer 2 dient somit als Sternpunkt in einer so genannten Sterntopologie. Der zentrale Teilnehmer 2 umfasst einen Mikrocontroller 11 mit einer so genannten MAC-Einheit (Media-Access-Control-Einheit) 12. Weiter umfasst der zentrale Teilnehmer 2 einen Ethernet-Switch 13 und für jeden an den zentralen Teilnehmer 2 angeschlossenen weiteren Teilnehmer 3, 4, 5, 6 eine Energiekopplungseinheit 14, die als Gleichspannungskoppler ausgebildet ist.
  • Ein Aufbau eines weiteren Teilnehmers 3, 4, 5, 6 wird beispielhaft am Aufbau des ersten Teilnehmers 3 erläutert. Der erste Teilnehmer 3 umfasst ebenfalls eine Energiekopplungseinheit 15, die ebenfalls als Gleichspannungskoppler ausgebildet ist. Weiter umfasst der erste Teilnehmer 3 einen Mikrocontroller 16 mit einer internen MAC-Einheit 17, an welche eine physikalische Schicht 18 des Netzwerks, also des Ethernets, angeschlossen ist. Weiter umfasst der erste Teilnehmer 3 eine Steuergeräte-Peripherie 19 zum Ausführen vorbestimmter Applikationen. Die im Mikrocontroller 16 enthaltene MAC-Einheit 17 des ersten Teilnehmers 3 regelt eine Ethernet-Kommunikation mit dem zentralen Teilnehmer 2.
  • Der Ethernet-Switch 13 des zentralen Teilnehmers 2 wandelt in Senderichtung digitale Signale der MAC-Einheit 12 in analoge Übertragungssignale und verteilt sie in einer so genannten Punkt-zu-Punkt-Kommunikation auf die jeweiligen Kommunikationszweige, die als Kabel 7, 8, 9, 10 dargestellt sind. In den Teilnehmern 3, 4, 5, 6 digitalisiert die physikalische Schicht 18 diese analogen Signale wieder. Im Mikrocontroller 11 des zentralen Teilnehmers 2 sind Netzwerkinformationen verfügbar. Hieraus lässt sich ein Kommunikationsbedarf bezüglich der weiteren Teilnehmer 3, 4, 5, 6 ableiten. Aufgrund dieser Netzwerkinformationen können die weiteren Teilnehmer 3, 4, 5, 6 gezielt bei Bedarf ein- oder ausgeschaltet werden. Dieses Ein- oder Ausschalten erfolgt durch An- oder Abschalten einer mittels der Energiekopplungseinheiten 14 auf die Leitungen 21, 22 (siehe z. B. 4) der Kabel 7, 8, 9, 10 einzukoppelnden Gleichspannung.
  • Auf den Leitungen 21, 22 der Kabel 7, 8, 9, 10 ist im angeschalteten Zustand der weiteren Teilnehmer 3, 4, 5, 6 eine Gleichspannung, die von der Ethernet-Kommunikation überlagert ist, aufgeprägt. Bei dem Empfänger, beispielsweise dem ersten Teilnehmer 3, wird in der Energiekopplungseinheit 15 die Gleichspannung vom Kommunikationssignal getrennt. Die Gleichspannung dient hierbei der Energieversorgung des Mikrocontrollers 16, wobei das Kommunikationssignal (Ethernet-Signal) der MAC-Einheit 17 zugeführt. Bei Bedarf kann der Mikrocontroller 16 die Steuergeräte-Peripherie 19 zuschalten und somit z. B. die Eingabe-Ausgabe-Schnittstelle (I-O-Schnittstelle) des ersten Teilnehmers 3 bedienen.
  • Die Energiekopplungseinheiten 14 koppeln hierbei eine Gleichspannung auf Leitungen 21, 22 der Kabel 7, 8, 9, 10 ein, die von einer zentralen Spannungsquelle 20 zur Verfügung gestellt wird. Die aufgeprägte Gleichspannung dient hierbei als Betriebsspannung der weiteren Teilnehmer 3, 4, 5, 6 oder können in die benötigten Betriebsspannungen gewandelt werden. Hierbei ist dargestellt, dass der erste Teilnehmer 3 eine erste Betriebsspannung in Höhe von 5 V, eine zweite Betriebsspannung in Höhe von 3,3 V und eine dritte Betriebsspannung in Höhe von 1,6 V benötigt. Der zweite Teilnehmer 4 benötigt eine erste Betriebsspannung in Höhe von 5 V und eine zweite Betriebsspannung in Höhe von 3,3 V. Der dritte Teilnehmer 5 benötigt eine erste Betriebsspannung in Höhe von 5 V und eine zweite Betriebsspannung in Höhe von 1,6 V. Der vierte Teilnehmer 6 benötigt eine erste Betriebsspannung in Höhe von 3,3 V und eine zweite Betriebsspannung in Höhe von 1,6 V. Hierbei können die Energiekopplungseinheiten 14 des zentralen Teilnehmers und/oder die Energiekopplungseinheiten 15 der weiteren Teilnehmer 3, 4, 5, 6 Spannungswandler umfassen, mittels der die von der zentralen Spannungsquelle 20 zur Verfügung gestellte Spannung an die benötigten Betriebsspannungen der weiteren Teilnehmer 3, 4, 5, 6 anpassbar ist.
  • Ist keine Gleichspannung auf die Leitungen 21; 22 der Kabel 7, 8, 9, 10 aufgeprägt, so ist auch die Steuergeräte-Peripherie 19 vollständig abgeschaltet. Ein Ruhestrom kann in diesem Fall 0 A betragen. Ein derartiges Netzwerkmanagement ist somit in vorteilhafter Weise sehr energieeffizient. Hierbei ist eine zentrale Logik des Netzwerkmanagements im zentralen Teilnehmer integriert, wodurch sich in vorteilhafter Weise eine Komplexität des Netzwerkmanagements reduziert und eine Robustheit des Netzwerks erhöht wird. Da die Zusammenstellung von aktiven und abgeschalteten weiteren Teilnehmern 3, 4, 5, 6 beliebig wählbar ist, lässt sich somit in vorteilhafter Weise ein beliebiger Teilnetzbetrieb realisieren.
  • In 2 ist eine schematische Ansicht eines zentralen Teilnehmers 2 dargestellt. Hierbei ist insbesondere das Aufprägen einer Wechselspannung und einer ersten Gleichspannung durch den zentralen Teilnehmer 2 auf eine erste Leitung 21 eines ersten Kabels 7 (siehe 1) dargestellt. Eine Signalkopplungseinheit des zentralen Teilnehmers 2 umfasst hierbei eine erste Kapazität C1, eine zweite Kapazität C2, eine erste Induktivität L1 und eine zweite Induktivität L2. Hierbei sind die erste Kapazität C1 und die erste Induktivität L1 in der ersten Leitung 21 des ersten Kabels 7 angeordnet. Weiter ist die zweite Kapazität C2 und die zweite Induktivität L2 in einer zweiten Leitung 22 des ersten Kabels 7 angeordnet. Mittels des Mikrocontrollers 11 und der in 2 nicht dargestellten MAC-Einheit 12 und Ethernet-Switches 13 ist eine Wechselspannung auf die erste und zweite Leitung 21, 22 aufprägbar. Hierbei dienen die Kondensatoren C1, C2 einer Entkopplung des zentralen Teilnehmers 2 von einer auf die erste Leitung 21 aufzuprägenden Gleichspannung. Die Induktivitäten L1, L2 dienen hierbei als Common-Mode-Choke (Gleichtaktdrossel). Diese Gleichtaktdrossel hat mehrere gleiche, aber bifilar gewickelte Wicklungen, die gegensinnig von einem Arbeitsstrom durchflossen werden. Ihre magnetischen Felder im Kern der Gleichtaktdrossel heben sich auf. Die Gleichtaktdrossel dient hierbei der Dämpfung von Störemissionen (EMI). Die Energiekopplungseinheit 14 des zentralen Teilnehmers 2 umfasst ein Induktivität L3, wobei über die Induktivität L3, die zum Blockieren von hohen Frequenzen der der Kommunikation dienenden Wechselspannung dient, eine erste Gleichspannung, beispielsweise in Höhe von 5 V, auf die erste Leitung 21 gelegt werden kann. In 2 ist dargestellt, dass die erste Gleichspannung von der zentralen Spannungsquelle 20 bereitgestellt wird.
  • In 3 ist schematisch ein erster Teilnehmer 3 dargestellt. Hierbei umfasst eine Signalkopplungseinheit des ersten Teilnehmers 3 analog zur Signalkopplungseinheit des zentralen Teilnehmers 2 eine erste Kapazität C3 und eine zweite Kapazität C4 der Signalkopplungseinheit des ersten Teilnehmers 3. Weiter umfasst diese Signalkopplungseinheit eine erste Induktivität L4 und eine zweite Induktivität L5 der Signalkopplungseinheit des ersten Teilnehmers 3. Die Kapazitäten C3, C4 und die Induktivitäten L4, L5 üben hierbei die gleiche Funktionalität wie die vorhergehend erläuterten Kapazitäten C1, C2 und Induktivitäten L1, L2 der Signalkopplungseinheit eines zentralen Teilnehmers 2. aus. Eine Energiekopplungseinheit 15 des ersten Teilnehmers 3 umfasst u. a. eine Spule L6, über welche eine erste Gleichspannung von der ersten Leitung 21 abgegriffen wird. Hierbei ist dargestellt, dass die derart abgegriffene erste Gleichspannung als eine erste Betriebsspannung an einen ersten Eingang 23 des ersten Teilnehmers 3 angelegt wird. Weiter umfasst die Energiekopplungseinheit 15 einen ersten Längsregler 24 und einen zweiten Längsregler 25. Über den ersten Längsregler 24 wird die auf die erste Leitung 21 aufgeprägte Gleichspannung, die der ersten Betriebsspannung entspricht, auf ein Spannungsniveau von 3,3 V gewandelt und an einen zweiten Eingang 26 des ersten Teilnehmers 3 angelegt. Mittels des zweiten Längsreglers 25 wird ein Spannungsniveau der ersten Betriebsspannung auf ein Spannungsniveau von 1,3 V transformiert und an einen dritten Eingang 27 des ersten Teilnehmers angelegt. Somit können drei Eingänge des ersten Teilnehmers 3 mittels der über die erste Leitung 21 übertragenen Gleichspannung mit einer angepassten Betriebsspannung versorgt werden.
  • In 4 ist eine schematische Zusammenschaltung eines zentralen Teilnehmers 2 und eines ersten Teilnehmers 3 gezeigt, wobei ein so genanntes Rückwärts-Wecken anhand der in 4 dargestellten Schaltung erläutert wird. Der zentrale Teilnehmer 2 weist einen Detektionseingang 28 auf. Mittels des Detektionseingangs ist eine auf einer ersten Leitung 21 aufgeprägte Spannung abgreifbar. Weiter weist der zentrale Teilnehmer 2 einen Schaltausgang 29 auf. Mittels des Schaltausgangs 29 ist ein Schalter 30 schaltbar, der eine zentrale Spannungsquelle 20 mit der ersten Leitung 21 über eine Induktivität L3 verbindet. Eine Signalisierungseinheit des ersten Teilnehmers 3 weist einen Spannungswandler 31 sowie eine Diode 32 auf. Weiter weist die Signalisierungseinheit einen Schalter 33 auf. Mittels des Schalters 33 ist der Spannungswandler 31 mit einem Bordnetz 34 elektrisch verbindbar. Der Spannungswandler 31 transformiert hierbei das Niveau einer Bordnetzspannung in Höhe von z. B. 12 V auf ein niedrigeres Niveau, z. B. 2,7 V. Über der Diode 32 fällt zusätzlich eine so genannte Vorwärtsspannung der Diode 32 mit einer vorbestimmten Höhe, z. B. 0,7 V, ab. Ist der Schalter 33 geschlossen, so ist die erste Leitung 21 über die Induktivität L6, die Diode 32, den Spannungswandler 31 und den Schalter 33 mit dem Bordnetz verbunden. Durch den Spannungswandler 31 und die Diode 32 wird das Niveau der Bordnetzspannung auf ein Niveau einer Bedarfsspannung, z. B. 2 V, herunter transformiert. Die Bedarfsspannung in Höhe von 2 V wird dann auf die erste Leitung 21 aufgeprägt. Die Bedarfsspannung dient hierbei als Bedarfssignal, wobei mittels des Bedarfssignals in einem abgeschalteten oder schlafenden Zustand des ersten Teilnehmers 3 ein Kommunikationsbedarf an den zentralen Teilnehmer 2 übertragbar ist. In einem schlafenden oder abgeschalteten Zustand des ersten Teilnehmers 3 ist der Schalter 30 geöffnet, d. h. auf die erste Leitung 21 wird keine Gleichspannung zur Versorgung des ersten Teilnehmers 3 aufgeprägt. Somit ist auf der ersten Leitung 21 keine Spannung aufgeprägt. Wird der Schalter 33 der der Signalisierungseinheit des ersten Teilnehmers 3 geschlossen, so wird die Bedarfsspannung mit dem vorbestimmten Spannungsniveau auf die erste Leitung 21 aufgeprägt. Mittels des Detektionseingangs 28 des zentralen Teilnehmers 2 wird diese Bedarfsspannung über die Induktivität L3 von der ersten Leitung 21 abgegriffen. Mittels einer nicht dargestellten Auswerteeinheit, die z. B. in den Mikrocontroller 11 des zentralen Teilnehmers 1 integriert sein kann, wird ausgewertet, ob die am Detektionseingang 28 angelegte Spannung ein vorbestimmtes Spannungsniveau, insbesondere das vorbestimmte Spannungsniveau der Bedarfsspannung, überschreitet. Falls die am Detektionseingang 28 angelegte Spannung das vorbestimmte Spannungsniveau überschreitet, so wird mittels des Schaltausgangs 29 der Schalter 30 derart gesteuert, dass dieser geschlossen wird und die zentrale Spannungsquelle 20 mit dem ersten Teilnehmer 3 über die Induktivität L3 gekoppelt wird. Hierdurch eine erste Gleichspannung auf die erste Leitung 21 aufgeprägt und der erste Teilnehmer 3 mit einer Betriebsspannung versorgt. Gleichzeitig kann der Schalter 33 wieder geöffnet werden.
  • In 5 ist ein schematisches Blockschaltbild der Spannungsversorgung eines ersten Teilnehmers 3 mittels einer ersten und einer zweiten Leitung 21, 22 eines ersten Kabels 7 (siehe 1) dargestellt. Hierbei ist der erste Teilnehmer 3 wie in 3 dargestellt aufgebaut. Zusätzlich ist jedoch der erste Eingang 23 des ersten Teilnehmers 3 sowie der erste und der zweite Längsreger 24, 25 mittels einer Induktivität L7 mit der zweiten Leitung 22 des ersten Kabels 7 elektrisch verbunden. Auch auf die zweite Leitung 22 kann mittels einer Energiekopplungseinheit 14 eines zentralen Teilnehmers 2 (siehe 1) eine zweite Gleichspannung mit dem gleichen Spannungsniveau wie das der ersten Gleichspannung aufgeprägt werden. Hierdurch ergibt sich in vorteilhafter Weise eine Verdoppelung des Leiterquerschnittes, da ein Strom zur Energieversorgung des ersten Teilnehmers 3 zusätzlich zur ersten Leitung 21 auch über die zweite Leitung 22 hin zum ersten Teilnehmer 3 fließen kann.
  • In 6 ist eine Spannungsversorgung eines ersten Eingangs eines ersten Teilnehmers 3 über eine erste Leitung 21 sowie eine Spannungsversorgung eines zweiten und eines dritten Eingangs 26, 27 mit einem niedrigerem Spannungsniveau mittels einer zweiten Leitung 22 dargestellt. Hierbei ist dargestellt, dass z. B. mittels der Energiekopplungseinheit 14 eines zentralen Teilnehmers 2 (siehe 1) eine erste Gleichspannung z. B. in Höhe von 5 V, die einer ersten Betriebsspannung entspricht, auf die erste Leitung 21 aufgeprägt wird. Diese wird über eine Induktivität L6 von der ersten Leitung 21 abgegriffen und an einen ersten Eingang 23 des ersten Teilnehmers 3 angelegt. Mittels des der Energiekopplungseinheit 14 oder einer weiteren Energiekopplungseinheit des zentralen Teilnehmers 2 wird eine zweite Gleichspannung, die niedriger als die erste Gleichspannung ist und einer zweiten Betriebsspannung entspricht, auf die zweite Leitung 22 aufgeprägt. Diese wird über eine Induktivität L7 von der zweiten Leitung 22 abgegriffen und an einen zweiten Eingang 26 des ersten Teilnehmers angelegt. Mittels eines Längsreglers 36 kann die von der zweiten Leitung 22 abgegriffene zweite Betriebsspannung auf ein im Vergleich zu dieser zweiten Betriebsspannung niedrigeres Spannungsniveau transformiert werden und an einen dritten Eingang 27 des ersten Teilnehmers 3 angelegt werden.
  • In 7 ist im Unterschied zu 6 dargestellt, dass die erste Betriebsspannung in Höhe von 5 V erstens an den ersten Eingang 23 des ersten Teilnehmers 3 und über einen ersten Längsregler 24 an einen zweiten Eingang 26 des ersten Teilnehmers 3 angelegt wird. Eine im Vergleich zur ersten Betriebsspannung niedrigere zweite Betriebsspannung, z. B. in Höhe von 1,3 V, wird als eine zweite Gleichspannung auf eine zweite Leitung 22 des in 1 dargestellten ersten Kabels 7 aufgeprägt. Mittels einer Induktivität L7 wird diese von der zweiten Leitung 22 abgegriffen und an einen dritten Eingang 27 des ersten Teilnehmers 3 angelegt. In vorteilhafter Weise dient die von der zweiten Leitung 22 abgegriffene zweite Betriebsspannung als Erhaltungsspannung für Register oder Speicherzustände. Somit kann man in einer Ausführungsform nach 7 in vorteilhafter Weise die erste Betriebsspannung für den ersten und den zweiten Eingang 23, 26 des ersten Teilnehmers 3 abschalten und nur noch über die zweite Leitung 22 die zweite Betriebsspannung bereitstellen. Somit können die in den Prozessoren oder Speicher gespeicherten Informationen erhalten bleiben. Dies kann auch als so genannter Freeze-Zustand bezeichnet werden. In einem derartigen Fall kann der erste Teilnehmer 3 beim Zuschalten der ersten Gleichspannung in Höhe von 5 V schnell wieder in seinen vorherigen Zustand (Zustand beim Abschalten oder Einschlafen) versetzt werden. Ein zeitaufwendiges Booten oder Initialisieren könnte somit entfallen.
  • In 8 ist im Unterschied zu 6 und 7 dargestellt, dass über eine zweite Leitung 22 eine zweite Gleichspannung von 0 V aufgeprägt wird, d. h. dass die zweite Leitung 22 ein Massepotential, insbesondere ein Potential einer Fahrzeugmasse, aufweist. Über eine Induktivität L8 ist dieses Massepotential von der zweiten Leitung 22 abgreifbar und an einen Masseeingang 35 eines ersten Teilnehmers 3 anlegbar. Hierdurch kann in vorteilhafter Weise ein erster Teilnehmer 3 ohne separaten Anschluss an eine Fahrzeugmasse betrieben werden.
  • Bezugszeichenliste
  • 1
    Netzwerk
    2
    zentraler Teilnehmer
    3
    erster Teilnehmer
    4
    zweiter Teilnehmer
    5
    dritter Teilnehmer
    6
    vierter Teilnehmer
    7
    erstes Kabel
    8
    zweites Kabel
    9
    drittes Kabel
    10
    viertes Kabel
    11
    Mikrocontroller
    12
    MAC-Einheit
    13
    Ethernet-Switch
    14
    Energiekopplungseinheit
    15
    Energiekopplungseinheit
    16
    Mikrocontroller
    17
    MAC-Einheit
    18
    physikalische Schicht
    19
    Steuergeräte-Peripherie
    20
    zentrale Versorgungsspannung
    21
    erste Leitung
    22
    zweite Leitung
    23
    erster Eingang
    24
    erster Längsregler
    25
    zweiter Längsregler
    26
    zweiter Eingang
    27
    dritter Eingang
    28
    Detektionseingang
    29
    Schaltausgang
    30
    Schalter
    31
    Spannungswandler
    32
    Diode
    33
    Schalter
    34
    Bordnetzspannung
    35
    Masseeingang
    36
    Längsregler
    C1
    erste Kapazität
    C2
    zweite Kapazität
    C3
    erste Kapazität
    C4
    zweite Kapazität
    L1
    erste Induktivität
    L2
    zweite Induktivität
    L3
    Induktivität
    L4
    erste Induktivität
    L5
    zweite Induktivität
    L6
    Induktivität
    L7
    Induktivität
    L8
    Induktivität
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102008030222 A1 [0005]

Claims (10)

  1. Netzwerk, insbesondere in einem Kraftfahrzeug, wobei das Netzwerk (1) einen zentralen Teilnehmer (2) und mindestens einen ersten Teilnehmer (3) umfasst, wobei der zentrale Teilnehmer (2) und der mindestens eine erste Teilnehmer (3) über mindestens ein erstes Kabel (7) verbunden sind, wobei der zentrale Teilnehmer (2) mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit (14) umfasst, wobei mittels der Signalkopplungseinheit eine Wechselspannung auf mindestens eine erste Leitung (21) des ersten Kabels (7) aufprägbar oder von dieser abgreifbar ist, wobei mittels der Energiekopplungseinheit (14) eine Gleichspannung mit vorbestimmten Spannungsniveau auf die erste Leitung (21) des ersten Kabels (7) aufprägbar ist, wobei der mindestens erste Teilnehmer (3) mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit (15) umfasst, wobei mittels der Signalkopplungseinheit eine Wechselspannung von der mindestens ersten Leitung (21) des ersten Kabels (7) abgreifbar oder auf diese aufprägbar ist, wobei mittels der Energiekopplungseinheit (15) die Gleichspannung von der mindestens ersten Leitung (21) des ersten Kabels (7) abgreifbar ist, dadurch gekennzeichnet, dass die erste Gleichspannung eine erste Betriebsspannung des ersten Teilnehmers (3) ist oder in die erste Betriebsspannung des ersten Teilnehmers transformierbar ist, wobei die erste Betriebsspannung an mindestens einen ersten Eingang (23) des ersten Teilnehmers (3) anlegbar ist, wobei der erste Teilnehmer (3) eine Signalisierungseinheit umfasst oder dem ersten Teilnehmer (3) eine Signalisierungseinheit zugeordnet ist, wobei mittels der Signalisierungseinheit in einem abgeschalteten oder schlafenden Zustand des ersten Teilnehmers (3) ein Bedarfssignal erzeugbar ist, wobei das Bedarfssignal von der Signalisierungseinheit an den zentralen Teilnehmer (2) über mindestens eine den ersten und den zentralen Teilnehmer (3, 2) verbindende Leitung übertragbar ist.
  2. Netzwerk nach Anspruch 1, dadurch gekennzeichnet, dass mittels des zentralen Teilnehmers (2) das Bedarfssignal detektierbar ist, wobei mittels der Energiekopplungseinheit (14) des zentralen Teilnehmers (2) eine erste Gleichspannung auf die erste Leitung (21) des ersten Kabels (7) aufprägbar ist, falls das Bedarfssignal detektiert wird.
  3. Netzwerk nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mittels der Signalisierungseinheit als Bedarfssignal eine Bedarfsspannung mit vorbestimmten Spannungsniveau erzeugbar ist, wobei mittels der Energiekopplungseinheit (15) des ersten Teilnehmers (3) die Bedarfsspannung auf eine den ersten und den zentralen Teilnehmer verbindende Leitung aufprägbar ist.
  4. Netzwerk nach Anspruch 3, dadurch gekennzeichnet, dass mittels des Energiekopplungseinheit (14) des zentralen Teilnehmers (2) die Bedarfspannung von der ersten Leitung (21) abgreifbar ist und an einen Detektionseingang (28) des zentralen Teilnehmers (2) anlegbar ist, wobei mittels einer Auswerteeinheit des zentralen Teilnehmers (2) auswertbar ist, ob die am Detektionseingang (28) angelegte Spannung ein vorbestimmtes Spannungsniveau überschreitet, wobei mittels der Energiekopplungseinheit (14) des zentralen Teilnehmers (2) die erste Gleichspannung auf die erste Leitung (21) des ersten Kabels (7) aufprägbar ist, falls die am Detektionseingang (28) angelegte Spannung das vorbestimmtes Spannungsniveau überschreitet.
  5. Netzwerk nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass ein Niveau der Bedarfsspannung kleiner als ein Niveau der ersten Betriebsspannung des ersten Teilnehmers (3) und/oder einer Betriebsspannung des zentralen Teilnehmers (2) ist.
  6. Netzwerk nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Signalisierungseinheit des ersten Teilnehmers (3) mindestens eine Schalteinheit umfasst, wobei die Signalisierungseinheit mittels der Schalteinheit mit einer Spannungsquelle verbindbar.
  7. Netzwerk nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Energiekopplungseinheit (15) des ersten Teilnehmers (3) mindestens einen Spannungswandler (24, 25) umfasst, wobei mittels des mindestens einen Spannungswandlers (24, 25) die erste Betriebsspannung in ihrem Spannungsniveau veränderbar ist, wobei die in ihrem Spannungsniveau veränderte erste Betriebsspannung an einen weiteren Eingang (26, 27) des ersten Teilnehmers anlegbar ist.
  8. Netzwerk nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das erste Kabel (7) eine zweite Leitung (22) umfasst, wobei mittels der Energiekopplungseinheit (14) des zentralen Teilnehmers (2) eine weitere Gleichspannung des ersten Teilnehmers (3) auf die zweite Leitung (22) des ersten Kabels (7) aufprägbar ist, wobei mittels der Energiekopplungseinheit (15) des ersten Teilnehmers (3) die weitere Gleichspannung von der zweiten Leitung (22) des ersten Kabels (7) abgreifbar ist, wobei die weitere Gleichspannung eine weitere Betriebsspannung des ersten Teilnehmers ist oder in die weitere Betriebsspannung transformierbar ist, wobei ein Spannungsniveau der weiteren Betriebsspannung gleich dem Spannungsniveau der ersten Betriebsspannung ist und die weitere Betriebsspannung an den ersten Eingang (23) des ersten Teilnehmers (3) anlegbar ist oder das Spannungsniveau der weiteren Betriebsspannung vom Spannungsniveau der ersten Betriebsspannung verschieden ist und die weitere Betriebsspannung an einen weiteren Eingang (26, 27) des ersten Teilnehmers (3) anlegbar ist.
  9. Netzwerk nach Anspruch 8, dadurch gekennzeichnet, dass das vorbestimmte Spannungsniveau der auf die zweiten Leitung (22) aufgeprägten Spannung einem Massepotential entspricht, wobei mittels der Energiekopplungseinheit (15) des ersten Teilnehmers die Gleichspannung von der zweiten Leitung (22) des ersten Kabels (7) abgreifbar und an einen Masseeingang (35) des ersten Teilnehmers (3) anlegbar ist.
  10. Verfahren zum Betreiben eines Netzwerks, insbesondere in einem Kraftfahrzeug, wobei das Netzwerk (1) einen zentralen Teilnehmer (2) und mindestens einen ersten Teilnehmer (3) umfasst, wobei der zentrale Teilnehmer (2) und der mindestens erste Teilnehmer (3) über mindestens ein erstes Kabel (7) verbunden sind, wobei der zentrale Teilnehmer (2) mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit (14) umfasst, wobei in einem Kommunikationszustand des ersten Teilnehmers (3) mittels der Signalkopplungseinheit eine Wechselspannung auf mindestens eine erste Leitung (21) des ersten Kabels (7) aufgeprägt oder abgegriffen wird, wobei mittels der Energiekopplungseinheit (14) eine Gleichspannung mit vorbestimmten Spannungsniveau auf die erste Leitung (21) des ersten Kabels (7) aufgeprägt wird, wobei der mindestens erste Teilnehmer (3) mindestens eine Signalkopplungseinheit und mindestens eine Energiekopplungseinheit (15) umfasst, wobei mittels der Signalkopplungseinheit eine Wechselspannung von der mindestens ersten Leitung (21) des ersten Kabels (7) abgegriffen oder auf diese aufgeprägt wird, wobei mittels der Energiekopplungseinheit (15) die Gleichspannung von der mindestens ersten Leitung (2) des ersten Kabels (7) abgegriffen und an mindestens einen ersten Eingang (23) des ersten Teilnehmers (3) angelegt wird, wobei die Gleichspannung eine erste Betriebsspannung des ersten Teilnehmer (3) ist, dadurch gekennzeichnet, dass der erste Teilnehmer (3) eine Signalisierungseinheit umfasst oder dem ersten Teilnehmer (3) eine Signalisierungseinheit zugeordnet ist, wobei mittels der Signalisierungseinheit in einem abgeschalteten oder schlafenden Zustand des ersten Teilnehmers (3) ein Bedarfssignal erzeugt wird, wobei das Bedarfssignal von der Signalisierungseinheit an den zentralen Teilnehmer (2) über mindestens eine den ersten und den zentralen Teilnehmer (3, 2) verbindende Leitung übertragen wird.
DE102010049834A 2010-10-27 2010-10-27 Netzwerk und Verfahren zum Betreiben eines Netzwerks Pending DE102010049834A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102010049834A DE102010049834A1 (de) 2010-10-27 2010-10-27 Netzwerk und Verfahren zum Betreiben eines Netzwerks
PCT/EP2011/005348 WO2012055526A1 (de) 2010-10-27 2011-10-24 Netzwerk und verfahren zum betreiben eines netzwerks
EP11775744.3A EP2633641A1 (de) 2010-10-27 2011-10-24 Netzwerk und verfahren zum betreiben eines netzwerks
US13/881,579 US9442543B2 (en) 2010-10-27 2011-10-24 Network and method for operating a network
CN201180051090.1A CN103181116B (zh) 2010-10-27 2011-10-24 网络和用于操作网络的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010049834A DE102010049834A1 (de) 2010-10-27 2010-10-27 Netzwerk und Verfahren zum Betreiben eines Netzwerks

Publications (1)

Publication Number Publication Date
DE102010049834A1 true DE102010049834A1 (de) 2012-05-03

Family

ID=44862942

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010049834A Pending DE102010049834A1 (de) 2010-10-27 2010-10-27 Netzwerk und Verfahren zum Betreiben eines Netzwerks

Country Status (5)

Country Link
US (1) US9442543B2 (de)
EP (1) EP2633641A1 (de)
CN (1) CN103181116B (de)
DE (1) DE102010049834A1 (de)
WO (1) WO2012055526A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013217637A1 (de) * 2013-09-04 2015-03-05 Robert Bosch Gmbh Verfahren zum Einstellen eines Steuergeräts
CN103532724B (zh) * 2013-10-31 2016-08-17 北京经纬恒润科技有限公司 一种most网络接口电路和most网络状态控制方法
US9860072B2 (en) 2015-05-12 2018-01-02 Linear Technology Corporation System with sleep and wake up control over DC path
FR3038807B1 (fr) * 2015-07-09 2017-07-21 Continental Automotive France Dispositif d'emetteur-recepteur apte a etre connecte sur un reseau de communication par bus de type can ou flexray

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024106A1 (en) * 2006-07-25 2008-01-31 Silicon Laboratories, Inc. Powered device including a detection signature resistor
DE102008030222A1 (de) 2008-06-25 2009-12-31 Bayerische Motoren Werke Aktiengesellschaft Steuergerät und Verfahren zum Betrieb des Steuergeräts sowie KFZ mit derartigem Steuergerät

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577221A (en) * 1984-11-29 1986-03-18 American Television & Communications Corporation Power safety device for CATV tap-off unit
DE19503206C1 (de) * 1995-02-02 1996-08-14 Becker Gmbh Verfahren zur Bestimmung der Position eines Netzteilnehmers in einem Netzwerk bei einer auftretenden Leitungsstörung
US6535983B1 (en) * 1999-11-08 2003-03-18 3Com Corporation System and method for signaling and detecting request for power over ethernet
US7170194B2 (en) * 2002-10-15 2007-01-30 Powerdsine, Ltd. Configurable multiple power source system
DE10325371A1 (de) * 2003-05-23 2004-12-16 Alcoa Fujikura Gesellschaft mit beschränkter Haftung Steuereinrichtung
US8831211B2 (en) 2004-11-19 2014-09-09 Linear Technology Corporation Common-mode data transmission for power over ethernet system
CN100544263C (zh) * 2005-04-19 2009-09-23 华为技术有限公司 一种远程供电系统和其上电控制方法
CN1937434A (zh) * 2005-09-19 2007-03-28 康舒科技股份有限公司 兼具电源供应功能的电力线网络装置
US7873844B2 (en) * 2006-06-28 2011-01-18 Broadcom Corporation Physical separation and recognition mechanism for a switch and a power supply for power over Ethernet (PoE) in enterprise environments
US7921310B2 (en) * 2006-06-28 2011-04-05 Broadcom Corporation Unified powered device (PD) controller and LAN on motherboard (LOM) in a personal computing device (PCD)
US7711383B2 (en) * 2006-06-30 2010-05-04 Motorola, Inc. Method and system for communicating within a communication network
JP2010517396A (ja) * 2007-01-29 2010-05-20 シーメンス アクチエンゲゼルシヤフト ネットワークコンポーネント、このようなネットワークコンポーネントを作動させるための方法、このようなネットワークコンポーネントを有する自動化システム、このようなネットワークコンポーネントを用いて自動化システム内でデータ通信するための方法、対応するコンピュータプログラム、およびコンピュータプログラム製品
CN201066855Y (zh) * 2007-04-06 2008-05-28 张旭 高速以太网交换机低压远程供电装置
CN101690019B (zh) * 2007-07-06 2014-01-08 默勒有限公司 通过开放式现场总线控制总线联网的设备的系统和方法
US8020013B2 (en) * 2008-03-05 2011-09-13 Inscape Data Corporation Adjustable-voltage power-over-ethernet (PoE) switch
DE102008043830A1 (de) * 2008-11-18 2010-05-20 Bundesdruckerei Gmbh Kraftfahrzeug-Anzeigevorrichtung, Kraftfahrzeug-Elektroniksystem, Kraftfahrzeug, Verfahren zur Anzeige von Daten und Computerprogrammprodukt
TWI388153B (zh) * 2008-12-12 2013-03-01 Wistron Neweb Corp 網路設備
US8836467B1 (en) * 2010-09-28 2014-09-16 Icontrol Networks, Inc. Method, system and apparatus for automated reporting of account and sensor zone information to a central station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024106A1 (en) * 2006-07-25 2008-01-31 Silicon Laboratories, Inc. Powered device including a detection signature resistor
DE102008030222A1 (de) 2008-06-25 2009-12-31 Bayerische Motoren Werke Aktiengesellschaft Steuergerät und Verfahren zum Betrieb des Steuergeräts sowie KFZ mit derartigem Steuergerät

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÄRTNER, O.: Saft und Daten. IX extra, Januar 2005 S, I-V *

Also Published As

Publication number Publication date
US9442543B2 (en) 2016-09-13
WO2012055526A1 (de) 2012-05-03
US20130275784A1 (en) 2013-10-17
EP2633641A1 (de) 2013-09-04
CN103181116A (zh) 2013-06-26
CN103181116B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
DE102010049835A1 (de) Netzwerk und Verfahren zum Betreiben eines Netzwerks
EP2789106B1 (de) Netzwerk-komponente für ein fahrzeug-netzwerk und entsprechendes fahrzeug-netzwerk
DE69719631T2 (de) Fernspeisungssystem für Netzwerkelemente
DE102008030222B4 (de) Steuergerät und Verfahren zum Betrieb des Steuergeräts sowie KFZ mit derartigem Steuergerät
EP3003787B1 (de) Bordnetz-anordnung für ein kraftfahrzeug
EP2817976B1 (de) Batteriesensordatenübertragungseinheit und ein verfahren zum übertragen von batteriesensordaten
DE102009026961A1 (de) Verfahren zum Übertragen von Daten zwischen Teilnehmerstationen eines Bussystems
DE102009026965A1 (de) Medienzugriffssteuerverfahren für ein Bussystem und Kommunikationseinrichtung
EP3616977A1 (de) Ladekabel für ein elektrofahrzeug
DE102010049834A1 (de) Netzwerk und Verfahren zum Betreiben eines Netzwerks
DE102012223530B4 (de) Dynamische Leitungsterminierung von Kommunikationsbussen in Überwachungsschaltungen für Batteriemodule sowie ein Verfahren zur Durchführung der Leitungsterminierung bei der Initialisierung des Überwachungssystems
DE102013220707B4 (de) Verfahren zum Betreiben eines Datenbusses, entsprechender Datenbus und Fahrzeug mit einem solchen Datenbus
WO2017017092A1 (de) Elektrischer verbraucher für ein kraftfahrzeug
DE102019207174A1 (de) Sende-/Empfangseinrichtung und Kommunikationssteuereinrichtung für eine Teilnehmerstation eines seriellen Bussystems und Verfahren zur Kommunikation in einem seriellen Bussystem
DE112011105828B4 (de) Elektronische Steuerungsvorrichtungen und Mikrocomputersteuerungsverfahren mit Ruhebetriebsart
EP2487839A1 (de) Lade- und Kommunikationssystem für Kraftfahrzeug
DE19647131C2 (de) Vorrichtung und Verfahren zur zeitmultiplexen Übertragung von Informationen
DE102013221580A1 (de) Kopplungsvorrichtung und Verfahren zum Betreiben einer Kopplungsvorrichtung
DE102013004737A1 (de) Netzwerk und Verfahren zum Betrieb eines Netzwerks
DE102013208004B3 (de) Weckschaltung für eine an einem Zweidrahtbus für ein differentielles Signal betreibbare Buskomponente und Buskomponente mit einer solchen Weckschaltung
WO2012110538A1 (de) Kommunikationssystem mit einer durch eine recheneinheit steuerbaren elektronischen schaltung, insbesondere für ein kraftfahrzeug
DE102019200907A1 (de) Teilnehmerstation für ein Bussystem und Verfahren zur Datenübertragung in einem Bussystem
EP3915227B1 (de) Sende-/empfangseinrichtung für eine teilnehmerstation eines seriellen bussystems und verfahren zur kommunikation in einem seriellen bussystem
DE102018220069A1 (de) Reflexionsdämpfungsvorrichtung für einen Bus eines Bussystems und Verfahren zum Dämpfen von Reflexionen bei einer Datenübertragung in einem Bussystem
DE102022120031B3 (de) Elektronische steuereinheit, automobil-batteriemanagementsystem,system zum steuern eines elektromotors einesverkehrsmittels und verfahren zur implementierung einesisolierten hilfskanals zur ermöglichung einer digitalenversorgung auf der hochspannungsseite

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication