DE102009057997A1 - Verfahren zum Verschweißen von zwei Metallbauteilen - Google Patents

Verfahren zum Verschweißen von zwei Metallbauteilen Download PDF

Info

Publication number
DE102009057997A1
DE102009057997A1 DE102009057997A DE102009057997A DE102009057997A1 DE 102009057997 A1 DE102009057997 A1 DE 102009057997A1 DE 102009057997 A DE102009057997 A DE 102009057997A DE 102009057997 A DE102009057997 A DE 102009057997A DE 102009057997 A1 DE102009057997 A1 DE 102009057997A1
Authority
DE
Germany
Prior art keywords
laser beam
metal components
weld
energy input
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009057997A
Other languages
English (en)
Inventor
Markus Dr. 89275 Beck
Wolfgang Dr.-Ing. 89081 Becker
Markus 27419 Geyer
Ulix Dr. 72644 Goettsch
Klaus Dr.-Ing. 71067 Goth
Wolfgang Dr.-Ing. 70563 Gref
Claus-Dieter Dipl.-Ing. 73779 Reiniger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to DE102009057997A priority Critical patent/DE102009057997A1/de
Priority to PCT/EP2010/007348 priority patent/WO2011069621A1/de
Priority to US13/515,015 priority patent/US8890022B2/en
Priority to JP2012542387A priority patent/JP5551792B2/ja
Priority to EP10785359.0A priority patent/EP2509742B1/de
Publication of DE102009057997A1 publication Critical patent/DE102009057997A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding

Abstract

Die Erfindung betrifft ein Verfahren (10) zum Verschweißen von zwei Metallbauteilen (12, 14), insbesondere aus Aluminiumlegierungen, mit den Schritten: – Aufschmelzen der zu fügenden Metallbauteile (12, 14) in einem Verschweißbereich (18) durch einen Energieeintrag, insbesondere mittels eines Laserstrahls (20), unter Ausbildung einer Schweißnaht (22), – Glätten der Oberfläche (28) der Schweißnaht (22) durch einen weiteren Energieeintrag unter teilweisem Aufschmelzen der Schweißnaht (22) im Bereich der Oberfläche (28) sowie eine mit diesem Verfahren verschweißte Verbindungsanordnung.

Description

  • Die Erfindung betrifft ein Verfahren zum Verschweißen von zwei Metallbauteilen gemäß dem Oberbegriff von Patentanspruch 1.
  • Ein gattungsgemäßes Verfahren ist durch die US 2005/0028897 A1 offenbart. In ihr beschrieben ist ein Verfahren zum Vermeiden von Rissen beim Schweißen, beim Reparaturschweißen oder beim Plattinieren von Teilen, die aus metallischen Legierungen bestehen und heißrissanfällig sind. Bei dem Verfahren wird eine erste Wärmequelle auf die Teile gerichtet und ein Schmelzbereich ausgebildet, wobei die Wärmequelle und die Teile relativ zueinander bewegt werden. Des Weiteren ist eine zweite, zusätzliche Wärmequelle vorgesehen, die auf die Teile gerichtet wird und der ersten Wärmequelle in einem Abstand mit der gleichen Geschwindigkeit und in der gleichen Richtung folgt, wobei die Abkühlrate eines Verfestigungsbereichs des Schmelzbereichs reduziert wird, und zwar ohne den Verfestigungsbereich aufzuschmelzen. Dadurch sollen Spannungsbelastungen vermieden oder sogar erzeugt werden, um eine Bildung von Heißrissen zu vermeiden.
  • Die EP 1 747 836 A1 offenbart ein Verfahren zum Verschweißen von Metallteilen, wobei ein Schweißlaserstrahl eines Lasers auf die Metallteile fokussiert wird. Die Metallteile werden durch den Schweißlaserstrahl unter Ausbildung einer Schweißnaht zusammengeschweißt. Anschließend wird eine Wärmebehandlung der Schweißnaht vorgesehen, wobei die Wärmebehandlung von einem Laserstrahl durchgeführt wird. Das Verfahren soll dabei eine Gefügeumwandlung des Werkstoffs der Metallteile infolge des Verschweißens dieser im Bereich der Schweißnaht wieder rückgängig machen.
  • Die bekannten Verfahren weisen dabei allesamt den Nachteil auf, dass die Oberflächentopografie der entstehenden Schweißnaht Nahtüberhöhungen aufweisen und/oder sehr scharfkantig sein kann. Dies ist insbesondere dann der Fall, wenn die zu verschweißenden Metallbauteile aus Aluminiumlegierungen bestehen, insbesondere dann wenn zumindest einer der Fügepartner aus einer Aluminiumlegierung der Serie 5000 oder 7000 ausgebildet ist. Die entsprechenden Verschweißbereiche der Teile sind dadurch für bestimmte Funktionen, zum Beispiel für das Aufbringen von Dichtungen oder Leisten, nicht mehr geeignet. Zudem besteht eine Verletzungsgefahr bei nachfolgenden manuellen Montageoperationen.
  • Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zum Verschweißen von Metallbauteilen bereitzustellen, welches eine hohe Funktionalität des Verschweißbereichs ermöglicht.
  • Diese Aufgabe wird durch ein Verfahren zum Verschweißen von zwei Metallbauteilen mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Ein Verfahren zum Verschweißen von zwei Metallbauteilen, insbesondere aus Aluminiumlegierungen, weißt einen ersten Schritt auf, bei dem die zu fügenden Metallbauteile in einem Verschweißbereich durch einen Energieeintrag, insbesondere mittels eines Laserstrahls, unter Ausbildung einer Schweißnaht aufgeschmolzen werden. Erfindungsgemäß ist nun ein weiterer Schritt vorgesehen, bei dem die Oberfläche der Schweißnaht durch einen weiteren Energieeintrag unter teilweisem Aufschmelzen der Schweißnaht im Bereich der Oberfläche geglättet wird. Durch dieses zumindest bereichsweise Wieder-Aufschmelzen und Glätten der Oberfläche wird die Schweißnaht oberflächlich umgeschmolzen, woraus ein Abbau der eingangs genannten, einzelnen Erhebungen resultiert. Die Topografie der Schweißnaht ist nun nicht mehr scharfkantig sondern viel glatter, wodurch die zwei Metallbauteile in dem Verschweißbereich eine sehr hohe Funktionalität aufweisen, um beispielsweise dort Dichtungen vorsehen zu können.
  • Dies bedeutet eine Darstellung einer sehr guten Oberflächengüte in dem Verschweißbereich, was mit einer hohen Funktionalität desselbigen einhergeht. Die so geschaffene hohe Oberflächengüte des Verschweißbereichs erlaubt ebenso wie die nicht verschweißten Oberflächen der Metallbauteile beispielsweise ein Aufbringen von Dichtungen oder Leisten, die ohne das Glätten der Schweißnaht durch die scharfkantige Topografie beschädigt werden würden.
  • Bei einer vorteilhaften Ausführungsform der Erfindung wird der weitere Energieeintrag mittels eines defokussierten Laserstrahls durchgeführt, dessen Brennpunkt in Strahlrichtung vor oder hinter der Oberfläche der Schweißnaht positioniert wird. Dies erlaubt eine präzise sowie schnelle Prozessführung, was mit einer hohen Qualität bei gleichzeitig geringen Kosten für das erfindungsgemäße Verfahren einhergeht. Bei dem defokussierten Laserstrahl kann es sich beispielsweise um den Laserstrahl eines Lasers handeln, mittels welchem schon die Metallbauteile in dem Verschweißbereich aufgeschmolzen werden. Ebenfalls kann vorgesehen sein, dass es sich bei dem defokussierten Laserstrahl um den Laserstrahl eines weiteren Lasers handelt, der beispielsweise dem ersten Laserstrahl in einem gewissen Abstand nachgeführt wird.
  • Eine von dem defokussierten Laserstrahl mit energiebeaufschlagte Fläche ist beispielsweise 4 bis 16 mal, insbesondere 9 mal, größer als eine Fläche, die von dem fokussierten Laserstrahl zum Verschweißen der zwei Metallbauteile mit Energie beaufschlagt wird. Dies ermöglicht einen spezifischen Energieeintrag, also einen Energieeintrag pro Fläche, der groß genug ist, die Schweißnaht teilweise wieder aufzuschmelzen und somit die Oberfläche der Schweißnaht zu glätten, ohne die Schweißnaht wieder komplett aufzuschmelzen.
  • Bei Überfahrt des defokussierten Laserstrahls über die Schweißnaht sind die Prozessparameter dabei so zu wählen, dass genügend Energie für das teilweise Wieder-Aufschmelzen der Schweißnaht absorbiert wird.
  • Vorteilhafter Weise schließen der defokussierte Laserstrahl und die Flächennormale einer Oberfläche der zwei Metallbauteile, auf welche der Laserstrahl auftrifft, also die Oberfläche, in welche die Schweißnaht eingebracht wird, einen Winkel ein, der von 0° verschieden ist. Dieser Winkel beträgt dabei vorteilhafterweise mindestens 5°, wodurch eine Beschädigung der Optik durch von der Bauteiloberfläche rückreflektierte Laserstrahlung vermieden wird.
  • Werden beispielsweise durch das erfindungsgemäße Verfahren zwei Metallbauteile verschweißt, welche aus Aluminiumlegierungen bestehen, so sind Oberflächen dieser Aluminiumlegierungen für die Wellenlänge von Festkörperlasern besonders reflektiv, weswegen eine Gefahr der Zerstörung der Optik oder des Lichtleitkabels durch von der Bauteiloberfläche rückreflektierte Stahlung immanent ist. Diese Gefahr ist insbesondere bei dem defokussierten Laserstrahl gegeben, da dieser auch auf sich unmittelbar an die Schweißnaht anschließende, glatte Bereiche auftrifft, die den Laserstrahl reflektieren können. Zur Vermeidung der Zerstörung schließt also der defokussierte Laserstrahl mit der Flächennormalen einen Winkel ein, der größer oder gleich 5° beträgt.
  • An dieser Stelle sei angemerkt, dass eine Energieverteilung des defokussierten Laserstrahls zumindest im Wesentlichen einer Gausverteilung gehorcht, was bedeutet, dass in äußeren Bereichen der mittels des Laserstrahls mit Energie beaufschlagten Fläche eine geringere Energiedichte vorliegt als in inneren Bereichen dieser Fläche.
  • Eine Überfahrt der Schweißnaht mit dem defokussierten Laserstrahl, also eine so genannte defokussierte Überfahrt, kann beispielsweise dann erfolgen, so lange die Schweißnaht beziehungsweise der Verschweißbereich noch warm ist. Ebenso möglich ist die defokussierte Überfahrt auch dann, wenn die Schweißnaht beziehungsweise der Verschweißbereich bereits, beispielsweise auf Umgebungstemperatur, abgekühlt ist. In jeglicher Hinsicht kann die defokussierte Überfahrt unmittelbar in Rückrichtung, also in entgegengesetzter Richtung zur Ausbildung der Schweißnaht erfolgen.
  • Durch die defokussierte Überfahrt sind insbesondere unregelmäßige und scharfkantige Erhebungen, ein Endkrater sowie eine Nahtüberhöhung der Schweißnaht zu glätten.
  • Die besagte Nahtüberhöhung liegt dabei im Anfangsbereich der Schweißnaht und entsteht derart, dass der Laserstrahl zu Beginn des Ausbildens der Schweißnaht auf die entsprechende Oberfläche des Metallbauteils trifft, das Metall aufschmilzt und sogar verdampft. Die dabei entstehende Dampfkapillare (Keyhole) wird in die entsprechende, gewünschte Richtung zum Ausbilden der Schweißnaht losgeführt. Aufgrund der Materialverdrängung durch die Dampfkapillare und aufgrund der der Schweißrichtung entgegengesetzte Umströmung des aufgeschmolzenen Metalls um die Dampfkapillare herum entsteht eine Nahtüberhöhung am Nahtanfang. Diese Nahtüberhöhung ist durch den defokussierten Laserstrahl zu glätten, wobei bei der defokussierten Überfahrt beispielsweise in Rückrichtung der Laserstrahl über den Nahtbeginn, also den Anfangsbereich der Schweißnaht, hinaus geführt wird, um eben die Nahtüberhöhung zuverlässig zu glätten.
  • Der besagte Endkrater liegt dabei in dem der Nahtüberhöhung gegenüberliegenden Endbereich der Schweißnaht und ist ebenso durch die defokussierte Überfahrt zu glätten. Der Endkrater wird dabei mit aufgeschmolzenem Metall aufgefüllt und eingeebnet.
  • An dieser Stelle sei angemerkt, dass das erfindungsgemäße Verfahren beispielsweise im Rahmen eines Remote-Laserstrahl-Schweißverfahrens eingesetzt werden kann, bei welchem es sich um einen robotergeführten Schweißprozess handelt.
  • Bei dem Remote-Laserstrahl-Schweißverfahren handelt es sich um ein Schweißverfahren, bei welchem der Laserstrahl aus größerem Abstand auf die entsprechende Oberfläche der Metallbauteile gerichtet und geschossen wird, wobei der Laserstrahl auch durch einen Scanner auf der Oberfläche geführt und an die entsprechenden, gewünschten Stellen gelenkt wird. In einem Schweißkopf der Schweißvorrichtung sind Spiegel des Scanners angeordnet, die eine Feinjustierung des Laserstrahls bewirken und diesen an die gewünschten Stellen lenken.
  • Der Scanner wiederum ist an einem Roboterarm gehalten, welcher den Scanner bewegt, wobei diese Bewegung des Scanners durch den Roboterarm grober erfolgt als die besagte Feinjustierung des Laserstrahls mittels des Scanners und dessen Spiegel.
  • Zudem ist die Führung und eine Umlenkung des Laserstrahls mittels des Scanners beziehungsweise der Spiegel äußerst schnell und quasi sprunghaft durchführbar, wodurch ein besonders schnelles Neupositionieren des Laserstrahls und damit des Nahtbeginns der Schweißnaht ermöglicht ist. Dies erlaubt eine besonders niedrige Nebenzeit des Schweißverfahrens, was die gesamte Taktzeit in einem geringen Rahmen hält und damit ein besonders günstiges Verfahren mit sehr geringen Taktzeiten erlaubt.
  • Insbesondere ist auch die Ausbildung zweier nebeneinander liegender Schweißnähte, die beispielsweise in einem Abstand von 20 bis 30 mm nebeneinander liegen, möglich, da der Laserstrahl, wie beschrieben, besonders schnell umgesetzt und neu positioniert werden kann.
  • Durch dieses schnelle und flexible Umpositionieren ist es insbesondere auch möglich, die defokussierte Überfahrt vorteilhaft in den Bearbeitungsablauf zu integrieren. Unmittelbar nach der Schweißung wird der Laserstrahl durch den Scanner defokussiert und wird entgegen der Schweißrichtung über die zuvor geschweißte Naht geführt. Dies geschieht während einer kontinuierlichen Bewegung des Scanners durch den Roboter über die Oberfläche der zu schweißenden Metallbauteile.
  • Das Remote-Laserstrahl-Schweißverfahren ist circa um den Faktor 3 schneller als herkömmliche Verfahren, wobei allerdings kein Schweißzusatzwerkstoff aufgrund der schnellen Neujustierung des Laserstrahls möglich ist.
  • Das erfindungsgemäße Verfahren erlaubt nun auch im Rahmen des Remote-Laserstrahl-Schweißverfahrens, insbesondere in Zusammenhang mit den Metallbauteilen, die aus Aluminiumlegierungen der Serien 5000 und/oder 7000 ausgebildet sind, eine Darstellung sehr guter Schweißnähte mit einer hohen Funktionalität, und das auch ohne Schweißzusatzwerkstoff.
  • Dies ist insofern äußerst vorteilhaft, als die Metallbauteile aus den genannten Aluminiumlegierungen eine sehr dünnflüssige Schmelze ausbilden, deren Topographie aufgrund einer hohen Rauheit, Zerklüftung, Scharfkantigkeit etc. nachteilig hinsichtlich der beschriebenen Funktionalität ist. Diese Nachteile sind durch das erfindungsgemäße Verfahren überwunden.
  • Der beschriebene, erste Aspekt der Erfindung betrifft also das erfindungsgemäße Verfahren, welches es ermöglicht, eine hohe Funktionalität der Metallbauteile auf der dem Energieeintrag, insbesondere mittels des Laserstrahls, zugewandten Oberfläche der Metallbauteile darzustellen. Der zweite Aspekt der Erfindung betrifft nun ein Verfahren, welches es ermöglicht, eine besonders hohe Funktionalität der Oberfläche darzustellen, die dem Energieeintrag, insbesondere mittels des Laserstrahls, abgewandt ist und somit der ersten Oberfläche gegenüberliegt. Die erste Oberfläche wird auch als Nahtoberraupe bezeichnet, während die zweite, der ersten Oberfläche gegenüberliegende Oberfläche, als Nahtunterraupe bezeichnet wird.
  • Der zweite Aspekt der Erfindung betrifft ein Verfahren zum Verschweißen von zwei Metallbauteilen, insbesondere aus einer Aluminiumlegierung, wobei die zu fügenden Metallbauteile in einem Verschweißbereich durch einen Energieeintrag, insbesondere mittels eines Laserstrahls, unter Ausbildung einer Schweißnaht aufgeschmolzen werden. Es wird nun ein in Richtung des Energieeintrags, insbesondere des Laserstrahls, sich anschließender, nicht durch den Energieeintrag, insbesondere den Laserstrahl, aufgeschmolzener Restmaterialdickenbereich der Metallbauteile vorgesehen, wobei die in Richtung des Energieeintrags, insbesondere des Laserstrahls, verlaufende Erstreckung des Restmaterialdickenbereichs, also seine Dicke, in Abhängigkeit von einer ermittelten, aus dem Energieeintrag resultierenden Geometrieänderung der dem Energieeintrag, insbesondere dem Laserstrahl, abgewandten Oberfläche zumindest eines der Bauteile im Bereich der Schweißnaht, also der Nahtunterraupe, ausgebildet wird.
  • Mit anderen Worten bedeutet dies, dass die Metallbauteile nicht komplett durchgeschmolzen werden, sondern der beschriebene Restmaterialdickenbereich vorgesehen wird. Dies vermeidet zum einen eine schlechte, raue und scharfkantige Topographie der dem Energieeintrag abgewandten Oberfläche in Folge eines Aufschmelzens dieser. Nichtsdestotrotz muss die Schweißnaht in Richtung des Energieeintrags so tief ausgebildet werden und damit eine so hohe Eindringtiefe aufweisen, dass eine feste Verbindung der Metallbauteile gegeben ist. Es ist also ein Kompromiss zu schaffen zwischen der Eindringtiefe der Schweißnaht und somit zur Schaffung einer festen Verbindung der Metallbauteile einerseits und der Schaffung einer hohen Oberflächengüte auf der dem Energieeintrag (Laserstrahl) abgewandten Oberfläche der Metallbauteile beziehungsweise im Falle einer Überlappung der Bauteile des unteren der zwei Metallbauteile andererseits.
  • Auch wenn die Metallbauteile nicht komplett durchgeschmolzen werden, also auch im Falle eines so genannten Nicht-Durchschmelzens, kommt es zu einer Änderung der Geometrie der dem Energieeintrag abgewandten Oberfläche, welche im Folgenden als Unterseite bezeichnet wird. Diese Geometrieänderung, welche auch als Änderung der Topographie oder als Durchdrückung bezeichnet wird, wird ermittelt beziehungsweise erfasst, so zum Beispiel in vorgelagerten Versuchen, und stellt ein Maß dar, wie dicht die durch die Aufschmelzung hergestellte Schweißnaht vor der besagten Unterseite liegt, also wie groß die in Richtung des Energieeintrags verlaufende Erstreckung des Restmaterialdickenbereichs ist. Ebenso ist die Durchdrückung somit ein Maß für die Festigkeit der Verbindung der beiden Metallbauteile.
  • Durch die Ermittlung beziehungsweise Erfassung der Durchdrückung ist der oben genannte Kompromiss erreichbar. So wird beispielsweise eine Profilhöhe sowie ein Profilwinkel dieser Durchdrückung ermittelt, woraus Rückschlüsse auf die Festigkeit der Verbindung sowie auf die in Richtung des Energieeintrags verlaufende Erstreckung des Restmaterialdickenbereichs zu ziehen sind.
  • Befindet sich der aufgeschmolzene Bereich der Schweißnaht besonders nah an der Unterseite, so weist die Durchdrückung eine spitze und hohe Topographie auf, während die Topografie einen breiten und flachen Verlauf aufweist, wenn der aufgeschmolzene Bereich der Schweißnaht weiter weg von der Unterseite liegt.
  • In Abhängigkeit von dieser Geometrieänderung beziehungsweise von dieser Topographie kann nun erfindungsgemäß das Verfahren so eingestellt werden, dass sich eine gewünschte Topographie der Unterseite im Bereich der Schweißnaht einstellt, sodass einerseits eine hohe Oberflächengüte und andererseits eine feste Verbindung zwischen den Metallbauteilen ermöglicht ist.
  • Ein besonders vorteilhafter Bereich der besagten Profilhöhe liegt dabei bei einschließlich 20 bis einschließlich 100 μm, während ein Bereich des besagten Profilwinkels in einem besonders vorteilhaften Bereich von einschließlich 1° bis einschließlich 5° liegt. Insbesondere der Profilwinkel ist ein sehr gutes Maß für die Festigkeit der Verbindung bei gleichzeitiger Realisierung einer sehr guten Oberflächengüte zur Darstellung der beschriebenen Funktionalität auch auf der dem Energieeintrag abgewandten Oberfläche. Liegen beziehungsweise der Profilwinkel und/oder die Profilhöhe in dem jeweiligen Bereich, so sind die zwei Metallbauteile trotz des Nicht-Durchschmelzens fest miteinander verbunden.
  • Das erfindungsgemäße Verfahren ist insbesondere geeignet für das Verschweißen von Metallbauteilen, die im Wesentlichen aus Aluminiumlegierungen bestehen, insbesondere dann wenn zumindest einer der Fügepartner aus einer Aluminiumlegierungen der Serie 5000 oder 7000 ausgebildet ist, und an Funktionsflanschen miteinander verschweißt werden. Neben der Schaffung der hohen Funktionalität des Verschweißbereichs ist des Weiteren eine Verletzungsgefahr bei nachfolgenden, manuellen Montageoperationen vermieden, da scharfe Kanten, an denen sich ein Monteur schneiden könnte, vermieden bzw. beseitigt werden.
  • An dieser Stelle sei angemerkt, dass das erfindungsgemäße Verfahren gemäß dem ersten Aspekt der Erfindung ohne Weiteres mit dem erfindungsgemäßen Verfahren des zweiten Aspekts der Erfindung kombinierbar ist zur Darstellung einer hohen Oberflächengüte mit einer hohen Funktionalität sowohl auf der Nahtoberraupe sowie auf der Nahtunterraupe der beiden Metallbauteile.
  • Zur Erfindung gehört auch eine Verbindungsanordnung mit zwei Metallbauteilen, welche miteinander verschweißt sind, wobei die zwei Metallbauteile durch ein erfindungsgemäßes Verfahren des ersten Aspekts der Erfindung, durch ein erfindungsgemäßes Verfahren des zweiten Aspekts der Erfindung oder durch eine Kombination der erfindungsgemäßen Verfahren der beiden Aspekte miteinander verschweißt sind. Vorteilhafte Ausgestaltungen der Verbindungsanordnungen sind als vorteilhafte Ausgestaltungen des jeweiligen Verfahrens und umgekehrt anzusehen.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
  • Die Zeichnungen zeigen in:
  • 1 eine schematische Ansicht zweier Schritte eines Verfahren zum Verschweißen von zwei Metallbauteilen,
  • 2 eine Gegenüberstellung eines Längsschnittes einer Schweißnaht, die durch das Verfahren gemäß 1 entstanden ist, vor beziehungsweise nach dem zweiten Schritt des Verfahrens gemäß 1,
  • 3 ein Zusammenhang zwischen einer Eindringtiefe der Schweißnaht, die bei dem Verfahren gemäß 1 ausgebildet wird, und einer Festigkeit der Verbindung der Metallbauteile, die bei dem Verfahren verschweißt werden,
  • 4 eine Darstellung eines Höhenprofils quer zur Schweißnaht auf der dem Energieeintrag abgewandten Oberfläche, die bei dem Verfahren gemäß 1 ausgebildet wird,
  • 5 ein Zusammenhang zwischen dem Höhenprofil gemäß 4 und der Eindringtiefe der Schweißnaht, die bei einem Verfahren gemäß 1 ausgebildet wird, und
  • 6 ein Zusammenhang zwischen der Festigkeit der Verbindung der Metallbauteile, die durch ein Verfahren gemäß 1 miteinander verschweißt werden, und dem Höhenprofil gemäß den 4 und 5.
  • Die 1 zeigt ein Verfahren zum Verschweißen eines ersten Metallbauteils 12 mit einem zweiten Metallbauteil 14, die aus einer Aluminiumlegierung der Serien 5000 oder 7000 ausgebildet sind. Die Metallbauteile 12 und 14 werden zunächst sich in einem Überlappungsbereich 16 überlappend angeordnet, wodurch also ein Überlappstoß gebildet wird.
  • Dann werden die zu fügenden Metallbauteile 12 und 14 in einem Verschweißbereich 18 durch einen Energieeintrag mittels eines Laserstrahls 20 unter Ausbildung einer Schweißnaht 22 aufgeschmolzen. Der Laserstrahl 20 ist dabei auf die Schweißnaht 22 beziehungsweise auf eine in Strahlrichtung gemäß einem Richtungspfeil 24 obere Oberfläche 26 des oberen Metallbauteils 12 fokussiert. Das heißt, dass der Abstand z des Brennpunktes des Laserstrahls 20 von der Oberfläche 26 Null Millimeter beträgt.
  • Wie der 1 zu entnehmen ist, entsteht dadurch eine ungleichmäßige Oberfläche 28 der Schweißnaht 22, welche als Nahtoberraupe zu bezeichnen ist.
  • Anschließend wird die Oberfläche 28 der Schweißnaht 22 durch einen weiteren Energieeintrag unter teilweisem Aufschmelzen der Schweißnaht im Bereich der Oberfläche 28 geglättet. Das Bezugszeichen 30 kennzeichnet dabei einen umgeschmolzenen Bereich mit einer gleichmäßigen Nahtoberraupe.
  • Der weitere Energieeintrag wird mittels eines defokussierten Laserstrahls 20' durchgeführt, dessen Brennpunkt in Strahlrichtung vor der Schweißnaht 22 beziehungsweise vor der Oberfläche 28 positioniert wird. Der Abstand z des Brennpunktes des Laserstrahls 20' beträgt nun beispielsweise 40 mm. Bei dem Laserstrahl 20' kann es sich dabei um den gleichen Laserstrahl 20 handeln, der lediglich defokussiert wird und über die Schweißnaht 22 geführt wird.
  • Wie der 1 ebenso zu entnehmen ist, wird bei dem Verfahren 10 eine Eindringtiefe s der Schweißnaht 22 geringer ausgebildet als eine Gesamtmaterialdicke tges der zu fügenden Metallbauteile 12 und 14. Das bedeutet, dass die Schweißnaht 22 eine in Strahlrichtung gemäß dem Richtungspfeil 24 untere Oberfläche 32 des in Strahlrichtung gemäß dem Richtungspfeil 24 unteren Metallbauteils 14 nicht durchdringt. Es wird also in Richtung des Laserstrahls 20 ein sich an die Schweißnaht 22 anschließender Restmaterialdickenbereich der Metallbauteile 12 und 14 vorgesehen, dessen sich in Richtung des Laserstrahls 20 verlaufende Erstreckung (Dicke) in Abhängigkeit von einer ermittelten, aus dem Energieeintrag mittels des Laserstrahls 20 resultierenden Geometrieänderung der dem Laserstrahl 20 abgewandten Oberfläche 32 des Metallbauteils 14 im Bereich der Schweißnaht 22 ausgebildet wird, was anhand der folgenden Figuren verdeutlicht wird.
  • Somit ist neben der hohen Oberflächengüte der Oberfläche 26 durch das Glätten der Oberfläche 28 der Schweißnaht 22 auch eine sehr gute Oberflächengüte der Oberfläche 32 realisiert.
  • Bei dem mittels der Figuren verdeutlichten Verfahren zum Verschweißen der Metallbauteile 12 und 14 werden die Metallbauteile 12 und 14 durch eine Folge von Stepp- beziehungsweise Stichnähten entlang eines Flanschbereiches mittels eines Remote-Laserstrahl-Schweißverfahrens miteinander verbunden, wobei die Metallbauteile 12 und 14 aus einer Aluminiumlegierung der Serie 5000 ausgebildet sind. Der Abstand zwischen den Stichnähten entlang des Flanschbereiches beträgt circa 60 mm von Stichnaht-Mitte zu Stichnaht-Mitte. Die Nahtlänge pro Stichnaht beträgt 30 mm, wobei die Blechdicke der beiden Metallbauteile 12 und 14 jeweils 1,5 mm beträgt. Der zu schweißende Flanschbereich der Metallbauteile wird durch Spannerfinger gegeneinander gedrückt, welche im Flanschbereich zwischen den Stichnähten angeordnet sind.
  • Der Laserstrahl 20 sowie der defokussierte Laserstrahl 20' werden durch einen Scheiben-Laser erzeugt, welcher eine Leistung von 6 kW und eine Wellenlänge von circa 1 μm aufweist. Die Leistung des Lasers wird über ein Lichtleitkabel, welches als Glasfaserkabel mit einem Kerndurchmesser von 200 μm ausgebildet ist, zu einem Bearbeitungskopf geführt, der als 3D-Scanner ausgebildet ist. Der Scanner ist an einem Roboterflansch fixiert.
  • Der Scanner weist eine motorisierte Kollimation zur Bewegung des Laserstrahls 20 beziehungsweise 20' in Strahlrichtung (z-Richtung) auf, wobei diese Bewegung in z-Richtung über eine Weglänge von +/– 70 mm durchgeführt werden kann.
  • Der Scanner weist weiterhin zwei bewegliche Spiegel zur Ablenkung beziehungsweise Positionierung des Laserstrahls 20 beziehungsweise 20' in zwei Richtungen (x- und y-Richtung) im Scanvolumen auf, welche senkrecht zueinander und jeweils senkrecht zur z-Richtung verlaufen (kartesisches Koordinatensystem). Bei dem Scanvolumen handelt es sich um ein elliptisches Scanvolumen mit den Maßen von circa 320 mm × 190 mm × 70 mm. Die Brennweite der Fokussieroptik des Scanners beträgt 450 mm, und das Abbildungsverhältnis beträgt 3:1. Der Fokusdurchmesser beträgt 600 μm.
  • Bei dem Verfahren zum Verschweißen der Metallbauteile 12 und 14 wird der Werkstoff der Metallbauteile 12 und 14 entsprechend aufgeschmolzen, wobei der Fokus des Laserstrahls 20 bei z = 0 mm bezüglich der Oberfläche 26 des Metallbauteils 12 beziehungsweise des oberen Flansches des Metallbauteils 12 beträgt. Zu Beginn dieser Schweißung beträgt ein Einstrahlwinkel zwischen dem Laserstrahl 20 und der Flächennormalen der Oberfläche 26 0°. Die Schweißgeschwindigkeit, also die Geschwindigkeit, mit der der Laserstrahl 20 über die Oberfläche 26 geführt wird, beträgt 10 m/min, woraus eine reine Schweißdauer für eine Stichnaht von 180 ms resultiert. Bei dieser Geschwindigkeit wird das untere Metallbauteil 14 nicht vollständig durchgeschweißt, es verbleibt der besagte Restmaterialdickenbereich mit einer in Richtung des Laserstahls 20 verlaufenden Erstreckung (Dicke) von 0,2 bis 1 mm.
  • Trotz dieses Nicht-Durchschweißens bildet sich auf der Oberfläche 32 im Bereich der Schweißnaht 22 eine Geometrieänderung, also eine Änderung der Topographie der Oberfläche 32, welche auch als Durchdrückung bezeichnet wird, bei welcher es sich um eine bleibende, plastische Verformung aufgrund der thermischen Ausdehnung handelt.
  • In Zusammenschau mit 4 beträgt eine Profilhöhe dieser Durchdrückung circa 20 bis 100 μm, wobei ein Profilwinkel der Durchdrückung circa 0,5 bis 3° beträgt. Die Profilhöhe und der Profilwinkel sind dabei ein gutes Maß für die in Richtung des Laserstrahls 20 verlaufende Erstreckung des Restmaterialdickenbereichs, also für die nicht-aufgeschmolzene Restmaterialstärke und damit auch ein Maß für die Eindringtiefe s der Schweißnaht 22 beziehungsweise indirekt für die Festigkeit der Schweißnaht 22 und damit für die Verbindung der Metallbauteile 12 und 14.
  • Unmittelbar nach dem Ausbilden der Schweißnaht 22 wird der Laserstrahl 20 um +40 mm defokussiert, woraus der bereits genannte Abstand z = 40 mm des Brennpunkts des Laserstrahls 20' zur Oberfläche 26 resultiert. Dadurch vergrößert sich ein Strahlfleckdurchmesser des Laserstrahls 20 beziehungsweise 20' auf der Oberfläche 26 cirka um den Faktor 3 im Vergleich zum Strahlfleckdurchmesser des fokussierten Laserstrahls 20. Es wird nun eine defokussierte Überfahrt der auf die beschriebene Art und Weise ausgebildeten Schweißnaht 22 in entgegen gesetzter Richtung der vorigen Bewegungsrichtung zum Ausbilden der Schweißnaht 22 durchgeführt, wodurch die Oberfläche 28 beziehungsweise ein Oberflächenbereich bis circa in eine Tiefe von 0,1 bis 1 mm der zuvor geschweißten und größtenteils schon erstarrten Schweißnaht 22 wieder aufgeschmolzen und dabei geglättet beziehungsweise eingeebnet wird. Die defokussierte Überfahrt erfolgt dabei mit einer Leistung des Lasers von 6 kW und einer Geschwindigkeit von circa 18 m/min, woraus eine Dauer für die defokussierte Überfahrt von 100 ms resultiert.
  • Nach der defokussierten Überfahrt wir der Laserstrahl 20' in wenigen Millisekunden auf den Beginn der nächsten Stichnaht gelenkt, woraufhin die nächste Stichnaht ausgebildet wird. Somit wechseln Schweißungen, also fokussierte Überfahrten, und defokussierte Überfahrten zum Glätten der entsprechenden Oberflächen 28 miteinander ab.
  • Die dafür erforderliche Bewegung der Spiegel des Scanners sowie der motorisierten Kollimation wird durch eine Steuerrechnereinheit ermittelt, und zwar unter Berücksichtigung der zuvor justierten beziehungsweise eingelernten (engl. teached) Positionen der Stichnähte, von programmierten Schweißparametern und unter Berücksichtigung der Bewegung der Bearbeitungsoptik beziehungsweise des Scanners, welcher an einem Roboter zur Bewegung gehalten sind.
  • Die Robotergeschwindigkeit zur Grobausrichtung des Laserstrahls 20 beziehungsweise 20' beträgt dabei circa 12,5 m/min und liegt damit deutlich über der genannten Geschwindigkeit des Laserstrahls 20 zum Ausbilden der Schweißnaht 22 von 10 m/min, was durch das schnelle Springen des Laserstrahls 20 von einer Stichnaht zur nächsten Stichnaht infolge der schnellen Bewegung der Spiegel des Scanners ermöglicht ist.
  • Die 2 zeigt gemäß Darstellung A einen Längsschnitt durch die Schweißnaht 22 vor dem Glätten der Oberfläche 28. Zu sehen ist eine ungleichmäßige Oberfläche 28 mit einer Vielzahl von scharfen Kanten.
  • Dementsprechend zeigt die 2 gemäß Darstellung B einen Längsschnitt durch die Schweißnaht 22 nach dem Glätten durch den weiteren Energieeintrag mittels des defokussierten Laserstrahls 20'. Die Oberfläche 28 ist wesentlich glatter und weist keine scharfen Kanten mehr auf.
  • Die 3 zeigt ein Diagramm 34, auf dessen Abszisse 36 eine Schweißgeschwindigkeit aufgetragen ist. Die Schweißgeschwindigkeit bezieht sich dabei auf die Geschwindigkeit, mit der der Laserstrahl 20 zur Ausbildung der Schweißnaht 22 relativ zu den Metallbauteilen 12 und 14 bewegt wird. Auf der Ordinate 38 des Diagramms 34 ist die Festigkeit der Verbindung der Metallbauteile 12 und 14 dargestellt.
  • Des Weiteren ist in der 3 sowohl der aus 1 bekannte Querschnitt der Schweißnaht 22 sowie der Metallbauteile 12 und 14 dargestellt sowie eine Draufsicht auf die in Strahlrichtung untere Oberfläche 32 des in Strahlrichtung unteren Metallbauteils 14. Kann die Oberfläche 28 der Schweißnaht 22 als Nahtoberraupe bezeichnet werden, so kann die gegenüberliegende Oberfläche der Schweißnaht 22 als Nahtunterraupe 40 bezeichnet werden.
  • Wie zu sehen ist, sinkt mit zunehmender Schweißgeschwindigkeit die Eindringtiefe s (1) der Schweißnaht 22 und somit auch die Eindringtiefe der Schweißnaht 22 in das untere Bauteil 14. Bei niedrigen Schweißgeschwindigkeiten 36 durchdringt gar die Schweißnaht das untere Metallbauteil 14, weswegen die Nahtunterraupe 40 auf der Oberfläche 32 zu sehen ist. Daraus resultiert zwar eine hohe Festigkeit 38 der Verbindung der Metallbauteile 12 und 14, allerdings auch eine schlechte Oberflächengüte der Oberfläche 32, wodurch in dem Verschweißbereich 18 beispielsweise keine Dichtungen oder dergleichen mehr angebracht werden können. Diese würden durch die scharfen Kanten (2) beschädigt werden.
  • Daher ist ein Kompromiss anzustreben aus der Festigkeit 38 und der Eindringtiefe s der Schweißnaht 22 beziehungsweise der Schweißgeschwindigkeit 36.
  • Ein Bereich C in dem Diagramm 34 stellt dabei einen optimalen Schweißgeschwindigkeitsbereich dar, in welchem die Festigkeit 38 der Verbindung der Metallbauteile 12 und 14 ausreichend groß ist, sowie auch die Oberfläche 32 eine gewünscht hohe Oberflächengüte aufweist, da ein Durchdringen, also eine Durchschweißung, des zweiten Metallbauteil 14 bis zu dessen Oberfläche 32 vermieden ist. Dieses Nicht-Durchschweißen ist auch als Einschweißen zu bezeichnen.
  • Die 4 zeigt ein typisches Höhenprofil quer zur Nahtlängsrichtung gemessen auf der Oberfläche 32 bei einem solchen Einschweißen in das untere Metallbauteil 14, also bei einer Vermeidung eines kompletten Durchdringens der Schweißnaht 22 durch dieses. Eine Profilhöhe ist dabei als h bezeichnet, und ein Profilwinkel mit dem Winkel a.
  • In Zusammenschau mit 5 bedeutet dies, dass bei steigender Eindringtiefe s der Schweißnaht 22 und damit mit steigender Einschweißtiefe e der Schweißnaht 22 in das untere Metallbauteil 14 auch der Profilwinkel α steigt.
  • In weiterer Zusammenschau der 6 ist der Zusammenhang zwischen dem Profilwinkel α und der Festigkeit 38 der Verbindung der Metallbauteile 12 und 14 verdeutlicht. Mit steigendem Profilwinkel α steigt auch die Festigkeit 38. Jedoch ist der Verlauf der Festigkeit 38 über dem Profilwinkel α degressiv, das heißt ab einem gewissen Profilwinkel α nimmt die Festigkeit 38 nicht mehr bedeutsam zu.
  • Im Umkehrschluss bedeutet dies, dass die Bildung eines gewissen Profilwinkels α, der in bekannter Weise mit der Einschweißtiefe e beziehungsweise der Eindringtiefe s der Schweißnaht 22 zusammenhängt, ausreicht, und daher auch eine bestimmte Eindringtiefe s der Schweißnaht 22 ohne Durchdringen des zweiten Metallbauteils 14 ausreicht, um einerseits eine sehr gute Oberflächengüte der unteren Oberfläche 32 sowie gleichzeitig eine besonders feste Verbindung zwischen den Metallbauteilen 12 und 14 darzustellen.
  • Bezugszeichenliste
  • 10
    Verfahren
    12
    Metallbauteil
    14
    Metallbauteil
    16
    Überlappungsbereich
    18
    Verschweißbereich
    20, 20'
    Laserstrahl
    22
    Schweißnaht
    24
    Richtungspfeil
    26
    Oberfläche
    28
    Oberfläche
    30
    Bereich
    32
    Oberfläche
    34
    Diagramm
    36
    Schweißgeschwindigkeit
    38
    Festigkeit
    40
    Nahtunterraupe
    A
    Darstellung
    B
    Darstellung
    C
    Bereich
    e
    Einschweißtiefe
    h
    Profilwinkel
    s
    Eindringtiefe
    tges
    Gesamtmaterialdicke
    z
    Abstand
    A
    Profilwinkel
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2005/0028897 A1 [0002]
    • EP 1747836 A1 [0003]

Claims (10)

  1. Verfahren (10) zum Verschweißen von zwei Metallbauteilen (12, 14), insbesondere aus Aluminiumlegierungen, mit den Schritten: – Aufschmelzen der zu fügenden Metallbauteile (12, 14) in einem Verschweißbereich (18) durch einen Energieeintrag, insbesondere mittels eines Laserstrahls (20), unter Ausbildung einer Schweißnaht (22), gekennzeichnet durch den weiteren Schritt: – Glätten der Oberfläche (28) der Schweißnaht (22) durch einen weiteren Energieeintrag unter teilweisem Aufschmelzen der Schweißnaht (22) im Bereich der Oberfläche (28).
  2. Verfahren (10) nach Anspruch 1, dadurch gekennzeichnet, dass der weitere Energieeintrag mittels eines defokussierten Laserstrahls (20') durchgeführt wird, dessen Brennpunkt in Strahlrichtung (24) vor oder hinter der Oberfläche (28) der Schweißnaht (22) positioniert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass eine von dem defokussierten Laserstrahl (20') mit Energie beaufschlagte Fläche 4 bis 16 mal, insbesondere 9 mal, größer ist als eine von dem fokussierten Laserstrahl (20) mit Energie beaufschlagte Fläche.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der defokussierte Laserstrahl (20') und die Flächennormale einer Oberfläche (26, 28) der zwei Metallbauteile (12, 14), auf welche der Laserstrahl auftrifft, einen von 0 Grad verschiedenen Winkel, insbesondere einen Winkel von zumindest im Wesentlichen größer oder gleich 5 Grad, einschließen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der weitere Energieeintag mittels des defokussierten Laserstrahls (20') unmittelbar nach dem ersten Schritt, in einem Zeitabstand von weniger als 100 ms, insbesondere in einem Zeitabstand von weniger als 10 ms, erfolgt und die defokussierte Überfahrt mit Hilfe eines 3D-Scanners in entgegengesetzter Richtung zur der im ersten Schritt erfolgten Schweißung durchgeführt wird.
  6. Verfahren (10) zum Verschweißen von zwei Metallbauteilen (12, 14), insbesondere aus Aluminiumlegierungen, insbesondere nach einem der Ansprüche 1 bis 5, mit den Schritten: – Aufschmelzen der zu fügenden Metallbauteile (12, 14) in einem Verschweißbereich (18) durch einen Energieeintrag, insbesondere mittels eines Laserstrahls (20), unter Ausbildung einer Schweißnaht (22), – Vorsehen eines in Richtung des Energieeintrags, insbesondere des Laserstrahls (20), sich an die Schweißnaht (22) anschließenden, nicht durch den Energieeintrag, insbesondere den Laserstrahl (20), aufgeschmolzenen Restmaterialdickenbereichs der Metallbauteile, gekennzeichnet durch das weitere Merkmal: – Ausbilden der in Richtung des Energieeintrags, insbesondere des Laserstrahls (20), verlaufenden Erstreckung des Restmaterialdickenbereichs in Abhängigkeit von einer ermittelten, aus dem Energieeintrag resultierenden Geometrieänderung der dem Energieeintrag, insbesondere dem Laserstrahl (20), abgewandten Oberfläche (32) zumindest eines der Metallbauteile (12, 14) im Bereich der Schweißnaht (22).
  7. Verfahren (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallbauteile (12, 14) vor dem Verschweißen sich in einem Überlappungsbereich (26) überlappend angeordnet werden und der Verschweißbereich (18) in dem Überlappungsbereich (16) vorgesehen wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als zwei Metallbauteile (12, 14) Aluminiumlegierungen verschweißt werden, wobei zumindest einer der Fügepartner aus einer Aluminiumlegierung der Serie 5000 oder 7000 ausgebildet ist.
  9. Verbindungsanordnung mit zwei Metallbauteilen (12, 14), welche miteinander verschweißt sind, wobei die zwei Metallbauteile (12, 14) durch ein Verfahren nach einem der vorhergehenden Ansprüche miteinander verschweißt sind und die zwei Metallbauteile (12, 14) aus Aluminiumlegierungen ausgebildet sind, wobei zumindest einer der Fügepartner aus einer Aluminiumlegierung der Serie 5000 oder 7000 ausgebildet ist.
  10. Verbindungsanordnung nach Anspruch 9 dadurch gekennzeichnet, dass die dem ersten Energieeintrag, insbesondere des Laserstrahls (20), zugewandte Oberfläche durch einen zweiten Energieeintrag, insbesondere des defokussierten Laserstrahls (20'), geglättet wird, und/oder das dem Energieeintrag abgewandt zweite Metallbauteil nicht durchgeschmolzen wird, bzw. ein nicht-aufgeschmolzener Restmaterialdickenbereich verbleibt, wobei sich an der dem Energieeintrag abgewandten Oberfläche einen bleibende Geometrieänderung (Durchdrückung) bildet, die charakteristisch für die Ersteckung (Dicke) des Restmaterialdickenbereiches ist, wobei die Profilhöhe der Geometrieänderung (Durchdrückung) im Bereich zwischen 20 und 100 μm liegt, bzw. sich ein Profilwinkel quer zur Nahtrichtung von 1 bis 5° bildet.
DE102009057997A 2009-12-11 2009-12-11 Verfahren zum Verschweißen von zwei Metallbauteilen Withdrawn DE102009057997A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102009057997A DE102009057997A1 (de) 2009-12-11 2009-12-11 Verfahren zum Verschweißen von zwei Metallbauteilen
PCT/EP2010/007348 WO2011069621A1 (de) 2009-12-11 2010-12-03 VERFAHREN ZUM VERSCHWEIßEN VON ZWEI METALLBAUTEILEN SOWIE VERBINDUNGSANORDNUNG MIT ZWEI METALLBAUTEILEN
US13/515,015 US8890022B2 (en) 2009-12-11 2010-12-03 Method for welding two metal parts and connecting arrangement with two metal components
JP2012542387A JP5551792B2 (ja) 2009-12-11 2010-12-03 2つの金属構成部材の溶接方法、および2つの金属構成部材を有する接合構成体
EP10785359.0A EP2509742B1 (de) 2009-12-11 2010-12-03 VERFAHREN ZUM VERSCHWEIßEN VON ZWEI METALLBAUTEILEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009057997A DE102009057997A1 (de) 2009-12-11 2009-12-11 Verfahren zum Verschweißen von zwei Metallbauteilen

Publications (1)

Publication Number Publication Date
DE102009057997A1 true DE102009057997A1 (de) 2011-06-22

Family

ID=43735953

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009057997A Withdrawn DE102009057997A1 (de) 2009-12-11 2009-12-11 Verfahren zum Verschweißen von zwei Metallbauteilen

Country Status (5)

Country Link
US (1) US8890022B2 (de)
EP (1) EP2509742B1 (de)
JP (1) JP5551792B2 (de)
DE (1) DE102009057997A1 (de)
WO (1) WO2011069621A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012015766A1 (de) 2012-08-09 2013-03-14 Daimler Ag Verfahren zum Verschweißen zweier Bauteile miteinander
DE102013001210A1 (de) 2013-01-24 2014-07-24 Daimler Ag Verfahren zum Verschweißen von zwei Metallbauteilen
DE102013010560A1 (de) 2013-06-25 2015-01-22 Wieland-Werke Ag Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen
DE102015224765A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ausbildung einer Schweißnaht, Schweißnaht und Verfahren zur Sichtkontrolle einer Schweißnaht
DE102017201872A1 (de) 2017-02-07 2018-08-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum thermischen Fügen eines Bauteilverbundes und Bauteilverbund
WO2018224212A1 (de) * 2017-06-07 2018-12-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur herstellung eines bauteilverbundes und bauteilverbund

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170989A (ja) * 2011-02-22 2012-09-10 Suzuki Motor Corp レーザ重ね溶接方法
EP3597747B1 (de) 2012-08-24 2023-03-15 Chugai Seiyaku Kabushiki Kaisha Maus-fgcgammarii-spezifischer fc-antikörper
JP6092011B2 (ja) * 2013-06-14 2017-03-08 日立オートモティブシステムズ株式会社 溶接部材、燃料噴射弁、および、レーザ溶接方法
DE102014201715A1 (de) 2014-01-31 2015-08-06 Trumpf Laser Gmbh Verfahren und Vorrichtung zum Punktschweißen von Werkstücken mittels Laserpulsen mit grüner Wellenlänge
DE102014203025A1 (de) * 2014-02-19 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Laserstrahlschweißen und Schweißkopf
JP6032236B2 (ja) * 2014-04-08 2016-11-24 トヨタ自動車株式会社 レーザ溶接方法および溶接構造
US20160016262A1 (en) * 2014-07-17 2016-01-21 Midway Products Group, Inc. Laser welding process
EP3013116A1 (de) * 2014-10-21 2016-04-27 Bleckmann GmbH & Co. KG Heizungssystemkomponente und Verfahren zur Herstellung davon
EP3012057B1 (de) 2014-10-24 2019-04-24 General Electric Technology GmbH Verfahren zum Schweißen in tiefen Fugen
US10618135B2 (en) * 2015-03-20 2020-04-14 Dm3D Technology, Llc Method of controlling distortion during material additive applications
CN107921585B (zh) * 2015-04-30 2019-10-22 通用汽车环球科技运作有限责任公司 铝激光焊接中的热裂纹减少
US10396343B2 (en) * 2015-05-05 2019-08-27 Cps Technology Holdings Llc Sealing patch for electrolyte fill hole
JP6432467B2 (ja) 2015-08-26 2018-12-05 トヨタ自動車株式会社 レーザ溶接方法
JP6719348B2 (ja) * 2016-09-14 2020-07-08 株式会社神戸製鋼所 アルミニウム接合体の製造方法
CN110582371B (zh) * 2017-04-03 2021-08-31 通用汽车环球科技运作有限责任公司 提高焊接表面品质的光滑方法
WO2018227382A1 (en) * 2017-06-13 2018-12-20 GM Global Technology Operations LLC Method for laser welding metal workpieces using a combination of weld paths
US20210025417A1 (en) * 2019-07-24 2021-01-28 Shiloh Industries, Inc. Sheet metal assembly with conditioned weld joint
JP7392387B2 (ja) * 2019-10-23 2023-12-06 株式会社デンソー 接合構造体
CN113967791A (zh) * 2020-07-24 2022-01-25 中国科学院上海光学精密机械研究所 一种铝制密封件的激光焊接方法
US20220388096A1 (en) * 2021-06-03 2022-12-08 GM Global Technology Operations LLC Healing energy beam for smoothening surface irregularities in weld joints
DE102021206490A1 (de) * 2021-06-23 2022-12-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Vorrichtung zum Erzeugen einer Schweißkontur mit mehreren Laserspots über eine Scanneroptik
DE102021206488A1 (de) * 2021-06-23 2022-12-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum mehrfachen Abfahren einer Schweißkontur mit mehreren Laserspots

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924905A1 (de) * 1999-05-31 2000-12-21 Daimler Chrysler Ag Verfahren zur Erzeugung einer Schweißnaht-Oberfläche beim Laserstrahlschweißen, die für die korrosionssichere Aufbringung eines Oberflächenschutzsystems geeignet ist
US20050028897A1 (en) 2001-10-09 2005-02-10 Wilfried Kurz Process for avoiding cracking in welding
EP1747836A1 (de) 2005-07-26 2007-01-31 Corus Technology BV Laserschweissverfahren
JP2008114276A (ja) * 2006-11-07 2008-05-22 Takeji Arai レーザ溶接装置及びレーザ溶接方法
DE102008022142B3 (de) * 2008-05-05 2009-11-26 Häberle Laser- und Feinwerktechnik GmbH & Co. KG Verfahren zum Verschweißen von Aluminiumteilen
DE102008062866A1 (de) * 2008-11-13 2010-05-20 Daimler Ag Verfahren zur Qualitätsüberwachung einer Verbindungsnaht sowie Vorrichtung zum Laserschweißen oder Laserlöten

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914268A (en) * 1989-06-01 1990-04-03 Cummins Engine Company, Inc. Beam welding process
US5879416A (en) * 1995-03-13 1999-03-09 Nippondenso Co., Ltd. Method of manufacturing battery having polygonal case
JPH0919778A (ja) 1995-07-02 1997-01-21 Nippon Light Metal Co Ltd 溶融金属が裏面に露出しないアルミニウム合金のレーザ溶接方法
JPH10328860A (ja) * 1997-06-06 1998-12-15 Toshiba Corp レーザ溶接方法およびレーザ溶接装置
JP3762676B2 (ja) * 2001-09-17 2006-04-05 本田技研工業株式会社 ワークの溶接方法
US20040099644A1 (en) * 2002-10-18 2004-05-27 Allen John R. System and method for post weld conditioning
EP1618984B1 (de) 2004-07-08 2006-09-06 TRUMPF Laser GmbH + Co. KG Laserschweissverfahren und -vorrichtung
JP4669427B2 (ja) 2006-03-29 2011-04-13 東急車輛製造株式会社 レーザ溶接方法
US8076607B2 (en) * 2007-06-27 2011-12-13 Ross Technology Corporation Method and apparatus for depositing raised features at select locations on a substrate to produce a slip-resistant surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924905A1 (de) * 1999-05-31 2000-12-21 Daimler Chrysler Ag Verfahren zur Erzeugung einer Schweißnaht-Oberfläche beim Laserstrahlschweißen, die für die korrosionssichere Aufbringung eines Oberflächenschutzsystems geeignet ist
US20050028897A1 (en) 2001-10-09 2005-02-10 Wilfried Kurz Process for avoiding cracking in welding
EP1747836A1 (de) 2005-07-26 2007-01-31 Corus Technology BV Laserschweissverfahren
JP2008114276A (ja) * 2006-11-07 2008-05-22 Takeji Arai レーザ溶接装置及びレーザ溶接方法
DE102008022142B3 (de) * 2008-05-05 2009-11-26 Häberle Laser- und Feinwerktechnik GmbH & Co. KG Verfahren zum Verschweißen von Aluminiumteilen
DE102008062866A1 (de) * 2008-11-13 2010-05-20 Daimler Ag Verfahren zur Qualitätsüberwachung einer Verbindungsnaht sowie Vorrichtung zum Laserschweißen oder Laserlöten

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012015766A1 (de) 2012-08-09 2013-03-14 Daimler Ag Verfahren zum Verschweißen zweier Bauteile miteinander
DE102013001210A1 (de) 2013-01-24 2014-07-24 Daimler Ag Verfahren zum Verschweißen von zwei Metallbauteilen
DE102013010560A1 (de) 2013-06-25 2015-01-22 Wieland-Werke Ag Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen
DE102013010560B4 (de) * 2013-06-25 2016-04-21 Wieland-Werke Ag Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen und Fügeteil
DE102015224765A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ausbildung einer Schweißnaht, Schweißnaht und Verfahren zur Sichtkontrolle einer Schweißnaht
DE102017201872A1 (de) 2017-02-07 2018-08-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum thermischen Fügen eines Bauteilverbundes und Bauteilverbund
WO2018224212A1 (de) * 2017-06-07 2018-12-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur herstellung eines bauteilverbundes und bauteilverbund
CN110520240A (zh) * 2017-06-07 2019-11-29 宝马股份公司 用于制造构件复合件的方法和构件复合件

Also Published As

Publication number Publication date
JP2013513486A (ja) 2013-04-22
EP2509742B1 (de) 2013-05-01
EP2509742A1 (de) 2012-10-17
JP5551792B2 (ja) 2014-07-16
US8890022B2 (en) 2014-11-18
US20120298638A1 (en) 2012-11-29
WO2011069621A1 (de) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2509742B1 (de) VERFAHREN ZUM VERSCHWEIßEN VON ZWEI METALLBAUTEILEN
DE69628917T2 (de) Verfahren zum überlappschweissen mittels eines höheren energiedichte aufweisenden strahlungsbündels
EP0782489B1 (de) Verfahren zum verschweissen von werkstücken
EP2160266B1 (de) Verfahren zum Verbinden dickwandiger metallischer Werkstücke mittels Schweissen
DE102018120523A1 (de) Laserstrahllöten von metallischen Werkstücken mit einer Relativbewegung zwischen Laserstrahl und Fülldraht
DE102011089146A1 (de) Laser-Überlappschweißverfahren
EP2747984A1 (de) Verfahren und vorrichtung zum laserschweissen von zwei fügepartnern aus kunststoff
DE112016006963T5 (de) LASERPUNKTSCHWEIßEN VON BESCHICHTETEN STÄHLEN MIT MEHREREN LASERSTRAHLEN
DE112016005576T5 (de) Verfahren zum Laserpunktschweißen von beschichteten Stählen
DE112018004942T5 (de) Lasergeschweisste Aluminiumplatinen
EP3030372B1 (de) Verfahren zum herstellen einer schweissverbindung
EP2991794B1 (de) Verfahren zum verlöten eines leichtblechs und eines vollblechs mit einem laserstrahl
DE10345105B4 (de) Konusverschluss für Laserschweissnaht an einem Bestandteil einer Luftansaugung
DE102016222402A1 (de) Verfahren zum Verschweißen von Bauteilen mittels Laserstrahlung und Verwendung des Verfahrens
DE102018219280A1 (de) Verfahren zum spritzerfreien Schweißen, insbesondere mit einem Festkörperlaser
DE19608074C2 (de) Verfahren zum Schweißen von relativbewegten Werkstücken
DE102014009737A1 (de) Verfahren zum Herstellen eines Halbzeuges und einer Verbindung sowie ein Halbzeug nach dem Herstellungsverfahren
DE202021101463U1 (de) Lasergeschweißte Schweißkonstruktion
DE10131883B4 (de) Verfahren zum Verschweißen von Metallbauteilen
DE102017201872A1 (de) Verfahren zum thermischen Fügen eines Bauteilverbundes und Bauteilverbund
WO2021175555A1 (de) Verfahren zum laserschweissen zweier beschichteter werkstücke
DE102013010560B4 (de) Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen und Fügeteil
DE102017105900A1 (de) Verfahren zum stirnseitigen Laserschweißen
DE202006008749U1 (de) Heizvorrichtung zum Verschweißen von Kunststoffteilen
WO2022200301A1 (de) Verfahren zum laserschweissen

Legal Events

Date Code Title Description
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B23K0026240000

Ipc: B23K0026320000

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B23K0026240000

Ipc: B23K0026320000

Effective date: 20131206

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140701