DE102009055069A1 - Meßaufnehmer vom Vibrationstyp - Google Patents

Meßaufnehmer vom Vibrationstyp Download PDF

Info

Publication number
DE102009055069A1
DE102009055069A1 DE102009055069A DE102009055069A DE102009055069A1 DE 102009055069 A1 DE102009055069 A1 DE 102009055069A1 DE 102009055069 A DE102009055069 A DE 102009055069A DE 102009055069 A DE102009055069 A DE 102009055069A DE 102009055069 A1 DE102009055069 A1 DE 102009055069A1
Authority
DE
Germany
Prior art keywords
measuring
measuring tube
transducer
tube
esp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009055069A
Other languages
English (en)
Inventor
Ennio Bitto
Christof Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to DE102009055069A priority Critical patent/DE102009055069A1/de
Priority to CA2783666A priority patent/CA2783666C/en
Priority to EP10792868.1A priority patent/EP2516972B1/de
Priority to EP10779827.4A priority patent/EP2516971B1/de
Priority to RU2012131135/28A priority patent/RU2526296C2/ru
Priority to EP19208439.0A priority patent/EP3640606A1/de
Priority to RU2012131136/28A priority patent/RU2538422C2/ru
Priority to PCT/EP2010/068251 priority patent/WO2011085852A1/de
Priority to CN201080063841.7A priority patent/CN102753947B/zh
Priority to CN201080058734.5A priority patent/CN102667421B/zh
Priority to PCT/EP2010/068250 priority patent/WO2011085851A1/de
Priority to CA2783328A priority patent/CA2783328C/en
Priority to US12/970,072 priority patent/US8613227B2/en
Priority to US12/971,515 priority patent/US8695436B2/en
Publication of DE102009055069A1 publication Critical patent/DE102009055069A1/de
Priority to US14/242,059 priority patent/US9410835B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Der Meßaufnehmer umfaßt ein Aufnehmer-Gehäuse (71), von dem ein einlaßseitiges Gehäuseende mittels eines genau vier jeweils voneinander beabstandeten Strömungsöffnungen (201A, 201B, 201C, 201D) aufweisenden einlaßseitigen Strömungsteiler (201) und ein auslaßseitiges Gehäuseende mittels eines genau vier jeweils voneinander beabstandeten Strömungsöffnungen (202A, 202B, 202C, 202D) aufweisenden auslaßseitigen Strömungsteilers (202) gebildet sind sowie eine Rohranordnung mit genau vier unter Bildung strömungstechnisch parallel geschalteter Strömungspfade an die Strömungsteiler (201, 202) angeschlossenen, lediglich paarweise parallelen gebogenen Meßrohre (181, 182, 183, 184) zum Führen von strömendem Medium, wobei jedes der vier Meßrohren jeweils mit einem einlaßseitigen Meßrohrende in jeweils eine der Strömungsöffnungen des Strömungsteilers (201) und mit einem auslaßseitigen Meßrohrende in jeweils eine der Strömungsöffnungen des Strömungsteilers (202) mündet. Beim erfindungsgemäßen Meßaufnehmer sind die beiden Strömungsteiler (201, 202) zudem so ausgebildet und im Meßaufnehmer angeordnet, daß die Rohranordnung eine sowohl zwischen einem ersten und einem zweiten der Meßrohr als auch zwischen einem dritten und einem vierten der Meßrohre verlaufende gedachte Längsschnittebene (YZ) aufweist, bezüglich der die Rohranordnung spiegelsymmetrisch ist, und eine sowohl zwischen dem ersten und dem dritten der Meßrohre als auch zwischen dem zweiten und dem vierten der Meßrohre liegende, zur gedachten Längsschnittebene (YZ) senkrechte gedachte Längsschnittebene (XZ) aufweist, bezüglich der die Rohranordnung gleichfalls spiegelsymmetrisch ist, aufweist. Eine elektro-mechanische Erregeranordnung (5) des Meßaufnehmers dient dem Erzeugen und/oder Aufrechterhalten von mechanischen Schwingungen der vier Meßrohre (181, 182, 183, 184).

Description

  • Die Erfindung betrifft einen Meßaufnehmer vom Vibrationstyp zum Messen eines in einer Rohrleitung geführten strömungsfähigen Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, insb. zum Messen einer Dichte und/oder einer Massendurchflußrate, insb. auch eines über ein Zeitintervall totalisierten Gesamt-Massendurchflusses, eines in einer Rohrleitung zumindest zeitweise mit einer Massendurchflußrate von mehr als 1000 t/h, insb. mehr als 1500 t/h, strömenden Mediums. Ferner betrifft die Erfindung ein In-line-Meßgerät mit einem solchen Meßaufnehmer.
  • In der Prozeßmeß- und Automatisierungstechnik werden für die Messung physikalischer Parameter, wie z. B. dem Massedurchfluß, der Dichte und/oder der Viskosität, von in Rohrleitungen strömenden Medien, etwa einer wässrigen Flüssigkeit, einem Gas, einem Flüssigkeits-Gas-Gemisch, einem Dampf, einem Öl, einer Paste, einem Schlamm oder einem anderen strömungsfähigen Stoff, oftmals solche In-Line-Meßgeräte verwendet, die mittels eines vom Medium durchströmten Meßaufnehmers vom Vibrationstyp und einer daran angeschlossenen Meß- und Betriebsschaltung, im Medium Reaktionskräfte, wie z. B. mit dem Massedurchfluß korrespondierende Corioliskräfte, mit der Dichte des Mediums korrespondierende Trägheitskräfte und/oder mit der Viskosität des Mediums korrespondierende Reibungskräfte etc., bewirken und von diesen abgeleitet ein den jeweiligen Massedurchfluß, die jeweilige Viskosität und/oder ein die jeweilige Dichte des Mediums repräsentierendes Meßsignal erzeugen. Derartige, insb. als Coriolis-Massedurchflußmesser oder Coriolis-Massedurchfluß-/Dichtemesser ausgebildete, Meßaufnehmer sind z. B. in der EP-A 1 001 254 , der EP-A 553 939 , der US-A 47 93 191 , der US-A 2002/0157479 , der US-A 2006/0150750 , der US-A 2007/0151368 , der US-A 53 70 002 , der US-A 57 96 011 , der US-B 63 08 580 , der US-B 64 15 668 , der US-B 6711 958 , der US-B 69 20 798 , der US-B 71 34 347 , der US-B 73 92 709 , oder der WO-A 03/027616 der ausführlich und detailliert beschrieben.
  • Jeder der Meßaufnehmer weist ein Aufnehmer-Gehäuse auf, von dem ein einlaßseitiges erstes Gehäuseende zumindest anteilig mittels eines genau zwei jeweils voneinander beabstandeten kreiszylindrische oder kegelförmige Strömungsöffnungen aufweisenden ersten Strömungsteiler und ein auslaßseitiges zweites Gehäuseende zumindest anteilig mittels eines genau zwei jeweils voneinander beabstandeten Strömungsöffnungen aufweisenden zweiten Strömungsteilers gebildet sind. Bei einigen der in der US-A 57 96 011 , der US-B 73 50 421 , oder der US-A 2007/0151368 gezeigten Meßaufnehmern umfaßt das Aufnehmer-Gehäuse ein eher dickwandiges kreiszylindrisches Rohrsegment, das zumindest ein Mittelsegment des Aufnehmer-Gehäuses bildet.
  • Zum Führen von zumindest zeitweise strömendem, ggf. auch extrem heißem, Medium umfassen die Meßaufnehmer desweiteren jeweils genau zwei strömungstechnisch parallel geschaltete Meßrohre aus Metall, insb. Stahl oder Titan, die innerhalb des Aufnehmer-Gehäuses plaziert und darin mittels vorgenannter Strömungsteiler schwingfähig gehaltert sind. Ein erstes der, zumeist baugleichen und zueinander parallel verlaufenden, Meßrohre mündet mit einem einlaßseitigen ersten Meßrohrende in eine erste Strömungsöffnung des einlaßseitigen ersten Strömungsteilers und mit einem auslaßseitigen zweiten Meßrohrende in eine erste Strömungsöffnung des auslaßseitigen zweiten Strömungsteilers und ein zweites der Meßrohre mündet mit einem einlaßseitigen ersten Meßrohrende in eine zweite Strömungsöffnung des ersten Strömungsteilers und mit einem auslaßseitigen zweiten Meßrohrende in eine zweite Strömungsöffnung des zweiten Strömungsteilers. Jeder der Strömungsteiler weist ferner jeweils einen Flansch mit einer Dichtfläche zum fluiddichten Anschließen des Meßaufnehmers an ein dem Zuführen von Medium zum bzw. dem Abführen von Medium vom Meßaufnehmer dienendes Rohrsegment der Rohrleitung auf.
  • Die Meßrohre werden zum Erzeugen oben genannter Reaktionskräfte, angetrieben von einer dem Erzeugen bzw. Aufrechterhalten von mechanischen Schwingungen, insb. von Biegeschwingungen, der Meßrohre im sogenannten Antriebs- oder Nutzmode dienenden Erregeranordnung, im Betrieb vibrieren gelassen. Die Schwingungen im Nutzmode sind zumeist, insb. bei Verwendung des Meßaufnehmers als Coriolis-Massedurchfluß- und/oder Dichtemesser, zumindest anteilig als laterale Biege-Schwingungen ausgebildet und im Falle von durch die Meßrohre hindurchströmendem Medium infolge von darin induzierten Corioliskräften durch zusätzliche, frequenzgleiche Schwingungen im sogenannten Coriolismode überlagert. Dementsprechend ist die – hier zumeist elektro-dynamische – Erregeranordnung derart ausgebildet, daß damit die beiden Meßrohre im Nutzmode zumindest anteilig, insb. auch überwiegend, zu gegenphasigen Biegeschwingungen differentiell – also durch Eintrag gleichzeitig entlang einer gemeinsamen Wirkungslinie, jedoch in entgegengesetzter Richtung wirkender Erregerkräfte – anregbar sind.
  • Zum Erfassen von Vibrationen, insb. von mittels der Erregeranordnung angeregten Biegeschwingungen, der Meßrohre und zum Erzeugen von Vibrationen repräsentierenden Schwingungsmeßsignalen weisen die Meßaufnehmer ferner jeweils eine auf relative Bewegungen der Meßrohre reagierende, zumeist ebenfalls elektrodynamische Sensoranordnung auf. Typischerweise ist die Sensoranordnung mittels eines einlaßseitigen, Schwingungen der Meßrohre differentiell – also lediglich relative Bewegungen der Meßrohre – erfassenden Schwingungssensors sowie eines auslaßseitigen, Schwingungen der Meßrohre differentiell erfassenden Schwingungssensors gebildet ist. Jeder der üblicherweise einander baugleichen Schwingungssensoren ist mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule gebildet ist.
  • Im Betrieb wird die vorbeschriebene, mittels der zwei Meßrohre gebildete Rohranordnung mittels der elektro-mechanischen Erregeranordnung zumindest zeitweise im Nutzmode zu mechanischen Schwingungen auf wenigstens einer dominierenden Nutz-Schwingungsfrequenz angeregt. Als Schwingungsfrequenz für die Schwingungen im Nutzmode wird dabei üblicherweise eine natürliche momentane Resonanzfrequenz der Rohranordnung gewählt, die wiederum im wesentlichen sowohl von Größe, Form und Material der Meßrohre als auch von einer momentanen Dichte des Mediums abhängig ist; ggf. kann diese Nutz-Schwingungsfrequenz auch von einer momentanen Viskosität des Mediums signifikant beeinflußt sein. infolge schwankender Dichte des zu messenden Mediums und/oder infolge von im Betrieb vorgenommen Mediumswechseln ist die Nutz-Schwingungsfrequenz im Betrieb des Meßaufnehmers naturgemäß zumindest innerhalb eines kalibrierten und insoweit vorgegebenen Nutz-Frequenzbandes veränderlich, das entsprechend eine vorgegebene untere und eine vorgegebene obere Grenzfrequenz aufweist.
  • Zum Definieren einer freie Schwinglänge der Meßrohre und damit einhergehend zum Justieren des Nutzfrequenzbandes umfassen Meßaufnehmer der vorbeschriebenen Art ferner zumeist wenigstens ein einlaßseitiges Kopplerelement zum Bilden von einlaßseitigen Schwingungsknoten für gegenphasige Vibrationen, insb. Biegeschwingungen, beider Meßrohre, das von beiden Strömungsteilern beabstandet an beiden Meßrohren fixiert ist, sowie wenigstens ein auslaßseitiges Kopplerelement zum Bilden von auslaßseitigen Schwingungsknoten für gegenphasige Vibrationen, insb. Biegeschwingungen, der Meßrohre, das sowohl von beiden Strömungsteilern als auch vom einlaßseitigen Kopplerelement beabstandet an beiden Meßrohren fixiert ist. Im Falle gebogener Meßrohre entspricht dabei die Länge eines zwischen dem einlaßseitigem und dem auslaßseitigen Kopplerelement verlaufenden Abschnitts einer Biegelinie des jeweiligen Meßrohrs, mithin einer die Flächenschwerpunkte aller gedachten Querschnittsflächen des jeweiligen Meßrohrs verbindende gedachte Mittelllinie des nämlichen Meßrohrs, der freien Schwinglänge der Meßrohre. Mittels der – insoweit mit zur Rohranordnung gehörigen – Kopplerelementen kann zudem auch eine Schwingungsgüte der Rohranordnung wie auch die Empfindlichkeit des Meßaufnehmers insgesamt beeinflußt werden, in der Weise, daß für eine minimal geforderte Empfindlichkeit des Meßaufnehmers zumindest eine minimale freie Schwinglänge bereitzustellen ist.
  • Die Entwicklung auf dem Gebiet der Meßaufnehmer vom Vibrationstyp hat inzwischen einen Stand erreicht, daß moderne Meßaufnehmer der beschriebenen Art praktisch für ein breites Anwendungsspektrum der Durchflußmeßtechnik höchsten Anforderungen hinsichtlich Präzision und Reproduzierbarkeit der Meßergebnisse genügen können. So werden solche Meßaufnehmer in der Praxis für Massendurchflußraten von nur einigen wenigen g/h (Gramm pro Stunde) bis zu einigen t/min (Tonnen pro Minute), bei Drücken von bis zu 100 bar für Flüssigkeiten oder sogar über 300 bar für Gase eingesetzt. Die dabei erreichte Meßgenauigkeit liegt üblicherweise bei etwa 99,9% vom tatsächlichen Wert oder darüber bzw. einem Meßfehler von etwa 0,1%, wobei eine untere Grenze des garantierten Meßbereichs durchaus bei etwa 1% des Meßbereichsendwerts liegen kann. Aufgrund der hohen Bandbreite ihrer Einsatzmöglichkeiten werden industrietaugliche Meßaufnehmer vom Vibrationstyp mit nominellen Nennweiten (entspricht dem Kaliber der an den Meßaufnehmer anzuschließenden Rohrleitung bzw. dem Kaliber des Meßaufnehmers gemessen am Anschlußflansch) angeboten, die in einem Nennweitenbereich zwischen 1 mm und 250 mm liegen und bei maximaler nomineller Massendurchflußrate 1000 t/h jeweils für Druckverluste von weniger als 3 bar spezifiziert sind. Ein Kaliber der Meßrohre liegt hierbei etwa in einem Bereich zwischen 80 mm und 100 mm.
  • Trotzdem inzwischen Meßaufnehmer für den Einsatz in Rohrleitungen mit sehr hohen Massendurchflußraten und damit einhergehend sehr großem Kaliber von weit über 100 mm angeboten werden, besteht nach wie vor ein erhebliches Interesse daran, Meßaufnehmer von hoher Präzision und niedrigem Druckverlust auch für noch größer Rohrleitungskaliber, etwa 300 mm oder mehr, bzw. Massendurchflußraten, von 1500 t/h oder mehr, einzusetzen, etwa für Anwendungen der petrochemischen Industrie oder im Bereich des Transports und Umschlags von Erdöl, Erdgas, Treibstoffen etc. Dies führt bei entsprechend maßstäblicher Vergrößerung der aus dem Stand der Technik, insb. der EP-A 1 001 254 , der EP-A 553 939 , der US-A 47 93 191 , der US-A 2002/0157479 , der US-A 2007/0151368 , der US-A 53 70 002 , der US-A 57 96 011 , der US-B 63 08 580 , der US-B 67 11 958 , der US-B 71 34 347 , der US-B 73 50 421 , oder der WO-A 03/027616 , bekannten und bereits etablierter Meßaufnehmerkonzepte dazu, daß die, insb. den gewünschten Schwingungseigenschaften, der erforderlichen Belastungsfähigkeit sowie dem maximal erlaubten Druckverlust geschuldeten, geometrischen Abmessungen, insb. die einem Abstand zwischen den Dichtflächen beider Flansche entsprechende Einbaulänge und, im Falle gebogener Meßrohre, eine maximale seitliche Ausdehnung des Meßaufnehmers, exorbitant hohe Ausmaße annehmen würde. Damit einhergehend nimmt zwangsläufig auch die Leermasse des Meßaufnehmers zu, wobei konventionelle Meßaufnehmer großer Nennweite bereits mit einer Leermasse von etwa 400 kg realisiert werden. Untersuchungen, die für Meßaufnehmer mit zwei gebogenen Meßrohren, etwa gemäß der US-B 73 50 421 oder der US-A 57 96 011 , hinsichtlich ihrer maßstäblichen Anpassung zu noch größeren Nennweiten durchgeführt worden sind, haben beispielsweise ergeben, daß für nominelle Nennweiten von mehr als 300 mm die Leermasse eines maßstäblich vergrößerten konventionellen Meßaufnehmers weit über 500 kg liegen würde einhergehend mit einer Einbaulänge von mehr als 3000 mm und einer maximalen seitlichen Ausdehnung von mehr als 1000 mm. Insoweit ist festzustellen, daß industrietaugliche, gleichwohl in Serie herstellbare Meßaufnehmer herkömmlicher Konzeption und Materialien mit nominellen Nennweiten von weit über 300 mm sowohl aus Gründen technischer Realisierbarkeit, als auch aufgrund ökonomischer Erwägungen in absehbarer Zeit nicht verfügbar sein dürften.
  • Ausgehend vom oben genannten Stand der Technik besteht daher eine Aufgabe der Erfindung darin, einen Meßaufnehmer von hoher Empfindlichkeit und Schwingungsgüte anzugeben, der auch bei großen Massendurchflußraten von mehr als 1000 t/h einen geringen Druckverlust von möglichst weniger als 3 bar verursacht, und der auch mit großer nomineller Nennweite von über 100 mm eine möglichst kompakter Bauweise aufweist und nicht zuletzt auch für Anwendungen mit extrem heißen bzw. extrem kalten Medien und/oder mit signifikant schwankenden Mediumstemperaturen geeignet ist.
  • Zur Lösung der Aufgabe besteht die Erfindung in einem Meßaufnehmer vom Vibrationstyp zum Erfassen wenigstens einer physikalischen Meßgröße eines in einer Rohrleitung geführten strömungsfähigen Mediums, beispielsweise eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, und/oder zum Erzeugen von dem Erfassen einer Massendurchflußrate eines in einer Rohrleitung geführten strömungsfähigen Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, dienenden Corioliskräften. Der Meßaufnehmer umfaßt erfindungsgemäß ein, beispielsweise im wesentlichen rohrförmiges und/oder außen kreiszylindrisches, Aufnehmer-Gehäuse, von dem ein einlaßseitiges erstes Gehäuseende mittels eines genau vier jeweils voneinander beabstandeten, beispielsweise kreiszylindrische, kegelförmige oder konusförmige, Strömungsöffnungen aufweisenden einlaßseitigen ersten Strömungsteiler und ein auslaßseitiges zweites Gehäuseende mittels eines genau vier jeweils voneinander beabstandeten, beispielsweise kreiszylindrische, kegelförmige oder konusförmige, Strömungsöffnungen aufweisenden auslaßseitigen zweiten Strömungsteilers gebildet sind. Desweiteren umfaßt der Meßaufnehmer eine Rohranordnung, mit genau vier unter Bildung strömungstechnisch parallel geschalteter Strömungspfade an die, beispielsweise baugleichen, Strömungsteiler angeschlossene, insb. lediglich mittels nämlicher Strömungsteiler im Aufnehmer-Gehäuse schwingfähig gehalterte und/oder baugleiche und/oder zueinander paarweise parallelen, gebogene, beispielsweise zumindest abschnittsweise V-förmige oder zumindest abschnittsweise kreisbogenförmige, Meßrohre zum Führen von strömendem Medium. Von den vier, beispielsweise sowohl hinsichtlich Geometrie als auch hinsichtlich Material baugleichen, Meßrohren münden ein erstes Meßrohr mit einem einlaßseitigen ersten Meßrohrende in eine erste Strömungsöffnung des ersten Strömungsteilers und mit einem auslaßseitigen zweiten Meßrohrende in eine erste Strömungsöffnung des zweiten Strömungsteilers, ein zum ersten Meßrohr zumindest abschnittsweise paralleles zweites Meßrohr mit einem einlaßseitigen ersten Meßrohrende in eine zweite Strömungsöffnung des ersten Strömungsteilers und mit einem auslaßseitigen zweiten Meßrohrende in eine zweite Strömungsöffnung des zweiten Strömungsteilers, ein drittes Meßrohr mit einem einlaßseitigen ersten Meßrohrende in eine dritte Strömungsöffnung des ersten Strömungsteilers und mit einem auslaßseitigen zweiten Meßrohrende in eine dritte Strömungsöffnung des zweiten Strömungsteilers sowie ein zum dritten Meßrohr zumindest abschnittsweise paralleles viertes Meßrohr mit einem einlaßseitigen ersten Meßrohrende in eine vierte Strömungsöffnung des ersten Strömungsteilers und mit einem auslaßseitigen zweiten Meßrohrende in eine vierte Strömungsöffnung des zweiten Strömungsteilers. Ferner umfaßt der Meßaufnehmer eine elektro-mechanische, beispielsweise mittels elektro-dynamischer Schwingungserreger gebildete, Erregeranordnung zum Erzeugen und/oder Aufrechterhalten von mechanischen Schwingungen, insb. von Biegeschwingungen, der vier Meßrohre. Beim erfindungsgemäßen Meßaufnehmer sind die Meßrohre so ausgebildet und im Meßaufnehmer angeordnet, daß die Rohranordnung eine zwischen der ersten gedachten Längsschnittebene und der zweiten gedachten Längsschnittebene des Meßaufnehmers liegende, zur ersten gedachten Längsschnittebene des Meßaufnehmers und zur zweiten gedachten Längsschnittebene des Meßaufnehmers jeweils parallele erste gedachte Längsschnittebene aufweist, bezüglich der die Rohranordnung spiegelsymmetrisch ist, und daß die Rohranordnung eine zu deren gedachten ersten Längsschnittebene senkrechte zweite gedachte Längsschnittebene aufweist, bezüglich der die Rohranordnung gleichfalls spiegelsymmetrisch ist.
  • Nach einer ersten Ausgestaltung der Erfindung ist ferner vorgesehen, daß die beiden Strömungsteiler zudem so ausgebildet und im Meßaufnehmer angeordnet, daß eine die erste Strömungsöffnung des ersten Strömungsteilers mit der ersten Strömungsöffnung des zweiten Strömungsteilers imaginär verbindende gedachte erste Verbindungsachse des Meßaufnehmers parallel zu einer die zweite Strömungsöffnung des ersten Strömungsteilers mit der zweiten Strömungsöffnung des zweiten Strömungsteilers imaginär verbindende gedachten zweiten Verbindungsachse des Meßaufnehmers verläuft, daß eine die dritte Strömungsöffnung des ersten Strömungsteilers mit der dritten Strömungsöffnung des zweiten Strömungsteilers imaginär verbindende gedachte dritten Verbindungsachse des Meßaufnehmers parallel zu einer die vierte Strömungsöffnung des ersten Strömungsteilers mit der vierten Strömungsöffnung des zweiten Strömungsteilers imaginär verbindende gedachten vierten Verbindungsachse des Meßaufnehmers verläuft. Diese Ausgestaltung der Erfindung weiterbildend ist ferner vorgesehen, daß eine erste gedachte Längsschnittebene des Meßaufnehmers, innerhalb der die, beispielsweise zu einer mit der Rohrleitung fluchtenden Hauptströmungsachse des Meßaufnehmers parallele, erste gedachte Verbindungsachse und die zweite gedachte Verbindungsachse verlaufen, parallel zu einer zweiten gedachten Längsschnittebene des Meßaufnehmers; innerhalb der die gedachte dritte Verbindungsachse und die gedachte vierte Verbindungsachse verlaufen, ist, beispielsweise derart, daß die erste gedachte Längsschnittebene der Rohranordnung zwischen der ersten und zweiten gedachten Längsschnittebene des Meßaufnehmers liegt und/oder parallel zur ersten und zweiten gedachten Längsschnittebene des Meßaufnehmers ist.
  • Nach einer zweiten Ausgestaltung der Erfindung ist ferner vorgesehen, daß die beiden Strömungsteiler so ausgebildet und im Meßaufnehmer angeordnet sind, daß eine dritte gedachte Längsschnittebene des Meßaufnehmers, innerhalb der die gedachte erste Verbindungsachse und die die gedachte dritte Verbindungsachse verlaufen, parallel zu einer vierten gedachten Längsschnittebene des Meßaufnehmers, innerhalb der die gedachte zweite Verbindungsachse und die die gedachte vierte Verbindungsachse verlaufen, ist. Diese Ausgestaltung der Erfindung weiterbildend ist ferner vorgesehen, daß die zweite gedachte Längsschnittebene der Rohranordnung zwischen der dritten gedachten Längsschnittebene des Meßaufnehmers und der vierten gedachten Längsschnittebene des Meßaufnehmers verläuft, beispielsweise derart, daß die zweite gedachte Längsschnittebene der Rohranordnung parallel zur dritten gedachten Längsschnittebene des Meßaufnehmers und parallel zur vierten gedachten Längsschnittebene des Meßaufnehmers ist.
  • Nach einer dritten Ausgestaltung der Erfindung ist ferner vorgesehen, daß die vier Strömungsöffnungen des ersten Strömungsteilers so angeordnet sind, daß zu, insb. kreisförmigen, Querschnittsflächen der Strömungsöffnungen des ersten Strömungsteilers zugehörige gedachte Flächenschwerpunkte die Eckpunkte eines gedachten Rechtecks oder eines gedachten Quadrats bilden, wobei nämliche Querschnittsflächen in einer, beispielsweise zur ersten gedachten Längsschnittebene des Meßaufnehmers bzw. zur zweiten gedachten Längsschnittebene des Meßaufnehmers senkrechten, gemeinsamen gedachten Querschnittsschnittebene des ersten Strömungsteilers liegen.
  • Nach einer vierten Ausgestaltung der Erfindung ist ferner vorgesehen, daß die vier Strömungsöffnungen des zweiten Strömungsteilers so angeordnet sind, daß zu, insb. kreisförmigen, Querschnittsflächen der Strömungsöffnungen des zweiten Strömungsteilers zugehörige gedachte Flächenschwerpunkte die Eckpunkte eines gedachten Rechtecks oder eines gedachten Quadrats bilden, wobei nämliche Querschnittsflächen in einer, beispielsweise zur ersten gedachten Längsschnittebene des Meßaufnehmers bzw. zur zweiten gedachten Längsschnittebene des Meßaufnehmers senkrechten, gemeinsamen gedachten Querschnittsschnittebene des zweiten Strömungsteilers liegen.
  • Nach einer fünften Ausgestaltung der Erfindung ist ferner vorgesehen, daß jedes der vier, insb. gleichkalibrigen und/oder gleichlangen, Meßrohre ein Kaliber aufweist, das mehr als 40 mm, insb. mehr als 60 mm, beträgt. Diese Ausgestaltung der Erfindung weiterbildend ist ferner vorgesehen, daß die Meßrohre so gebogen und so angeordnet sind, daß ein Kaliber-zu-Höhe-Verhältnis der Rohranordnung, definiert durch ein Verhältnis des Kalibers des ersten Meßrohrs zu einer maximalen seitlichen Ausdehnung der Rohranordnung, gemessen von einem Scheitelpunkt des ersten Meßrohrs zu einem Scheitelpunkt des dritten Meßrohrs, mehr als 0.1, insb. mehr als 0.2 und/oder weniger als 0.35, beträgt.
  • Nach einer sechsten Ausgestaltung der Erfindung ist ferner vorgesehen, daß der erste Strömungsteiler einen, insb. eine Masse von mehr als 50 kg aufweisenden, Flansch zum Anschließen des Meßaufnehmers an ein dem Zuführen von Medium zum Meßaufnehmer dienendes Rohrsegment der Rohrleitung und der zweite Strömungsteiler einen, insb. eine Masse von mehr als 50 kg aufweisenden, Flansch zum Anschließen des Meßaufnehmers an ein dem Abführen von Medium vom Meßaufnehmer dienendes Rohrsegment der Rohrleitung aufweisen. Diese Ausgestaltung der Erfindung weiterbildend weist jeder der Flansche jeweils eine Dichtfläche zum fluiddichten Verbinden des Meßaufnehmers mit dem jeweils korrespondierenden Rohrsegment der Rohrleitung auf, wobei ein Abstand zwischen den Dichtflächen beider Flansche eine, insb. mehr als 1000 mm betragende und/oder weniger als 3000 mm betragende, Einbaulänge des Meßaufnehmers definiert. Im besonderen ist der Meßaufnehmer ferner so ausgebildet, daß dabei eine einer Länge eines zwischen der ersten Strömungsöffnung des ersten Strömungsteilers und der ersten Strömungsöffnung des zweiten Strömungsteilers verlaufenden Abschnitts der Biegelinie des ersten Meßrohrs entsprechende Meßrohrlänge des ersten Meßrohrs so gewählt ist, daß ein Meßrohrlänge-zu-Einbaulänge-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis der Meßrohrlänge des ersten Meßrohrs zur Einbaulänge des Meßaufnehmers, mehr als 0.7, insb. mehr als 0.8 und/oder weniger als 0.95, beträgt, und/oder daß ein Kaliber-zu-Einbaulänge-Verhältnis, des Meßaufnehmers, definiert durch ein Verhältnis eines Kalibers des ersten Meßrohrs zur Einbaulänge des Meßaufnehmers, mehr als 0.02, insb. mehr als 0.05 und/oder weniger als 0.09, beträgt. Alternativ oder in Ergänzung dazu ist der Meßaufnehmer so ausgebildete, daß ein Nennweite-zu Einbaulänge-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis der nominellen Nennweite des Meßaufnehmers zur Einbaulänge des Meßaufnehmers kleiner als 0.3, insb. kleiner als 0.2 und/oder größer als 0.1, ist, wobei die nominelle Nennweite einem Kaliber der Rohrleitung, in deren Verlauf der Meßaufnehmer einzusetzen ist, entspricht.
  • Nach einer siebenten Ausgestaltung der Erfindung ist ferner vorgesehen, daß eine einer Länge eines zwischen der ersten Strömungsöffnung des ersten Strömungsteilers und der ersten Strömungsöffnung des zweiten Strömungsteilers verlaufenden Abschnitts der Biegelinie des ersten Meßrohrs entsprechende Meßrohrlänge des ersten Meßrohrs mehr als 1000 mm, insb. mehr als 1200 mm und/oder weniger als 2000 mm, beträgt.
  • Nach einer achten Ausgestaltung der Erfindung ist ferner vorgesehen, daß jedes der vier, insb. gleichkalibrigen, Meßrohre so angeordnet ist, daß ein kleinster seitlicher Abstand jedes der vier, insb. gleichlangen, Meßrohre von einer Gehäuseseitenwand des Aufnehmer-Gehäuses jeweils größer als Null, insb. größer als 3 mm und/oder größer als ein Doppeltes einer jeweiligen Rohrwandstärke, beträgt; und/oder daß ein kleinster seitlicher Abstand zwischen zwei benachbarten Meßrohren jeweils größer als 3 mm und/oder größer als die Summe von deren jeweiligen Rohrwandstärken beträgt.
  • Nach einer neunten Ausgestaltung der Erfindung ist ferner vorgesehen, daß jede der Strömungsöffnungen so angeordnet ist, daß ein kleinster seitlicher Abstand jeder der Strömungsöffnungen von einer Gehäuseseitenwand des Aufnehmer-Gehäuses jeweils größer als Null, insb. größer als 3 mm und/oder größer als ein Doppeltes einer kleinsten Rohrwandstärke der Meßrohre, beträgt; und/oder daß ein kleinster seitlicher Abstand zwischen den Strömungsöffnungen größer als 3 mm und/oder größer als ein Doppeltes einer kleinsten Rohrwandstärke der Meßrohre beträgt.
  • Nach einer zehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß die Erregeranordnung derart ausgebildet ist, daß damit das erste Meßrohr und das zweite Meßrohr im Betrieb zu gegenphasigen Biegeschwingungen und das dritte Meßrohr und das vierte Meßrohr im Betrieb zu gegenphasigen Biegeschwingungen anregbar sind.
  • Nach einer elften Ausgestaltung der Erfindung ist ferner vorgesehen, daß ein Massenverhältnis einer Leermasse des gesamten Meßaufnehmers zu einer Leermasse des ersten Meßrohrs größer als 10, insb. größer als 15 und kleiner als 25, ist.
  • Nach einer zwölften Ausgestaltung der Erfindung ist ferner vorgesehen, daß eine Leermasse, M18, des ersten Meßrohrs, insb. jedes der Meßrohre größer als 20 kg, insb. größer als 30 kg und/oder kleiner als 50 kg, ist.
  • Nach einer dreizehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß eine Leermasse des Meßaufnehmers größer als 200 kg, insb. größer als 300 kg, ist.
  • Nach einer vierzehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß eine nominellen Nennweite des Meßaufnehmers, die einem Kaliber der Rohrleitung, in deren Verlauf der Meßaufnehmer einzusetzen ist, entspricht, mehr als 50 mm beträgt, insb. größer als 100 mm ist. In vorteilhafter Weise ist der Meßaufnehmer ferner so ausgebildet, daß ein Masse-zu-Nennweite-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis der Leermasse des Meßaufnehmers zur nominellen Nennweite des Meßaufnehmers kleiner als 2 kg/mm, insb. kleiner als 1 kg/mm und/oder größer als 0.5 kg/mm, ist.
  • Nach einer fünfzehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß das erste und das zweite Meßrohr zumindest hinsichtlich eines Materials, aus dem deren Rohrwände jeweils bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich sind.
  • Nach einer sechzehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß das dritte und das vierte Meßrohr zumindest hinsichtlich eines Materials, aus dem deren Rohrwände jeweils bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich sind.
  • Nach einer siebzehnten Ausgestaltung, der Erfindung ist ferner vorgesehen, daß die vier Meßrohre hinsichtlich eines Materials, aus dem deren Rohrwände bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich sind. Es kann aber auch von Vorteil sein, wenn alternativ dazu sowohl das dritte Meßrohr als auch das vierte Meßrohr hinsichtlich ihrer jeweiligen geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, verschieden ist vom ersten Meßrohr und vom zweiten Meßrohr Meßrohre.
  • Nach einer achtzehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß ein Material, aus dem die Rohrwände der vier Meßrohre zumindest anteilig bestehen, Titan und/oder Zirconium und/oder Duplexstahl und/oder Superduplexstahl ist.
  • Nach einer neunzehnten Ausgestaltung der Erfindung ist ferner vorgesehen, daß das Aufnehmer-Gehäuse, die Strömungsteiler und Rohrwände der Meßrohre jeweils aus, beispielsweise rostfreiem, Stahl bestehen.
  • Nach einer zwanzigsten Ausgestaltung der Erfindung ist ferner vorgesehen, daß eine minimalen Biegeschwingungs-Resonanzfrequenzen zumindest des ersten und zweiten Meßrohrs im wesentlichen gleich sind und eine minimalen Biegeschwingungs-Resonanzfrequenzen zumindest des dritten und vierten Meßrohrs im wesentlichen gleich sind. Hierbei können die minimalen Biegeschwingungs-Resonanzfrequenzen aller vier Meßrohre im wesentlichen gleich oder aber auch lediglich paarweise gleich gehalten sein.
  • Nach einer einundzwanzigsten Ausgestaltung der Erfindung ist ferner vorgesehen, daß die Erregeranordnung mittels eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs relativ zum zweiten Meßrohr differentiell anregenden, ersten Schwingungserregers gebildet ist. Im besonderen ist die Erregeranordnung mittels eines, beispielsweise elektrodynamischen und/oder Schwingungen des dritten Meßrohrs relativ zum vierten Meßrohr differentiell anregenden, zweiten Schwingungserregers gebildet. Hierbei ist ferner vorgesehen, daß der erste und zweite Schwingungserreger elektrisch seriell verschaltet sind, derart, daß ein gemeinsames Treibersignal gemeinsame Schwingungen des ersten und dritten Meßrohrs relativ zum zweiten und vierten Meßrohr anregt. Die Schwingungserreger der Erregeranordnung können beispielsweise mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule gebildet ist, und wobei der zweite Schwingungserreger mittels eines am dritten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr gehalterten Zylinderspule gebildet ist.
  • Nach einer zweiundzwanzigsten Ausgestaltung der Erfindung ist ferner vorgesehen, daß ein Mittelsegment des Aufnehmer-Gehäuses mittels eines geraden, beispielsweise kreiszylindrischen, Rohres gebildet ist.
  • Nach einer dreiundzwanzigsten Ausgestaltung der Erfindung ist ferner vorgesehen, daß das Aufnehmer-Gehäuse im wesentlichen rohrförmig, beispielsweise kreiszylindrisch, ausgebildet ist. Hierbei ist ferner vorgesehen, daß das Aufnehmer-Gehäuse einen größten Gehäuse-Innendurchmesser aufweist, der größer als 150 mm, insb. größer als 250 mm, ist, insb. derart, daß ein Gehäuse-zu-Meßrohr-Innendurchmesser-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis des größten Gehäuse-Innendurchmessers zu einem Kaliber des ersten Meßrohrs größer als 3, insb. größer als 4 und/oder kleiner als 5, gehalten ist und/oder daß ein Gehäuse-Innendurchmesser-zu-Nennweite-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis des größten Gehäuse-Innendurchmessers zur nominellen Nennweite des Meßaufnehmers kleiner als 1.5, insb. kleiner als 1.2 und/oder größer als 0.9, ist, wobei die nominelle Nennweite einem Kaliber der Rohrleitung, in deren Verlauf der Meßaufnehmer einzusetzen ist, entspricht. Das Gehäuse-Innendurchmesser-zu-Nennweite-Verhältnis des Meßaufnehmers kann dabei in vorteilhafter Weise beispielsweise auch gleich eins sein.
  • Nach einer ersten Weiterbildung der Erfindung umfaßt der Meßaufnehmer weiters ein, insb. plattenförmigen, erstes Kopplerelement erster Art, das zum Bilden von einlaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs sowohl vom ersten Strömungsteiler als auch vom zweiten Strömungsteiler beabstandet einlaßseitig zumindest am ersten Meßrohr und am zweiten Meßrohr fixiert ist, sowie ein, insb. plattenförmigen und/oder zum ersten Kopplerelement baugleiches und/oder zum ersten Kopplerelement paralleles, zweites Kopplerelement erster Art, das zum Bilden von auslaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs sowohl vom ersten Strömungsteiler als auch vom zweiten Strömungsteiler wie auch vom ersten Kopplerelement beabstandet auslaßseitig zumindest am ersten Meßrohr und am zweiten Meßrohr fixiert ist.
  • Nach einer ersten Ausgestaltung der ersten Weiterbildung der Erfindung ist ferner vorgesehen, daß alle vier Meßrohre mittels des ersten Kopplerelements erster Art sowie mittels des zweiten Kopplerelements erster Art miteinander mechanisch verbunden sind.
  • Nach einer zweiten Ausgestaltung der ersten Weiterbildung der Erfindung ist ferner vorgesehen, daß das erste Kopplerelement erster Art plattenförmig ausgebildet, insb. in derart, daß es eine rechteckförmige, quadratische, runde, kreuzförmig oder H-förmige Grundfläche aufweist.
  • Nach einer dritten Ausgestaltung der ersten Weiterbildung der Erfindung ist ferner vorgesehen, daß das zweite Kopplerelement erster Art, insb. gleichermaßen wie das erste Kopplerelement erster Art, plattenförmig ausgebildet, insb. in derart, daß es eine rechteckförmige, quadratische, runde, kreuzförmig oder H-förmige aufweist.
  • Nach einer vierten Ausgestaltung der ersten Weiterbildung der Erfindung ist ferner vorgesehen, daß das erste Kopplerelement erster Art auch am dritten Meßrohr und am vierten Meßrohr fixiert ist, und daß das zweite Kopplerelement erster Art am dritten Meßrohr und am vierten Meßrohr fixiert ist.
  • Nach einer fünften Ausgestaltung der ersten Weiterbildung der Erfindung ist ferner vorgesehen, daß ein Massenschwerpunkt des ersten Kopplerelements erster Art einen Abstand zu einem Massenschwerpunkt des Meßaufnehmers aufweist, der im wesentlichen gleich ist mit einem Abstand eines Massenschwerpunkt des zweiten Kopplerelements erster Art zu nämlichem Massenschwerpunkt des Meßaufnehmers.
  • Nach einer sechsten Ausgestaltung der ersten Weiterbildung der Erfindung ist der Meßaufnehmer ferner so ausgebildet, daß eine einer Länge des zwischen dem ersten und dem zweiten Kopplerelement erster Art verlaufenden Abschnitts der Biegelinie des nämlichen Meßrohrs entsprechende freie Schwinglänge des ersten Meßrohrs, insb. jedes der Meßrohre, weniger als 3000 mm, insb. weniger als 2500 mm und/oder mehr als 800 mm, beträgt. Im besonderen ist der Meßaufnehmer hierbei ferner so ausgebildet, daß jedes der vier, insb. gleichkalibrigen und/oder gleichlangen, Meßrohre ein Kaliber aufweist, das mehr als 40 mm, insb. mehr als 60 mm, beträgt, insb. derart, daß ein Kaliber-zu-Schwinglänge-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis eines Kalibers des ersten Meßrohrs zur freien Schwinglänge des ersten Meßrohrs, mehr als 0.03, insb. mehr als 0.05 und/oder weniger als 0.15, beträgt. In Ergänzung zur ersten Weiterbildung der Erfindung können ferner weitere, beispielsweise plattenförmige, Kopplerelemente erster Art zum Bilden von einlaßseitigen Schwingungsknoten für Vibrationen der Meßrohre im Meßaufnehmer vorgesehen sein.
  • Nach einer siebenten Ausgestaltung der ersten Weiterbildung der Erfindung ist ferner vorgesehen, daß das erste Meßrohr und das zweite Meßrohr zumindest über einen sich zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art erstreckenden Bereich zueinander parallel sind, und daß das dritte Meßrohr und das vierte Meßrohr zumindest über einen sich zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art erstreckenden Bereich zueinander parallel sind.
  • Nach einer zweiten Weiterbildung der Erfindung umfaßt der Meßaufnehmer weiters ein, beispielsweise plattenförmiges oder stabförmiges, erstes Kopplerelement zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs sowohl vom ersten Kopplerelement erster Art als auch vom zweiten Kopplerelement erster Art beabstandet lediglich am ersten Meßrohr und am dritten Meßrohr fixiert ist, sowie ein, beispielsweise plattenförmiges oder stabförmiges, zweites Kopplerelement zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs sowohl vom ersten Kopplerelement erster Art als auch vom zweiten Kopplerelement erster Art wie auch vom ersten Kopplerelement zweiter Art beabstandet lediglich am zweiten Meßrohr und am vierten Meßrohr fixiert ist, insb. derart, daß das erste und zweite Kopplerelement zweiter Art einander gegenüberliegend im Meßaufnehmer plaziert sind. In Ergänzung dazu kann der Meßaufnehmer weiters ein, beispielsweise plattenförmiges oder stabförmiges, drittes Kopplerelement zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs vom ersten Kopplerelement zweiter Art beabstandet lediglich am ersten Meßrohr und am dritten Meßrohr fixiert ist, sowie ein, beispielsweise plattenförmiges oder stabförmiges, viertes Kopplerelement zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs vom zweiten und dritten Kopplerelement zweiter Art jeweils beabstandet lediglich am zweiten Meßrohr und am vierten Meßrohr fixiert ist, umfassen, insb. derart, daß das dritte und vierte Kopplerelement zweiter Art einander gegenüberliegend im Meßaufnehmer plaziert sind.
  • Darüberhinaus kann der Meßaufnehmer ferner ein, beispielsweise plattenförmiges oder stabförmiges, fünftes Kopplerelement zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs vom ersten und dritten Kopplerelement zweiter Art beabstandet lediglich am ersten Meßrohr und am dritten Meßrohr fixiert ist, sowie ein, beispielsweise plattenförmiges oder stabförmiges, sechstes Kopplerelement zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs vom zweiten, vierten und fünften Kopplerelement zweiter Art jeweils beabstandet lediglich am zweiten Meßrohr und am vierten Meßrohr fixiert ist, insb. derart daß das fünfte und sechste Kopplerelement zweiter Art einander gegenüberliegend im Meßaufnehmer plaziert sind.
  • Nach einer dritten Weiterbildung der Erfindung umfaßt der Meßaufnehmer weiters eine auf Vibrationen, insb. mittels der Erregeranordnung angeregten Biegeschwingungen, der Meßrohre reagierende, beispielsweise elektro-dynamische und/oder mittels einander baugleicher Schwingungssensoren gebildete, Sensoranordnung zum Erzeugen von Vibrationen, insb. Biegeschwingungen, der Meßrohre repräsentierenden Schwingungsmeßsignalen.
  • Nach einer ersten Ausgestaltung der dritten Weiterbildung der Erfindung ist vorgesehen, daß die Sensoranordnung mittels eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs relativ zum zweiten Meßrohr differentiell erfassenden, einlaßseitigen ersten Schwingungssensors sowie eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs relativ zum zweiten Meßrohr differentiell erfassenden, auslaßseitigen zweiten Schwingungssensors gebildet ist, insb. derart, daß eine einer Länge eines zwischen dem ersten Schwingungssensor und dem zweite Schwingungssensor verlaufenden Abschnitts einer Biegelinie des ersten Meßrohrs entsprechende Meßlänge des Meßaufnehmers mehr als 500 mm, insb. mehr als 600 mm und/oder weniger als 1200 mm, beträgt, und/oder daß ein Kaliber-zu-Meßlänge-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis eines Kalibers des ersten Meßrohrs zur Meßlänge des Meßaufnehmers, mehr als 0.05, insb. mehr als 0.09, beträgt. Ferner können der erste Schwingungssensor mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule gebildet sein, und der zweite Schwingungssensor mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule gebildet sein.
  • Nach einer zweiten Ausgestaltung der dritten Weiterbildung der Erfindung ist ferner vorgesehen, daß die Sensoranordnung mittels eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs relativ zum zweiten Meßrohr differentiell erfassenden, einlaßseitigen ersten Schwingungssensors, eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs relativ zum zweiten Meßrohr differentiell erfassenden, auslaßseitigen zweiten Schwingungssensors, eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs relativ zum vierten Meßrohr differentiell erfassenden, einlaßseitigen dritten Schwingungssensors sowie eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs relativ zum vierten Meßrohr differentiell erfassenden, auslaßseitigen vierten Schwingungssensors gebildet ist, insb. derart, daß eine einer Länge eines zwischen dem ersten Schwingungssensor und dem zweite Schwingungssensor verlaufenden Abschnitts einer Biegelinie des ersten Meßrohrs entsprechende Meßlänge des Meßaufnehmers mehr als 500 mm, insb. mehr als 600 mm und/oder weniger als 1200 mm, beträgt, und/oder daß ein Kaliber-zu-Meßlänge-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis eines Kalibers des ersten Meßrohrs zur Meßlänge des Meßaufnehmers, mehr als 0.05, insb. mehr als 0.09, beträgt. Hierbei können in vorteilhafter Weise der erste und dritte Schwingungssensor elektrisch seriell derart verschaltet sein, daß ein gemeinsames Schwingungsmeßsignal gemeinsame einlaßseitige Schwingungen des ersten und dritten Meßrohrs relativ zum zweiten und vierten Meßrohr repräsentiert, und/oder der zweite und vierte Schwingungssensor elektrisch seriell derart verschaltet sein, daß ein gemeinsames Schwingungsmeßsignal gemeinsame auslaßseitige Schwingungen des ersten und dritten Meßrohrs relativ zum zweiten und vierten Meßrohr repräsentiert. Alternativ oder in Ergänzung können ferner der erste Schwingungssensor mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule, und der zweite Schwingungssensor mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule gebildet sein, und/oder können der dritte Schwingungssensor mittels eines am dritten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr gehalterten Zylinderspule und der vierte Schwingungssensor mittels eines am dritten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr gehalterten Zylinderspule gebildet sein.
  • Darüberhinaus besteht die Erfindung in einem In-Line-Meßgerät zum Messen einer Dichte und/oder einer Massendurchflußrate, insb. auch eines über ein Zeitintervall totalisierten Gesamt-Massendurchflusses, eines in einer Rohrleitung zumindest zeitweise, insb. mit einer Massendurchflußrate von mehr als 1000 t/h, strömenden Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, welches, insb. als Kompaktgerät ausgebildete, In-Line-Meßgerät einen der vorgenannten Meßaufnehmer sowie eine mit dem Meßaufnehmer elektrisch gekoppelte, insb. auch mechanisch starr verbundene, Meßgerät-Elektronik umfaßt.
  • Ein Grundgedanke der Erfindung besteht darin, anstelle der bei konventionellen Meßaufnehmern großer Nennweite üblicherweise verwendeten Rohranordnungen mit zwei parallel durchströmten Meßrohre Rohranordnungen mit vier parallel durchströmte, beispielsweise V-förmig oder kreisbogenförmig, gebogene Meßrohre zu verwenden, und so einerseits eine optimale Ausnutzung des begrenzten Platzangebotes zu ermöglichen, anderseits einen akzeptablen Druckverlust über einen weiten Meßbereich, insb. auch bei sehr hohen Massendurchflußraten von weit über 1000 t/h, gewährleisten zu können. Darüber hinaus kann der sich aus dem Gesamtquerschnitt der vier Meßrohre ergebende effektive Strömungsquerschnitt der Rohranordnung im Vergleich zu herkömmlichen nur zwei Meßrohre aufweisenden Meßaufnehmern gleicher nomineller Nennweite und gleicher Leermasse ohne weiteres um mehr als 20% erhöht werden.
  • Ein Vorteil der Erfindung besteht zudem u. a. darin, daß durch die Verwendung gebogener Meßrohre dauerhafte mechanische Spannungen, beispielsweise infolge thermisch bedingter Ausdehnung der Meßrohre oder infolge von seitens der Rohranordnung in den Meßaufnehmer eingetragener Einspannkräfte, innerhalb der Rohranordnung weitgehend vermieden oder zumindest sehr niedrig gehalten und damit einhergehend die Meßgenauigkeit wie auch die strukturelle Integrität des jeweiligen Meßaufnehmers auch bei extrem heißen Medien bzw. zeitlich stark schwankenden Temperaturgradienten innerhalb der Rohranordnung sicher erhalten werden. Darüberhinaus können aufgrund der Symmetrieeigenschaften der Rohranordnung auch jene durch Biegeschwingungen gebogener Meßrohre Querkräfte weitgehend neutralisiert werden, die – wie u. a. in den eingangs erwähnten EP-A 1 248 084 und US-B 73 50 421 diskutiert – im wesentlich senkrecht zu den Längsschnittebenen des jeweiligen Meßaufnehmers bzw. dessen Rohranordnung wirken und für die Meßgenauigkeit von Meßaufnehmern vom Vibrationstyp durchaus schädlich sein können.
  • Ein weiterer Vorteil des erfindungsgemäßen Meßaufnehmers ist ferner auch darin zu sehen, daß überwiegend etablierte Konstruktionskonzepte, wie etwa hinsichtlich der verwendeten Materialien, der Fügetechnik, der Fertigungsabläufe etc., angewendet werden können oder nur geringfügig modifiziert werden müssen, wodurch auch die Herstellkosten insgesamt durchaus vergleichbaren zu denen herkömmlicher Meßaufnehmer sind. Insofern ist ein weiterer Vorteil der Erfindung darin zu sehen, daß dadurch nicht nur eine Möglichkeit geschaffen wird, vergleichsweise kompakte Meßaufnehmer vom Vibrationstyp auch mit großer nomineller Nennweite von über 150 mm, insb. mit einer Nennweite von größer 250 mm, mit handhabbaren geometrischen Abmessungen und Leermassen, sondern zudem auch ökonomisch sinnvoll realisiert werden können.
  • Der erfindungsgemäße Meßaufnehmer ist daher besonders zum Messen von strömungsfähigen Medien geeignet, die in einer Rohrleitung mit einem Kaliber von größer 150 mm, insb. von 300 mm oder darüber, geführt sind. Zu dem ist der Meßaufnehmer auch zum Messen auch solcher Massendurchflüsse geeignet, die zumindest zeitweise größer als 1000 t/h sind, insb. zumindest zeitweise mehr als 1500 t/h betragen, wie sie z. B. bei Anwendungen zur Messung von Erdöl, Erdgas oder anderen petrochemischen Stoffen auftreten können.
  • Die Erfindung sowie weitere vorteilhafte Ausgestaltungen davon werden nachfolgend anhand von Ausführungsbeispielen näher erläutert, die in den Figuren der Zeichnung dargestellt sind. Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen; wenn es die Übersichtlichkeit erfordert oder es anderweitig sinnvoll erscheint, wird auf bereits erwähnte Bezugszeichen in nachfolgenden Figuren verzichtet. Weitere vorteilhafte Ausgestaltungen oder Weiterbildungen, insb. auch Kombinationen zunächst nur einzeln erläuterter Teilaspekte der Erfindung, ergeben sich ferner aus den Figuren der Zeichnung wie auch den Unteransprüchen an sich. Im einzelnen zeigen:
  • 1, 2 ein, beispielsweise als Coriolis-Durchfluss/Dichte/Viskositäts-Meßgerät dienendes, In-Line-Meßgerät in perspektivischen, teilweise auch geschnittenen, Seitenansichten;
  • 3a, b eine Projektion des In-line-Meßgerät gemäß 1 in zwei verschiedenen Seitenansichten;
  • 4a in perspektivischer Seitenansicht einen Meßaufnehmer vom Vibrationstyp mit einer mittels vier gebogenen Meßrohren gebildeten Rohranordnung, eingebaut in ein In-line-Meßgerät gemäß 1;
  • 4b in perspektivischer Seitenansicht die Rohranordnung gemäß 4a;
  • 5a, b eine Projektion des Meßaufnehmers gemäß 4 in zwei verschiedenen Seitenansichten; und
  • 6a, b Projektionen einer Rohranordnung des Meßaufnehmers gemäß 4 in zwei verschiedenen Seitenansichten.
  • In den 1, 2 ist ein, insb. als Coriolis-Massedurchfluß- und/oder Dichte-Meßgerät ausgebildetes, In-Line-Meßgerät 1 schematisch dargestellt, das dazu dient, einen Massendurchfluß m eines in einer – hier aus Übersichtlichkeitsgründen nicht dargestellten – Rohrleitung strömenden Mediums zu erfassen und in einen diesen Massendurchfluß momentan repräsentierenden Massendurchfluß-Meßwert abzubilden. Medium kann praktisch jeder strömungsfähige Stoff sein, beispielsweise ein Pulver, eine Flüssigkeit, ein Gas, ein Dampf oder dergleichen. Alternativ oder in Ergänzung kann das In-Line-Meßgerät 1 ggf. auch dazu verwendet werden eine Dichte ρ und/oder eine Viskosität η des Mediums zu messen. Im besonderen ist das In-Line-Meßgerät dafür vorgesehen, solche Medien, wie z. B. Erdöl, Erdgas oder andere petrochemische Stoffe, zu messen, die in einer Rohrleitung mit einem Kaliber von größer als 250 mm, insb. einem Kaliber von 300 mm oder darüber, strömen. Nicht zuletzt ist das In-Line-Meßgerät auch dafür vorgesehen strömende Medien der vorgenannten Art zu messen, die mit einer Massendurchflußrate von größer als 1000 t/h, insb. von größer 1500 t/h, strömen gelassen sind.
  • Das In-Line-Meßgerät 1 umfaßt dafür einen im Betrieb vom zu messenden Medium durchströmten Meßaufnehmer 11 vom Vibrationstyp sowie eine mit dem Meßaufnehmer 11 elektrisch verbundene – hier nicht im einzelnen, sondern lediglich als schematisch als Schaltungsblock dargestellte – Meßgerät-Elektronik 12. In vorteilhafter Weise ist die Meßgerät-Elektronik 12 so ausgelegt, daß sie im Betrieb des In-Line-Meßgerät 1 mit einer diesem übergeordneten Meßwertverarbeitungseinheit, beispielsweise einer speicherprogrammierbaren Steuerung (SPS), einem Personalcomputer und/oder einer Workstation, via Datenübertragungssystem, beispielsweise einem leitungsgebundenen Feldbussystem und/oder drahtlos per Funk, Meß- und/oder andere Betriebsdaten austauschen kann. Des weiteren ist die Meßgerät-Elektronik 12 so ausgelegt, daß sie von einer externen Energieversorgung, beispielsweise auch über das vorgenannte Feldbussystem, gespeist werden kann. Für den Fall, daß das In-line-Meßgerät 1 für eine Ankopplung an ein Feldbus- oder ein anderes Kommunikationssystem vorgesehen ist, weist die, insb. programmierbare, Meßgerät-Elektronik 12 zu dem eine entsprechende Kommunikations-Schnittstelle für eine Datenkommunikation auf, z. B. zum Senden der Meßdaten an die bereits erwähnte speicherprogrammierbare Steuerung oder ein übergeordnetes Prozeßleitsystem, auf.
  • In den 4a, 4b, 5a, 5b, 6a, 6b ist in unterschiedlichen Darstellungen ein Ausführungsbeispiel für einen für das In-Line-Meßgerät 1 geeigneten, insb. als Coriolis-Massedurchfluss-, als Dichte- und/oder als Viskositäts-Aufnehmer dienenden, Meßaufnehmer 11 vom Vibrationstyp gezeigt, welcher Meßaufnehmer 11 im Betrieb in den Verlauf einer von einem zu messenden, beispielsweise pulvrigen, flüssigen, gasförmigen oder dampfförmigen, Medium durchströmten – aus Gründen der Übersichtlichkeit hier nicht dargestellten – Rohrleitung eingesetzt ist. Der Meßaufnehmer 11 dient, wie bereits erwähnt, dazu, in einem hindurchströmenden Medium solche mechanische Reaktionskräfte, insb. vom Massendurchfluß abhängige Corioliskräfte, von der Mediumsdichte abhängige Trägheitskräfte und/oder von der Mediumsviskosität abhängige Reibungskräfte, zu erzeugen, die meßbar, insb. sensorisch erfaßbar, auf den Meßaufnehmer zurückwirken. Abgeleitet von diesen das Medium beschreibenden Reaktionskräften können mittels in der Meßgerät-Elektronik entsprechend implementierten Auswerte-Verfahren in der dem Fachmann bekannten Weise z. B. der Massendurchfluß, die Dichte und/oder die Viskosität des Mediums gemessen werden.
  • Der Meßaufnehmer 11 weist ein u. a. auch als Traggestell dienendes – hier im wesentlichen rohrförmiges, außen kreiszylindrisches – Aufnehmer-Gehäuse 71, in dem weitere, dem Erfassen der wenigstens einen Meßgröße dienende Komponenten des Meßaufnehmers 11 vor äußeren Umwelteinflüssen geschützt untergebracht sind. Im hier gezeigten Ausführungsbeispiel ist zumindest ein Mittelsegment des Aufnehmer-Gehäuses 71 mittels eines geraden, insb. kreiszylindrischen, Rohres gebildet, so daß zur Fertigung des Aufnehmer-Gehäuses beispielsweise auch kostengünstige, geschweißte oder gegossenen Standardrohre, beispielsweise aus Stahlguß oder geschmiedetem Stahl, verwendet werden können.
  • Ein einlaßseitiges erstes Gehäuseende des Aufnehmer-Gehäuses 71 ist mittels eines einlaßseitigen ersten Strömungsteilers 201 und ein auslaßseitiges zweites Gehäuseende des Aufnehmer-Gehäuses 71 ist mittels auslaßseitigen zweiten Strömungsteilers 202 gebildet. Jeder der beiden, insoweit als integraler Bestandteil des Gehäuses ausgebildeten, Strömungsteiler 201, 202 weist genau vier jeweils voneinander beabstandeten, beispielsweise kreiszylindrische oder kegelförmige bzw. jeweils als Innenkonus ausgebildete, Strömungsöffnungen 201A, 201B, 201C, 201D bzw. 202A, 202B, 202C, 202D auf.
  • Darüberhinaus ist jeder der, beispielsweise aus Stahl gefertigten, Strömungsteiler 201, 202 jeweils mit einem, beispielsweise aus Stahl gefertigten, Flansch 61 bzw. 62 zum Anschließen des Meßaufnehmers 11 an ein dem Zuführen von Medium zum Meßaufnehmer dienendes Rohrsegment der Rohrleitung bzw. an ein dem Abführen von Medium vom Meßaufnehmer dienendes Rohrsegment der erwähnten Rohrleitung versehen. Jeder der beiden Flansche 61, 62 weist gemäß einer Ausgestaltung der Erfindung eine Masse von mehr als 50 kg, insb. von mehr als 60 kg und/oder weniger als 100 kg, auf. Zum leckagefreien, insb. fluiddichten, Verbinden des Meßaufnehmers mit dem jeweils korrespondierenden Rohrsegment der Rohrleitung weist jeder der Flansche ferner jeweils eine entsprechende, möglichst plane Dichtfläche 61A bzw. 62A auf. Ein Abstand zwischen den beiden Dichtflächen 61A, 62A beider Flansche definiert somit praktisch eine Einbaulänge, L11, des Meßaufnehmers 11. Die Flansche sind, insb. hinsichtlich ihres Innendurchmessers, ihrer jeweiligen Dichtfläche sowie den der Aufnahme entsprechender Verbindungsbolzen dienenden Flanschbohrungen, entsprechend der für den Meßaufnehmer 11 vorgesehenen nominelle Nennweite D11 sowie den dafür ggf. einschlägigen Industrienormen dimensioniert, die einem Kaliber der Rohrleitung, in deren Verlauf der Meßaufnehmer einzusetzen ist, entspricht.
  • Infolge der für den Meßaufnehmer letztlich angestrebten großen Nennweite beträgt dessen Einbaulänge L11 gemäß einer Ausgestaltung der Erfindung mehr als 1200 mm. Ferner ist aber vorgesehen, die Einbaulänge des Meßaufnehmers 11 möglichst klein, insb. kleiner als 3000 mm zu halten. Die Flansche 61, 62 können, wie auch aus 4a ohne weiteres ersichtlich und wie bei derartigen Meßaufnehmer durchaus üblich, dafür möglichst nah an den Strömungsöffnungen der Strömungsteiler 201, 202 angeordnet sein, um so einen möglichst kurzen Vor- bzw. Auslaufbereich in den Strömungsteilern zu schaffen und somit insgesamt eine möglichst kurze Einbaulänge L11 des Meßaufnehmers, insb. von weniger als 3000 mm, zu schaffen. Für einen möglichst kompakten Meßaufnehmer mit einem – nicht zuletzt auch bei angestrebt hohen Massendurchflußraten von über 1000 t/h – sind nach einer anderen Ausgestaltung der Erfindung die Einbaulänge und die nominelle Nennweite des Meßaufnehmers aufeinander abgestimmt so bemessen, daß ein Nennweite-zu Einbaulänge-Verhältnis D11/L11 des Meßaufnehmers, definiert durch ein Verhältnis der nominellen Nennweite D11 des Meßaufnehmers zur Einbaulänge L11 des Meßaufnehmers kleiner als 0.3, insb. kleiner als 0.2 und/oder größer als 0.1, ist.
  • In einer weiteren Ausgestaltung des Meßaufnehmers umfaßt das Aufnehmer-Gehäuse ein im wesentlichen rohrförmiges Mittelsegment. Ferner ist vorgesehen, das Aufnehmer-Gehäuse so zu dimensionieren, daß ein durch durch ein Verhältnis des größten Gehäuse-Innendurchmessers zur nominellen Nennweite des Meßaufnehmers definiertes Gehäuse-Innendurchmesser-zu-Nennweite-Verhältnis des Meßaufnehmers, zwar größer als 0.9, jedoch kleiner als 1.5, möglichst aber kleiner als 1.2 ist.
  • Bei dem hier gezeigten Ausführungsbeispiel schließen sich ein- bzw. auslaßseitig an das Mittelsegment ferner ebenfalls rohrförmige Endsegmente des Aufnehmergehäuses an. Für den im Ausführungsbeispiel gezeigten Fall, daß das Mittelsegment und die beiden Endsegmente wie auch die mit dem jeweiligen Flansch verbundenen Strömungsteiler im Vor- bzw. Auslaufbereich jeweils den gleichen Innendurchmesser aufweisen, kann das Aufnehmer-Gehäuse in vorteilhafter Weise auch mittels eines einstückigen, beispielsweise gegossenen oder geschmiedeten, Rohres gebildet werden, an dessen Enden die Flansche angeformt oder angeschweißt sind, und bei dem die Strömungsteiler mittels, insb. von den Flanschen etwas beabstandet, an die Innenwand orbital und/oder mittels Laser angeschweißten, die Strömungsöffnungen aufweisenden Platten gebildet sind. Insbesondere für den Fall, daß das erwähnte Gehäuse-Innenendurchmesser-zu-Nennweite-Verhältnis des Meßaufnehmers gleich eins gewählt ist, kann für Fertigung des Aufnehmer-Gehäuses beispielsweise ein der anzuschließenden Rohrleitung hinsichtlich Kaliber, Wandstärke und Material entsprechendes und insoweit auch hinsichtlich des erlaubten Betriebsdrucks entsprechend angepaßtes Rohr mit entsprechend passender Länge verwendet werden. Zur Vereinfachung des Transports des Meßaufnehmers bzw. des gesamten damit gebildeten In-line-Meßgeräts können ferner, wie beispielsweise auch in der eingangs erwähnten US-B 73 50 421 vorgeschlagen, einlaßseitig und auslaßseitig am außen am Aufnehmer-Gehäuse fixierte eine Transport-Öse vorgesehen sein.
  • Zum Führen des zumindest zeitweise durch Rohrleitung und Meßaufnehmer strömenden Mediums umfaßt der erfindungsgemäße Meßaufnehmer ferner eine Rohranordnung mit genau vier im Aufnehmer-Gehäuse 10 schwingfähig gehalterte gebogene, beispielsweise zumindest abschnittsweise V-förmige oder – wie hier schematisch dargestellt – zumindest abschnittsweise kreisbogenförmige, Meßrohre 181, 182, 183, 184. Die vier – hier gleichlangen und paarweise parallelen – Meßrohre kommunizieren jeweils mit der an den Meßwandler angeschlossene Rohrleitung und werden im Betrieb zumindest zeitweise in wenigstens einem für Ermittlung der physikalischen Meßgröße geeigneten Schwingungsmode, dem sogenannten Nutz-Mode, vibrieren gelassen. Im besonderen eignet sich als Nutz-Mode z. B. ein jedem der Meßrohre 181, 182, 183 bzw. 184 naturgemäß innewohnende Biegeschwingungsgrundmode, der bei minimaler Biegeschwingungs-Resonanzfrequenz, f181, f182, f183 bzw. f184, genau einen Schwingungsbauch aufweist. Von den vier Meßrohren münden ein erstes Meßrohr 181 mit einem einlaßseitigen ersten Meßrohrende in eine erste Strömungsöffnung 201Ades ersten Strömungsteilers 201 und mit einem auslaßseitigen zweiten Meßrohrende in eine erste Strömungsöffnung 202A des zweiten Strömungsteilers 202, ein zweites Meßrohr 182 mit einem einlaßseitigen ersten Meßrohrende in eine zweite Strömungsöffnung 201B des ersten Strömungsteilers 201 und mit einem auslaßseitigen zweiten Meßrohrende in eine zweite Strömungsöffnung 202B des zweiten Strömungsteilers 202, ein drittes Meßrohr 183 mit einem einlaßseitigen ersten Meßrohrende in eine dritte Strömungsöffnung 201C des ersten Strömungsteilers 201 und mit einem auslaßseitigen zweiten Meßrohrende in eine dritte Strömungsöffnung 202C des zweiten Strömungsteilers 202 und ein viertes Meßrohr 184 mit einem einlaßseitigen ersten Meßrohrende in eine vierte Strömungsöffnung 201D des ersten Strömungsteilers 201 und mit einem auslaßseitigen zweiten Meßrohrende in eine vierte Strömungsöffnung 202D des zweiten Strömungsteilers 202. Die vier Meßrohre 181, 182, 183, 184 sind somit unter Bildung strömungstechnisch parallel geschalteter Strömungspfade an die, insb. baugleichen, Strömungsteiler 201, 202 angeschlossen, und zwar in einer Vibrationen, insb. Biegeschwingungen, der Meßrohre relativ zueinander wie auch relativ zum Aufnehmergehäuse ermöglichenden Weise. Ferner ist vorgesehen, daß die vier Meßrohre 181, 182, 183, 184 lediglich mittels nämlicher Strömungsteiler 201, 202 im Aufnehmer-Gehäuse 71 schwingfähig gehaltert sind.
  • Beim erfindungsgemäßen Meßaufnehmer sind die Meßrohre – wie auch aus der Zusammenschau der 2, 4a und 4b ohne weiteres ersichtlich – so ausgebildet und im Meßaufnehmer angeordnet, daß die Rohranordnung eine sowohl zwischen dem ersten Meßrohr 181 und dem dritten Meßrohr 183 als auch zwischen dem zweiten Meßrohr 182 und dem vierten Meßrohr 184 liegende erste gedachte Längsschnittebene XZ aufweist, bezüglich der die Rohranordnung spiegelsymmetrisch ist, und daß die Rohranordnung weiters eine zu deren gedachter erster Längsschnittebene XZ senkrechte, sowohl zwischen dem ersten Meßrohr 181 und zweiten Meßrohr 182 als auch zwischen dem dritten Meßrohr 183 und vierten Meßrohr 184 verlaufende zweite gedachte Längsschnittebene YZ aufweist, bezüglich der die Rohranordnung gleichfalls spiegelsymmetrisch ist. Im Ergebnis dessen sind nicht nur durch allfällige thermisch bedingte Ausdehnung der Meßrohre innerhalb der Rohranordnung generierte mechanische Spannungen minimiert, sondern können auch durch die Biegeschwingungen der gebogenen Meßrohre innerhalb der Rohranordnung allfällig induzierte, im wesentlichen senkrecht zur Schnittlinie der beiden vorgenannten gedachten Längsschnittebenen wirkende Querkräfte weitgehend neutralisiert werden, nicht zuletzt auch jene, u. a. auch in den eingangs erwähnten EP-A 1 248 084 und US-B 73 50 421 erwähnten, Querkräfte, die im wesentlichen senkrecht zur ersten gedachten Längsschnittebene XZ gerichtet sind.
  • Zur weiteren Symmetrisierung des Meßaufnehmers und insoweit auch zur weiteren Vereinfachung von dessen Aufbau sind die beiden Strömungsteiler 201, 202 gemäß einer weiteren Ausgestaltung der Erfindung ferner so ausgebildet und so im Meßaufnehmer angeordnet, daß, wie auch in den 4a und 4b schematisch dargestellt, eine die erste Strömungsöffnung 201A des ersten Strömungsteilers 201 mit der ersten Strömungsöffnung 202A des zweiten Strömungsteilers 202 imaginär verbindende gedachte erste Verbindungsachse Z1 des Meßaufnehmers parallel zu einer die zweite Strömungsöffnung 201B des ersten Strömungsteilers 201 mit der zweiten Strömungsöffnung 202B des zweiten Strömungsteilers 202 imaginär verbindende gedachten zweiten Verbindungsachse Z2 des Meßaufnehmers verläuft, und daß eine die dritte Strömungsöffnung 201C des ersten Strömungsteilers 201 mit der dritten Strömungsöffnung 202C des zweiten Strömungsteilers 202 imaginär verbindende gedachte dritten Verbindungsachse Z3 des Meßaufnehmers parallel zu einer die vierte Strömungsöffnung 201D des ersten Strömungsteilers 201 mit der vierten Strömungsöffnung 202B des zweiten Strömungsteilers 202 imaginär verbindende gedachten vierten Verbindungsachse Z4 des Meßaufnehmers verläuft. Wie in der 4a und 4b gezeigte, sind die Strömungsteiler ferner so ausgebildet und im Meßaufnehmer so angeordnet, daß die Verbindungsachsen Z1, Z2, Z3, Z4 auch zu einer mit der Rohrleitung im wesentlichen fluchtenden und/oder mit vorgenannter Schnittlinie der beiden gedachten Längsschnittebenen XZ, YZ der Rohranordnung koinzidente Hauptströmungsachse L des Meßaufnehmers parallel sind. Desweiteren können die beiden Strömungsteiler 201, 202 zudem auch so ausgebildet und so im Meßaufnehmer angeordnet sein, daß eine erste gedachte Längsschnittebene XZ1 des Meßaufnehmers, innerhalb der die erste gedachte Verbindungsachse Z1 und die zweite gedachte Verbindungsachse Z2 verlaufen, parallel zu einer zweiten gedachten Längsschnittebene XZ2 des Meßaufnehmers ist, innerhalb der die gedachte dritte Verbindungsachse Z3 und die gedachte vierte Verbindungsachse Z4 verlaufen.
  • Darüberhinaus sind die Meßrohre gemäß einer weiteren Ausgestaltung der Erfindung ferner so ausgebildet und so im Meßaufnehmer angeordnet, daß die gedachte erste Längsschnittebene XZ der Rohranordnung, wie u. a. auch aus der Zusammenschau der 3a und 4a ersichtlich, zwischen der vorgenannten ersten gedachten Längsschnittebene XZ1 des Meßaufnehmers und der vorgenannten zweiten gedachten Längsschnittebene XZ2 des Meßaufnehmers liegt, beispielsweise auch so, daß die erste Längsschnittebene XZ der Rohranordnung parallel zur ersten und zweiten Längsschnittebene XZ1, XZ2 des Meßaufnehmers ist. Ferner sind die Meßrohre so ausgebildet und im Meßaufnehmer angeordnet, daß gleichermaßen auch die zweite gedachte Längsschnittebene YZ der Rohranordnung zwischen der dritten gedachten Längsschnittebene YZ1 des Meßaufnehmers und der vierten gedachten Längsschnittebene YZ2 des Meßaufnehmers verläuft, etwa derart, daß die zweite gedachte Längsschnittebene YZ der Rohranordnung parallel zur dritten gedachten Längsschnittebene YZ1 des Meßaufnehmers und parallel zur vierten gedachten Längsschnittebene YZ2 des Meßaufnehmers ist.
  • Die Meßrohre 181, 182, 183, 184 bzw. die damit gebildete Rohranordnung des Meßaufnehmers 11 sind, wie aus der Zusammenschau der 1, 2 und 4a ohne weiteres ersichtlich vom Aufnehmer-Gehäuse 71 dabei praktisch vollständig umhüllt. Das Aufnehmer-Gehäuse 71 dient insoweit also nicht nur als Tragegestell oder Halterung der Meßrohre 181, 182, 183, 184 sondern darüber hinaus auch dazu, diese, wie auch weitere innerhalb des Aufnehmer-Gehäuse 71 plazierte Komponenten des Meßaufnehmers, vor äußeren Umwelteinflüssen, wie z. B. Staub oder Spritzwasser, zu schützen. Überdies kann das Aufnehmer-Gehäuse 71 ferner auch so ausgeführt und so bemessen sein, daß es bei allfälligen Schäden an einem oder mehreren der Meßrohre, z. B. durch Rißbildung oder Bersten, ausströmendes Medium bis zu einem geforderten maximalen Überdruck im Inneren des Aufnehmer-Gehäuses 71 möglichst lange vollständig zurückzuhalten kann, wobei solche kritischen Zustand, wie beispielsweise auch in der eingangs erwähnten US-B 73 92 709 erwähnt, mittels entsprechenden Drucksensoren und/oder anhand von der erwähnten Meßgerät-Elektronik 12 im Betrieb intern erzeugten Betriebsparametern erfaßt und signalisiert werden können. Als Material für das Aufnehmer-Gehäuse 71 können demnach im besondern Stähle, wie etwa Baustahl bzw. rostfreier Stahl, oder auch andere geeignete bzw. üblicherweise hierfür geeignete hochfeste Werkstoffe verwendet werden.
  • Nach einer Ausgestaltung der Erfindung sind die vier Meßrohre 181, 182, 183, 184 ferner so ausgebildet und so im Meßaufnehmer 11 eingebaut, daß zumindest die minimalen Biegeschwingungs-Resonanzfrequenzen f181, f182 des ersten und zweiten Meßrohrs 181, 182 im wesentlichen gleich sind und zumindest die minimalen Biegeschwingungs-Resonanzfrequenzen f183, f184 des dritten und vierten Meßrohrs 183, 184 im wesentlichen gleich sind.
  • Nach einer weiteren Ausgestaltung der Erfindung sind zumindest das erste und das zweite Meßrohr 181, 182 hinsichtlich eines Materials, aus dem deren Rohrwände bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich ausgeführt. Ferner sind auch zumindest das dritte und das vierte Meßrohr 183, 184 hinsichtlich eines Materials, aus dem deren Rohrwände bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich, so daß im Ergebnis die vier Meßrohre 181, 182, 183, 184 zumindest paarweise im wesentlichen baugleich ausgebildet sind. Nach einer weiteren Ausgestaltung der Erfindung ist hierbei ferner vorgesehen, sowohl das dritte Meßrohr als auch das vierte Meßrohr so auszubilden, daß beide Meßrohre hinsichtlich ihrer jeweiligen geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, verschieden sind vom ersten Meßrohr und vom zweiten Meßrohr, insb. derart, daß die minimalen Biegeschwingungs-Resonanzfrequenzen der vier Meßrohre lediglich paarweise gleich sind. Durch die somit geschaffene Symmetriebrechung bei den vier Meßrohren 181, 182, 183, 184 können u. a. die Empfindlichkeit, das Schwingungsverhalten, insb. die mechanischen Eigenfrequenzen, und/oder die Querempfindlichkeit auf die primäre Messung beeinflussende Störgrößen, wie etwa eine Temperatur- oder Druckverteilung, die Beladung des Medium mit Fremdstoffen etc., der beiden insoweit voneinander verschiedenen zwei Meßrohrpaare 181, 182 bzw. 183, 184 gezielt aufeinander abgestimmt und somit eine verbesserte Diagnose des Meßaufnehmers im Betrieb ermöglicht werden. Selbstverständlich können die die vier Meßrohre 181, 182, 183, 184, falls erforderlich, hinsichtlich eines Materials, aus dem deren Rohrwände bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers, einer Form der jeweiligen Biegelinie und/oder eines Kalibers, aber auch baugleich realisiert sein, insb. derart, daß im Ergebnis die minimalen Biegeschwingungs-Resonanzfrequenzen aller vier – leeren oder gleichmäßig von einem homogenen Medium durchströmten – Meßrohre 181, 182, 183, 184 im wesentlichen gleich sind.
  • Als Material für die Rohrwände der Meßrohre wiederum eignet sich im besonderen Titan, Zirkonium oder Tantal. Darüber hinaus kann als Material für die vier Meßrohre 181, 182, 183, 184 aber auch praktisch jeder andere dafür üblicherweise verwendete oder zumindest geeignete Werkstoff dienen, insb. solche mit einem möglichst kleinen thermischen Ausdehnungskoeffizient und einer möglichst hohen Streckgrenze. Für die meisten Anwendungen der industriellen Meßtechnik, insb. auch in der petrochemischen Industrie, würden daher auch Meßrohre aus rostfreiem Stahl, beispielsweise auch Duplexstahl oder Superduplexstahl, den Anforderungen hinsichtlich der mechanischen Festigkeit, der chemischen Beständigkeit sowie den thermischen Anforderungen genügen, so daß in zahlreichen Anwendungsfällen das Aufnehmer-Gehäuse 71, die Strömungsteiler 201, 202 wie auch die Rohrwände der Meßrohre 181, 182, 183, 184 jeweils aus Stahl von jeweils ausreichend hoher Güte bestehen können, was insb. im Hinblick auf die Material- und Fertigungskosten wie auch das thermisch bedingte Dilatationsverhalten des Meßaufnehmers 11 im Betrieb von Vorteil sein kann.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die Strömungsöffnungen des ersten Strömungsteilers 201 ferner so angeordnet, daß jene gedachten Flächenschwerpunkte, die zu den – hier kreisförmigen – Querschnittsflächen der Strömungsöffnungen des ersten Strömungsteilers gehören, die Eckpunkte eines gedachten Rechteck oder eines gedachten Quadrats, bilden, wobei nämliche Querschnittsflächen wiederum in einer gemeinsamen gedachten, senkrecht zu einer – beispielsweise innerhalb der ersten Längsschnittebene XZ der Rohranordnung verlaufenden bzw. zur erwähnten Hauptströmungsachse des Meßaufnehmers parallelen oder auch koinzidenten – Längsachse L des Meßaufnehmers verlaufenden bzw. auch zu den Längsschnittebenen des Meßaufnehmers senkrechten Querschnittebene des ersten Strömungsteilers liegen. Ferner sind auch die Strömungsöffnungen des zweiten Strömungsteilers 202 so angeordnet, daß zu – hier ebenfalls kreisförmigen – Querschnittsflächen der Strömungsöffnungen des zweiten Strömungsteilers 202 zugehörige gedachte Flächenschwerpunkte die Eckpunkte eines gedachten Rechtecks bzw. Quadrats bilden, wobei nämliche Querschnittsflächen wiederum in einer gemeinsamen gedachten, senkrecht zur erwähnten Hauptströmungs- oder auch Längsachse L des Meßaufnehmers verlaufenden bzw. zu den Längsschnittebenen des Meßaufnehmers senkrechten Querschnittebene des zweiten Strömungsteilers liegen. Im Ergebnis dessen bildet eine Einhüllende der vier Meßrohre 181, 182, 183, 184 praktisch einen geraden, beispielsweise um die erwähnte Hauptströmungsachse bzw. Längsachse L des Meßaufnehmers, rotationssymmetrischen Körper mit einer eine zumindest zweizählige Symmetrie aufweisenden, rechteck- oder auch quadratähnlichen Grundfläche, wodurch der Platzbedarf der mittels der vier Meßrohre 181, 182, 183, 184 gebildeten Rohranordnung in einer der Kompaktheit des Meßaufnehmers 11 insgesamt förderlichen Weise minimiert werden kann.
  • Nach einer weiteren Ausgestaltung der Erfindung ist jedes der Meßrohre ferner so im Meßaufnehmer angeordnet, daß ein kleinster seitlicher Abstand jedes der vier Meßrohre von einer Gehäuseseitenwand des Aufnehmer-Gehäuses jeweils größer als Null, insb. aber größer als 3 mm und/oder größer als ein Doppeltes einer jeweiligen Rohrwandstärke, ist bzw. daß ein kleinster seitlicher Abstand zwischen zwei benachbarten Meßrohren jeweils größer als 3 mm und/oder größer als die Summe von deren jeweiligen Rohrwandstärken ist. Dementsprechend ist ferner jede der Strömungsöffnungen so angeordnet, daß ein kleinster seitlicher Abstand jeder der Strömungsöffnungen von einer Gehäuseseitenwand des Aufnehmer-Gehäuses 7 jeweils größer als Null, insb. größer als 3 mm und/oder größer als ein Doppeltes einer kleinsten Rohrwandstärke der Meßrohre 181, 182, 183, 184, ist bzw. daß ein kleinster seitlicher Abstand zwischen den Strömungsöffnungen größer als 3 mm und/oder größer als ein Doppeltes einer kleinsten Rohrwandstärke der Meßrohre 181, 182, 183, 184 ist. Dafür sind gemäß einer weiteren Ausgestaltung der Erfindung die vier Meßohre 181, 182, 183, 184 und das Aufnehmergehäuse 71 aufeinander abgestimmt so bemessen, daß ein Gehäuse-zu-Meßrohr-Innendurchmesser-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis des größten Gehäuse-Innendurchmessers zu einem Kaliber zumindest des ersten Meßrohrs größer als 3, insb. größer als 4 und/oder kleiner als 10, ist. Alternativ oder in Ergänzung sind die Meßrohre gemäß einer weiteren Ausgestaltung der Erfindung so gebogen und so angeordnet, daß ein Kaliber-zu-Höhe-Verhältnis der Rohranordnung, definiert durch ein Verhältnis des Kalibers, D18, zumindest des ersten Meßrohrs zu einer maximalen seitlichen Ausdehnung der Rohranordnung, gemessen von einem Scheitelpunkt des ersten Meßrohrs zu einem Scheitelpunkt des dritten Meßrohrs, mehr als 0.1, insb. mehr als 0.2 und/oder weniger als 0.35, beträgt.
  • Wie bereits eingangs erwähnt, werden beim Meßaufnehmer 11 die für die Messung erforderlichen Reaktionskräfte im jeweils zu messenden Medium durch das Schwingenlassen der Meßrohre 181, 182, 183, 184 im sogenannten Nutzmode bewirkt. Dafür umfaßt der Meßaufnehmer ferner eine mittels wenigstens eines auf die Meßrohre 181, 182, 183, 184 einwirkenden elektro-mechanischen, beispielsweise elektro-dynamischen, Schwingungserregers gebildete Erregeranordnung 5, die dazu dient jedes der Meßrohre betriebsgemäß zumindest zeitweise in für die konkrete Messung jeweils geeignete Schwingungen, insb. von Biegeschwingungen, im sogenannten Nutzmode mit jeweils für die Erzeugung und die Erfassung der oben genannten Reaktionskräfte im Medium ausreichend großen Schwingungsamplitude zu versetzen bzw. diese Nutzschwingungen aufrechtzuerhalten. Der wenigstens eine Schwingungserreger dient hierbei im besonderen dazu, eine, von einer entsprechenden Meß- und Betriebsschaltung z. B. des oben genannten Coriolis-Massedurchflußmessers eingespeiste, elektrische Erregerleistung Pexc in solche, z. B. pulsierenden oder harmonischen, Erregerkräfte Fexc umzuwandeln, die möglichst gleichzeitig, gleichmäßig jedoch gegensinnig auf die Meßrohre einwirken. Die Erregerkräfte Fexc können in dem Fachmann an und für sich bekannter Weise z. B. mittels einer in der bereits erwähnten Meß- und Betriebselektronik vorgesehenen Strom- und/oder Spannungs-Regelschaltung, hinsichtlich ihrer Amplitude und, z. B. mittels einer ebenfalls in Meß- und Betriebselektronik vorgesehenen Phasen-Regelschleife (PLL), hinsichtlich ihrer Frequenz eingestellt werden, vgl. hierzu beispielsweise auch die US-A 48 01 897 oder die US-B 63 11 136 .
  • Infolge von durch die zu Schwingungen im Nutzmode angeregten Meßrohre hindurchströmendem Medium werden im Medium Corioliskräfte induziert, die wiederum eine zusätzliche, höheren Schwingungsmoden der Meßrohre, dem sogenannten Coriolismode, entsprechende Verformungen der Meßrohre bewirken. Beispielsweise können die Meßrohre 181, 182, 183, 184 im Betrieb von der daran gehalterten elektro-mechanischen Erregeranordnung zu Biegeschwingungen, insb. auf einer momentanen mechanischen Eigenfrequenz der mittels der vier Meßrohre 181, 182, 183, 184 gebildeten Rohranordnung, angeregt werden, bei denen sie – zumindest überwiegend lateral ausgelenkt und, wie aus der Zusammenschau der 3a, 3b bzw. 6a, 6b ohne weiteres ersichtlich, paarweise zueinander im wesentlichen gegenphasig schwingen gelassen werden. Dies im besonderen derart, daß von jedem der Meßrohre 181, 182, 183, 184 im Betrieb zeitgleich ausgeführten Vibrationen zumindest zeitweise und/oder zumindest anteilig jeweils als Biegeschwingungen um eine das erste und das jeweils zugehörige zweite Meßrohrende des jeweiligen Meßrohrs verbindende, zu den erwähnten Verbindungsachsen Z1, Z2, Z3, Z4 jeweils parallele gedachte Schwingungssachse ausgebildet sind, wobei die vier Schwingungssachsen im hier gezeigten Ausführungsbeispiel gleichermaßen zueinander wie auch zu der die beiden Strömungsteiler imaginär verbindenden und durch einen Massenschwerpunkt des Meßaufnehmers gedachten Längsachse L des gesamten Meßaufnehmers parallel sind. Anders gesagt, können die Meßrohre, wie bei Meßaufnehmern vom Vibrationstyp durchaus üblich, jeweils zumindest abschnittsweise in einem Biegeschwingungsmode nach der Art einer beidseitig eingespannten Saite bzw. nach Art eines endseitig eingespannten Auslegers schwingen gelassen werden.
  • Gemäß einer weiteren Ausgestaltung der Erfindung sind die Meßrohre 181, 182, 183, 184 mittels der Erregeranordnung 5 im Betrieb zumindest anteilig, insb. überwiegend, zu Biegeschwingungen angeregt, die eine Biegeschwingungsfrequenz aufweisen, die in etwa gleich einer momentanen mechanischen Resonanzfrequenz der die vier Meßrohre 181, 182, 183, 184 umfassenden Rohranordnung ist oder die zumindest in der Nähe einer solchen Eigen- oder Resonanzfrequenz liegt. Die momentanen mechanischen Biegeschwingungsresonanzfrequenzen sind dabei bekanntlich in besonderem Maße von Größe, Form und Material der Meßrohre 181, 182, 183, 184 wie auch von einer momentanen Dichte des durch die Meßrohre hindurchströmenden Mediums abhängig und kann insoweit im Betrieb des Meßaufnehmers innerhalb eines durchaus einige Kilohertz breiten Nutz-Frequenzbandes veränderlich sein. Bei Anregung der Meßrohre auf Biegeschwingungsresonanzfrequenz kann einerseits anhand der momentan angeregten Schwingungsfrequenz eine mittlere Dichte des durch die vier Meßrohre momentane strömenden Mediums leicht ermittelt werden. Anderseits kann so auch die für die Aufrechterhaltung der im Nutzmode angeregten Schwingungen momentan erforderliche elektrische Leistung minimiert werden. Im besonderen werden die vier Meßrohre 181, 182, 183, 184, angetrieben von der Erregeranordnung, ferner zumindest zeitweise mit im wesentlichen gleicher Schwingungsfrequenz, insb. auf einer gemeinsamen natürlichen mechanischen Eigenfrequenz, schwingen gelassen. Darüber hinaus ist vorgesehen die im wesentlichen frequenzgleich schwingen gelassenen Meßrohre 181, 182, 183, 184 so anzuregen, daß zumindest bei nicht strömendem Medium das erste und dritte Meßrohr 181, 183 zueinander im wesentlichen synchron schwingen, d. h. mit im wesentlichen gleicher Schwingungsform, im wesentlichen gleicher Phasenlage und etwa gleicher Schwingungsamplitude. In dazu analoger Weise werden bei dieser Ausgestaltung der Erfindung auch das zweite und vierte Meßrohr 182, 184 zueinander im wesentlichen synchron schwingen gelassen.
  • Die Erregeranordnung ist gemäß einer Ausgestaltung der Erfindung derart ausgebildet, daß damit das erste Meßrohr 181 und das zweite Meßrohr 182 im Betrieb zu gegenphasigen Biegeschwingungen und das dritte Meßrohr 181 und das vierte Meßrohr 184 im Betrieb gegenphasige Biegeschwingungen anregbar sind. Gemäß einer weiteren Ausgestaltung der Erfindung ist die Erregeranordnung 5 dafür mittels eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs 181 relativ zum zweiten Meßrohr 182 differentiell anregenden, ersten Schwingungserregers 51 gebildet.
  • Ferner ist vorgesehen, daß als erster Schwingungserreger 51 ein ein simultan, insb. differentiell, auf wenigstens zwei der Meßrohre 181, 182, 183, 184 wirkender Schwingungserreger vom elektrodynamischen Typ dient. Dementsprechend ist der erster Schwingungserreger 51 ferner mittels eines am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten Zylinderspule gebildet ist, insb. nach Art einer Tauchspulenanordnung, bei der die Zylinderspule koaxial zum Permanentmagneten angeordnet und dieser als innerhalb der Spule bewegter Tauchanker ausgebildet ist. Nach einer Weiterbildung der Erfindung umfaßt die Erregeranordnung ferner einen, insb. elektrodynamischen und/oder zum ersten Schwingungserreger 51 baugleichen und/oder Schwingungen des dritten Meßrohrs 183 relativ zum vierten Meßrohr 184 differentiell anregenden, zweiten Schwingungserreger 52. Die beiden Schwingungserreger können in vorteilhafter Weise elektrisch seriell verschaltet sind, insb. derart, daß ein gemeinsames Treibersignal gemeinsame Schwingungen des ersten und dritten Meßrohrs 181, 183 relativ zum zweiten und vierten Meßrohr 182, 184 anregt. Gemäß einer weiteren Ausgestaltung ist der der zweite Schwingungserreger 52 mittels eines am dritten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr gehalterten Zylinderspule gebildet.
  • Wie u. a. auch in den 4a, 4b, oder 6b dargestellt, kann der erste Schwingungserreger 51 in oberhalb des ersten und zweiten Meßrohrs 181, 182 und insoweit auch oberhalb eines Schwerpunkts der Rohranordnung angeordnet sein, der in einer durch die Einbaustelle nämlichen Schwingungserregers hindurchgehenden gedachten – hier zur ersten gedachten Längsschnittebene XZ und der zweiten gedachten Längsschnittebene YZ der Rohranordnung jeweils senkrechten – Querschnittsebene XY der Rohranordnung liegt. Im hier gezeigten Ausführungsbeispiel ist die Rohranordnung zudem auch spiegelsymmetrisch bezüglich vorgenannter gedachter Querschnittsebene XY. Im hier gezeigten Ausführungsbeispiel ist die Rohranordnung, wie aus der Zusammenschau der 4a, 4b, 5a, 5b und 6a ohne weiteres ersichtlich, ferner so ausgebildet und so im Meßaufnehmergehäuse plaziert, daß im Ergebnis nicht nur die gemeinsame Schnittlinie der ersten und zweiten gedachten Längsschnittebenen XZ, YZ der Rohranordnung parallel bzw. koinzident zur Längsachse L ist, sondern auch eine gemeinsame Schnittlinie der ersten Längsschnittebene XZ und der Querschnittsebene XY parallel zu einer zur Längsachse L senkrechten gedachten Querachse Q des Meßaufnehmers und eine gemeinsame Schnittlinie der zweiten Längsschnittebene YZ und der Querschnittsebene XY parallel zu einer zur Längsachse L senkrechten gedachten Hochachse H des Meßaufnehmers sind.
  • Es sei an dieser Stelle zudem ferner noch erwähnt, daß, obgleich die Schwingungserreger der im Ausführungsbeispiel gezeigten Erregeranordnung jeweils etwa mittig an den Meßrohren angreifen, alternativ oder in Ergänzung auch eher ein- und auslaßseitig an das jeweilige Meßrohr angreifende Schwingungserreger verwendet werden können, etwa nach Art der in der US-A 48 23 614 , US-A 48 31 885 , oder der US-A 2003/0070495 vorgeschlagenen Erregeranordnungen.
  • Wie aus den 2, 4a, 4b, 5a, und 5b jeweils ersichtlich und bei Meßaufnehmern der in Rede stehenden Art üblich, ist im Meßaufnehmer 11 ferner eine auf, insb. einlaß- und auslaßseitige, Vibrationen, insb. mittels der Erregeranordnung 5 angeregte Biegeschwingungen, der Meßrohre 181, 182, 183 bzw. 184 reagierende, beispielsweise elektro-dynamische, Sensoranordnung 19 zum Erzeugen von Vibrationen, insb. Biegeschwingungen, der Meßrohre repräsentierenden Schwingungsmeßsignalen vorgesehen, die beispielsweise hinsichtlich einer Frequenz, einer Signalamplitude und/oder einer Phasenlage relativ zueinander und/oder relativ zum Treibersignal – von der von der zu erfassenden Meßgröße, wie etwa der Massendurchflußrate und/oder der Dichte bzw. einer Viskosität des Mediums, mit beeinflußt sind.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist die Sensoranordnung mittels eines, insb. elektrodynamischen und/oder zumindest Schwingungen des ersten Meßrohrs 181 relativ zum zweiten Meßrohr 182 differentiell erfassenden, einlaßseitigen ersten Schwingungssensors 191 sowie eines, insb. elektrodynamischen und/oder zumindest Schwingungen des ersten Meßrohrs 181 relativ zum zweiten Meßrohr 182 differentiell erfassenden, auslaßseitigen zweiten Schwingungssensors 192 gebildet, welche beiden Schwingungssensoren jeweils auf Bewegungen der Meßrohre 181, 182, 183, 184, insb. deren laterale Auslenkungen und/oder Verformungen, reagierend, ein erstes bzw. zweites Schwingungsmeßsignal liefern. Dies im besonderen in der Weise, daß wenigstens zwei der von der Sensoranordnung 19 gelieferten Schwingungsmeßsignale eine gegenseitige Phasenverschiebung aufweisen, die mit der momentanen Massendurchflußrate des durch die Meßrohre hindurchströmenden Mediums korrespondiert bzw. davon abhängig ist, sowie jeweils eine Signalfrequenz aufweisen, die von einer momentanen Dichte des in den Meßrohren strömenden Mediums abhängig sind. Die beiden, beispielsweise einander baugleichen, Schwingungssensoren 191, 192 können dafür – wie bei Meßaufnehmern der in Rede stehenden Art durchaus üblich – im wesentlichen äquidistant zum ersten Schwingungserreger 51 im Meßaufnehmer 11 plaziert sein. Überdies können die Schwingungssensoren der Sensoranordnung 19 zumindest insoweit baugleich zum wenigstens einen Schwingungserreger der Erregeranordnung 5 ausgebildet sein, als sie analog zu dessen Wirkprinzip arbeiten, beispielsweise also ebenfalls vom elektrodynamischen Typ sind. Gemäß einer Weiterbildung der Erfindung ist die Sensoranordnung 19 zudem auch mittels eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs 183 relativ zum vierten Meßrohr 184 differentiell erfassenden, einlaßseitigen dritten Schwingungssensors 193 sowie eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs 183 relativ zum vierten Meßrohr 184 differentiell erfassenden, auslaßseitigen vierten Schwingungssensors 194 gebildet. Zur weiteren Verbesserung der Signalqualität wie auch zur Vereinfachung der die Meßsignale empfangenden Meßgerät-Elektronik 12 können desweiteren der erste und dritte Schwingungssensor 191, 193 elektrisch seriell verschaltet sein, beispielsweise derart, daß ein gemeinsames Schwingungsmeßsignal gemeinsame einlaßseitige Schwingungen des ersten und dritten Meßrohrs 181, 183 relativ zum zweiten und vierten Meßrohr 182, 184 repräsentiert. Alternativ oder in Ergänzung können auch der zweite und vierte Schwingungssensor 192, 194 derart elektrisch seriell verschaltet sein, daß ein gemeinsames Schwingungsmeßsignal beider Schwingungssensoren 192, 194 gemeinsame auslaßseitige Schwingungen des ersten und dritten Meßrohrs 181, 183 relativ zum zweiten und vierten Meßrohr 182, 184 repräsentiert.
  • Für den vorgenannten Fall, daß die, insb. einander baugleichen, Schwingungssensoren der Sensoranordnung 19 Schwingungen der Meßrohre differentiell und elektrodynamisch erfassen sollen, sind der erste Schwingungssensor 191 mittels eines – hier im Bereich einlaßseitig zu erfassender Schwingungen – am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr – hier entsprechend ebenfalls im Bereich einlaßseitig zu erfassender Schwingungen – gehalterten Zylinderspule, und der zweite Schwingungssensor 192 mittels eines – im Bereich auslaßseitig zu erfassender Schwingungen – am ersten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr gehalterten – hier entsprechend ebenfalls im Bereich auslaßseitig zu erfassender Schwingungen – Zylinderspule gebildet. Gleichermaßen können zudem auch der ggf. vorgesehene dritte Schwingungssensor 193 entsprechend mittels eines am dritten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr gehalterten Zylinderspule, und der ggf. vorgesehene vierte Schwingungssensor 194 mittels eines am dritten Meßrohr gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr gehalterten Zylinderspule gebildet sein.
  • Es sei an dieser Stelle zudem noch angemerkt, daß, obgleich es sich bei den Schwingungssensoren der im Ausführungsbeispiel gezeigten Sensoranordnung 19 jeweils um solche vom elektrodynamischen Typ, also jeweils mittels einer an einem der Meßrohre fixierten zylindrischen Magnetspule und einem dann eintauchenden, an einem gegenüberliegenden Meßrohr entsprechend fixierten Permanentmagneten realisierte Schwingungssensoren, handelt, ferner auch andere dem Fachmann bekannte, wie z. B. opto-elektronische, Schwingungssensoren zur Bildung der Sensoranordnung verwendet werden können. Desweiteren können, wie bei Meßaufnehmers der in Rede stehenden Art durchaus üblich, zusätzlich zu den Schwingungssensoren weitere, insb. Hilfs- bzw. Störgrößen erfassende, Sensoren im Meßaufnehmer vorgesehen sein, wie z. B. Beschleunigungssensoren, Drucksensoren und/oder Temperatursensoren, mittels denen beispielsweise die Funktionstüchtigkeit des Meßaufnehmers und/oder Änderungen der Empfindlichkeit des Meßsaufnehmers auf die primär zu erfassenden Meßgrößen, insb. die Massendurchflußrate und/oder die Dichte, infolge von Querempfindlichkeiten bzw. äußeren Störungen überwacht und ggf. entsprechend kompensiert werden können. Zur Gewährleistung einer möglichst hohen Empfindlichkeit des Meßaufnehmers auf den Massendurchfluß sind nach einer weiteren Ausgestaltung der Erfindung die Meßrohre und die Schwingungssensoren so im Meßaufnehmer angeordnet, daß eine einem entlang einer Biegelinie des ersten Meßrohrs gemessenen Abstand zwischen dem ersten Schwingungssensor 191 und dem zweite Schwingungssensor 192 entsprechende Meßlänge, L19, des Meßaufnehmers mehr als 500 mm, insb. mehr als 600 mm, beträgt.
  • Die Erregeranordnung 5 und die Sensoranordnung 19 sind ferner, wie bei derartigen Meßaufnehmern üblich, in geeigneter Weise mit einer in der Meßgerät-Elektronik entsprechend vorgesehenen der Meß- und Betriebsschaltung gekoppelt, beispielsweise drahtgebunden mittels entsprechender Kabelverbindungen. Die Meß- und Betriebsschaltung wiederum erzeugt einerseits ein die Erregeranordnung 5 entsprechend treibendes, beispielsweise hinsichtlich eines Erregerstromes und/oder einer Erregerspannung geregeltes, Erregersignal. Andererseits empfängt die Meß- und Betriebsschaltung die Schwingungsmeßsignale der Sensoranordnung 19 und generiert daraus gewünschte Meßwerte, die beispielsweise eine Massedurchflußrate, einen totalisierten Massendurchfluß, eine Dichte und/oder eine Viskosität des zu messenden Mediums repräsentieren können und die ggf. vor Ort angezeigt und/oder auch an ein dem In-Line-Meßgerät übergeordnetes Datenverarbeitungssystem inform digitaler Meßdaten gesendet und daselbst entsprechend weiterverarbeitet werden können. Die oben erwähnte Verwendung differentiell wirkender Schwingungserreger bzw. Schwingungssensoren birgt dabei u. a. auch den Vorteil, daß zum Betreiben des erfindungsgemäßen Meßaufnehmers auch solche etablierten Meß- und Betriebselektroniken verwendet werden können, wie sie beispielsweise bereits in herkömmlichen Coriolis-Massedurchfluß-/Dichtemeßgeräten breite Anwendung gefunden haben.
  • Die Meßgerät-Elektronik 12 einschließlich der Meß- und Betriebsschaltung kann desweiteren beispielsweise in einem separaten Elektronik-Gehäuse 72 untergebracht sein, das vom Meßaufnehmer entfernt angeordnet oder, wie in 1 gezeigt, unter Bildung eines einzigen Kompaktgeräts direkt am Meßaufnehmer 1, beispielsweise von außen am Aufnehmer-Gehäuse 71, fixiert ist. Bei dem hier gezeigten Ausführungsbeispiel ist daher am Aufnehmer-Gehäuse 71 ferner ein dem Haltern des Elektronik-Gehäuses 72 dienendes halsartiges Übergangsstücks angebracht. Innerhalb des Übergangsstücks kann ferner eine, beispielsweise mittels Glas- und/oder Kunststoffverguß hergestellte, hermetisch dichte und/oder druckfeste Durchführung für die elektrische Verbindungsleitungen zwischen Meßaufnehmer 11, insb. den dann plazierten Schwingungserregern und Sensoren, und der erwähnten Meßgerät-Elektronik 12 angeordnet sein.
  • Wie bereits mehrfach erwähnt ist das In-Line-Meßgerät und insoweit auch der Meßaufnehmer 11 im besonderen für Messungen auch hoher Massendurchflüsse von mehr als 1000 t/h in einer Rohrleitung von großem Kaliber von mehr als 250 mm vorgesehen. Dem Rechnung tragend ist nach einer weiteren Ausgestaltung der Erfindung die nominellen Nennweite des Meßaufnehmers 11, die wie bereits erwähnt einem Kaliber der Rohrleitung, in deren Verlauf der Meßaufnehmer 11 einzusetzen ist, entspricht, so gewählt, daß sie mehr als 50 mm beträgt, insb. aber größer als 100 mm ist. Ferner ist nach einer weiteren Ausgestaltung des Meßaufnehmers vorgesehen, daß jedes der Meßrohre 181, 182, 183, 184 jeweils ein einem jeweiligen Rohr-Innendurchmesser entsprechendes Kaliber D18 aufweist, das mehr als 40 mm beträgt. Im besonderen sind die Meßrohre 181, 182, 183, 184 ferner so ausgebildet, das jedes ein Kaliber D18 von mehr als 60 mm aufweist. Alternativ oder in Ergänzung dazu sind die Meßrohre 181, 182, 183, 184 nach einer anderen Ausgestaltung der Erfindung ferner so bemessen, daß sie jeweils eine Meßrohrlänge L18 von wenigstens 1000 mm aufweisen. Die Meßrohrlänge L18 entspricht im hier gezeigten Ausführungsbeispiel mit gleichlangen Meßrohren 181, 182, 183, 184 jeweils einer Länge eines zwischen der ersten Strömungsöffnung des ersten Strömungsteilers und der ersten Strömungsöffnung des zweiten Strömungsteilers verlaufenden Abschnitts der Biegelinie des ersten Meßrohrs. Im besonderen sind die Meßrohre 181, 182, 183, 184 dabei so ausgelegt, daß deren Meßrohrlänge L18 jeweils größer als 1200 mm ist. Dementsprechend ergibt sich zumindest für den erwähnten Fall, daß die Meßrohre 181, 182, 183, 184 aus Stahl bestehen, bei den üblicherweise verwendeten Wandstärken von über 1 mm eine Masse von jeweils wenigstens 20 kg, insb. mehr als 30 kg, aufweist. Ferner ist aber angestrebt, die Leermasse jedes der Meßrohre 181, 182, 183, 184 kleiner als 50 kg zu halten.
  • In Anbetracht dessen, daß, wie bereits erwähnt, jedes der Meßrohre 181, 182, 183, 184 bei erfindungsgemäßen Meßaufnehmer durchaus weit über 20 kg wiegen und dabei, wie aus den obigen Maßangaben ohne weiteres ersichtlich, ein Fassungsvermögen von durchaus 10 l oder mehr haben kann, kann dann die die vier Meßrohre 181, 182, 183, 184 umfassende Rohranordnung zumindest bei hindurchströmendem Medium mit hoher Dichte eine Gesamt-Masse von weit über 80 kg erreichen. Besonders bei der Verwendung von Meßrohren mit vergleichsweise großem Kaliber D18, großer Wandstärke und großer Meßrohrlänge L18 kann die Masse der von den Meßrohren 181, 182, 183, 184 gebildeten Rohranordnung ohne weiteres aber auch größer als 100 kg, oder zumindest mit hindurchströmendem Medium, z. B. Öl oder Wasser, mehr als 120 kg betragen. Infolgedessen beträgt eine Leermasse M11 des Meßaufnehmers insgesamt auch weit mehr als 200 kg, bei nominellen Nennweiten D11 von wesentlich größer als 250 mm sogar mehr als 300 kg. Im Ergebnis kann beim erfindungsgemäßen Meßaufnehmer ein Massenverhältnis M11/M18 einer Leermasse M11 des gesamten Meßaufnehmers zu einer Leermasse M18 des ersten Meßrohrs durchaus größer als 10, insb. größer als 15, sein.
  • Um bei den erwähnten hohen Leermassen M11 des Meßaufnehmers das dafür insgesamt verwendete Material möglichst optimal einzusetzen und insoweit das – zumeist auch sehr teure – Material insgesamt möglichst effizient zu nutzen, ist gemäß einer weiteren Ausgestaltung die nominelle Nennweite D11 des Meßaufnehmers abgestimmt auf dessen Leermasse M11 so bemessen, daß ein Masse-zu-Nennweite-Verhältnis M11/D11 des Meßaufnehmers 11, definiert durch ein Verhältnis der Leermasse M11 des Meßaufnehmers 11 zur nominellen Nennweite D11 des Meßaufnehmers 11 kleiner als 2 kg/mm, insb. möglichst aber kleiner als 1 kg/mm ist. Um eine ausreichend hohe Stabilität des Meßaufnehmers 11 zu gewährleisten, ist das Masse-zu-Nennweite-Verhältnis M11/D11 des Meßaufnehmers 11 zumindest im Falle des Verwendens der oben erwähnten herkömmlichen Materialien jedoch möglichst größer als 0.5 kg/mm zu wählen. Ferner ist gemäß einer weiteren Ausgestaltung der Erfindung zur weiteren Verbesserung der Effizienz des eingesetzten Materials vorgesehen, das erwähnte Massenverhältnis M11/M18 kleiner als 25 zu halten.
  • Zur Schaffung eines dennoch möglichst kompakten Meßaufnehmers von ausreichend hoher Schwingungsgüte und möglichst geringem Druckabfall sind nach einer weiteren Ausgestaltung der Erfindung die Meßrohre, abgestimmt auf die oben erwähnte Einbaulänge L11 des Meßaufnehmers 11, so bemessen, daß ein Kaliber-zu-Einbaulänge-Verhältnis D18/L11 des Meßaufnehmers, definiert durch ein Verhältnis des Kalibers D18 zumindest des ersten Meßrohrs zur Einbaulänge L11 des Meßaufnehmers 11, mehr als 0.02, insb. mehr als 0.05 und/oder weniger als 0.09, beträgt. Alternativ oder in Ergänzung sind die Meßrohre 181, 182, 183, 184, abgestimmt auf die oben erwähnte Einbaulänge L11 des Meßaufnehmers, so bemessen, daß ein Meßrohrlänge-zu-Einbaulänge-Verhältnis L18/L11 des Meßaufnehmers, definiert durch ein Verhältnis der oben bezeichnten Meßrohrlänge L18 zumindest des ersten Meßrohrs zur Einbaulänge L11 des Meßaufnehmers, mehr als 0.7, insb. mehr als 0.8 und/oder weniger als 0.95, beträgt.
  • Falls erforderlich, können allfällig oder zumindest potentiell von den vibrierenden, insb. in der erwähnte Weise relativ groß dimensionierten, Meßrohren einlaßseitig oder auslaßseitig im Aufnehmer-Gehäuse verursachte mechanische Spannungen und/oder Vibrationen, z. B. dadurch minimiert werden, daß die vier Meßrohre 181, 182, 183, 184 zumindest paarweise ein- und auslaßseitig zumindest paarweise jeweils mittels als sogenannte Knotenplatten dienenden Kopplerelemente – im folgenden Kopplerelemente erster Art – miteinander mechanisch verbunden sind. Darüber hinaus können mittels solcher Kopplerelemente erster Art, sei es durch deren Dimensionierung und/oder deren Positionierung auf den Meßrohren mechanische Eigenfrequenzen der Meßrohre und somit auch mechanische Eigenfrequenzen der mittels der vier Meßrohre gebildeten Rohranordnung, einschließlich daran angebrachter weiterer Komponenten des Meßaufnehmers, und insoweit auch das Schwingungsverhalten des Meßaufnehmers insgesamt gezielt beeinflußt werden.
  • Die als Knotenplatten dienenden Kopplerelemente erster Art können beispielsweise dünne, insb. aus demselben Material wie die Meßrohre gefertigte, Platten- oder Scheiben sein, die jeweils mit der Anzahl und den Außenmaßen der miteinander zu koppelnden Meßrohre entsprechenden, ggf. zusätzlich noch zum Rand hin geschlitzten, Bohrungen versehen sind, so daß die Scheiben zunächst auf die jeweiligen Meßrohre 181, 182, 183 bzw. 184 aufgeklemmt und ggf. hernach noch mit dem jeweiligen Meßrohr, beispielsweise durch Hartverlöten oder Schweißen, stoffschlüssig verbunden werden können.
  • Dementsprechend umfaßt die Rohranordnung gemäß einer weiteren Ausgestaltung der Erfindung ein erstes Kopplerelement 241 erster Art, das zum Bilden von einlaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs sowohl vom ersten Strömungsteiler als auch vom zweiten Strömungsteiler beabstandet einlaßseitig zumindest am ersten Meßrohr und am zweiten Meßrohr fixiert ist, sowie ein, insb. zum ersten Kopplerelement baugleiches, zweites Kopplerelement 242 erster Art, das zum Bilden von auslaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs 181 und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs 181 sowohl vom ersten Strömungsteiler 201 als auch vom zweiten Strömungsteiler 202 wie auch vom ersten Kopplerelement 241 beabstandet auslaßseitig zumindest am ersten Meßrohr 181 und am zweiten Meßrohr 182 fixiert ist. Wie u. a. aus 4a, 4b bzw. 5a, 5b ohne weiteres ersichtlich, sind das erste Kopplerelement 241 erster Art zum Bilden von einlaßseitigen Schwingungsknoten auch für Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs 184 sowohl vom ersten Strömungsteiler 201 als auch vom zweiten Strömungsteiler 202 beabstandet einlaßseitig auch am dritten Meßrohr 183 und am vierten Meßrohr 184 und das zweite Kopplerelement 242 erster Art zum Bilden von auslaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs 184 sowohl vom ersten Strömungsteiler 201 als auch vom zweiten Strömungsteiler 202 wie auch vom ersten Kopplerelement 241 beabstandet auslaßseitig auch am dritten Meßrohr 183 und am vierten Meßrohr 184 fixiert, so daß im Ergebnis alle vier Meßrohre 181, 182, 183, 184 mittels des ersten Kopplerelements 241 erster Art sowie mittels des zweiten Kopplerelements 242 erster Art miteinander mechanisch verbunden sind. Jedes der beiden vorgenannten, insb. einander baugleichen, Kopplerelemente 241, 242 erster Art ist gemäß einer weiteren Ausgestaltung der Erfindung plattenförmig ausgebildet, insb. in derart, daß es, wie auch aus der Zusammenschau der Figuren ohne weiteres ersichtlich, eine eher rechteckförmige oder auch quadratische, Grundfläche oder aber daß es eher eine runde, eine ovale, eine kreuzförmig oder, wie beispielsweise auch in der US-A 2006/0283264 vorgeschlagen, eine eher H-förmige Grundfläche aufweist. Wie u. a. aus den 4a, 4b bzw. 5a, 5b ohne weiteres ersichtlich, sind die beiden vorgenannten Kopplerelemente 241, 242 ferner so ausgebildet und im Meßaufnehmer so plaziert, daß ein Massenschwerpunkt des ersten Kopplerelements 241 erster Art einen Abstand zu einem Massenschwerpunkt des Meßaufnehmers 11 aufweist, der im wesentlichen gleich ist mit einem Abstand eines Massenschwerpunkt des zweiten Kopplerelements 242 erster Art zu nämlichen Massenschwerpunkt des Meßaufnehmers 11, insb. so, daß die beiden Kopplerelemente 241, 242 im Ergebnis symmetrisch zu einer die Meßrohre 181, 182, 183, 184 jeweils in Mitte schneidenden gemeinsamen gedachten Querschnittsebene angeordnet sind.
  • Zur weiteren Erhöhung der Freiheitsgrade bei der Optimierung des Schwingungsverhaltens der mittels der vier Meßrohre 181, 182, 183, 184 gebildeten Rohranordnung umfaßt diese nach einer Weiterbildung der Erfindung ferner ein drittes Kopplerelement 243 erster Art, das zum Bilden von einlaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs 184 sowohl vom ersten Strömungsteiler 201 als auch vom zweiten Strömungsteiler 202 beabstandet einlaßseitig zumindest am dritten 183 Meßrohr und am vierten Meßrohr 184 fixiert ist. Darüberhinaus umfaßt der Meßaufnehmer 11 bei dieser Weiterbildung ein, insb. zum dritten Kopplerelement 243 erster Art baugleiches, viertes Kopplerelement 244 erster Art, das zum Bilden von auslaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs 184 sowohl vom ersten Strömungsteiler 201 als auch vom zweiten Strömungsteiler 202 wie auch vom dritten Kopplerelement 243 erster Art beabstandet auslaßseitig zumindest am dritten Meßrohr 183 und am vierten Meßrohr 184 fixiert ist. Jedes der beiden vorgenannten, insb. einander baugleichen, dritten und vierten Kopplerelemente 243, 244 erster Art ist gemäß einer weiteren Ausgestaltung der Erfindung wiederum plattenförmig ausgebildet, insb. in derart, daß es eine rechteckförmige, quadratische, runde, kreuzförmig oder H-förmige Grundfläche aufweist. Wie in 4a bzw. 5a, 5b dargestellt sind das dritte Kopplerelement 243 erster Art sowohl vom ersten Strömungsteiler 201 als auch vom zweiten Strömungsteiler 202 wie auch vom ersten Kopplerelement erster Art 241 beabstandet einlaßseitig auch am ersten Meßrohr 181 und am zweiten Meßrohr 182 und das vierte Kopplerelement 244 erster Art sowohl vom ersten Strömungsteiler als auch vom zweiten Strömungsteiler wie auch vom zweiten Kopplerelement beabstandet auslaßseitig auch am ersten Meßrohr und am zweiten Meßrohr fixiert, so daß im Ergebnis alle vier Meßrohre 181, 182, 183, 184 auch mittels des dritten Kopplerelements 243 erster Art sowie mittels des vierten Kopplerelements 244 erster Art miteinander mechanisch verbunden sind.
  • Wie aus der Zusammenschau der 4a, 4b, 5a, 5b ohne weiteres ersichtlich, sind auch das dritte und vierte Kopplerelemente 243, 244 ferner so ausgebildet und im Meßaufnehmer so plaziert, daß ein Massenschwerpunkt des dritten Kopplerelements 243 erster Art einen Abstand zum Massenschwerpunkt des Meßaufnehmers aufweist, der im wesentlichen gleich ist mit einem Abstand eines Massenschwerpunkt des vierten Kopplerelements 244 erster Art zu nämlichen Massenschwerpunkt des Meßaufnehmers, insb. so, daß die beiden Kopplerelemente 243, 244 im Ergebnis symmetrisch zu einer die vier Meßrohre 181, 182, 183, 184 jeweils in Mitte schneidenden gemeinsamen gedachten Querschnittsebene angeordnet sind. Ferner sind gemäß einer weiteren Ausgestaltung der Erfindung die vier Kopplerelement 241, 242, 243, 244 erster Art so im Meßaufnehmer angeordnet, daß der Abstand des Massenschwerpunkts des dritten Kopplerelements 243 erster Art vom Massenschwerpunkt des Meßaufnehmers größer als der Abstand des Massenschwerpunkts des ersten Kopplerelements 241 erster Art von nämlichem Massenschwerpunkt des Meßaufnehmers und größer als der Abstand des Massenschwerpunkt des zweiten Kopplerelements 242 erster Art von nämlichem Massenschwerpunkt des Meßaufnehmers ist.
  • Wie aus der Zusammenschau der 4a, 4b, 5a und 5b ohne weiteres ersichtlich, definieren die Rohrform jedes der Meßrohre zusammen mit einem minimaler Abstand zwischen dem dem Massenschwerpunkt des Meßaufnehmers 11 am nahesten liegenden einlaßseitig am jeweiligen Meßrohr fixierten Kopplerelement erster Art – hier also dem ersten Kopplerelement 241 erster Art – und dem dem Massenschwerpunkt des Meßaufnehmers am nahesten liegenden auslaßseitig an nämlichem Meßrohr fixierten Kopplerelement erster Art – hier also dem zweiten Kopplerelement 242 erster Art – jeweils eine freie Schwinglänge, L18x, selbigen Meßrohrs. Die freie Schwinglänge, L18x, des jeweiligen Meßrohrs entspricht hierbei, wie auch in den 5a und 5b schematisch dargestellt, einer Länge des zwischen den Kopplerelementen 241, 242 verlaufenden Abschnitts der Biegelinie des nämlichen Meßrohrs, wobei nach einer weiteren Ausgestaltung der Erfindung die Kopplerelemente erster Art so im Meßaufnehmer plaziert sind, daß im Ergebnis die freie Schwinglänge jedes der Meßrohre 181, 182, 183, 184 weniger als 3000 mm, insb. weniger als 2500 mm und/oder mehr als 800 mm, beträgt. Alternativ oder in Ergänzung ist ferner vorgesehen, die die Meßrohre so auszubilden und die Kopplerelemente erster Art so anzuordnen, daß alle vier Meßrohre 181, 182, 183, 184 im Ergebnis die gleiche freie Schwinglänge, L18x, aufweisen. Nach einer weiteren Ausgestaltung der Erfindung sind zu dem das erste Meßrohr und das zweite Meßrohr zumindest über den sich zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art erstreckenden Bereich – mithin also deren jeweiligen freien Schwinglänge – zueinander parallel, und sind auch das dritte Meßrohr und das vierte Meßrohr zumindest über den sich zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art erstreckenden Bereich – mithin also deren jeweiligen freien Schwinglänge – zueinander parallel.
  • Es kann ferner im Sinne einer noch einfacheren und noch genaueren Einstellung des Schwingungsverhaltens des Meßaufnehmers durchaus von Vorteil sein, wenn der Meßaufnehmer, wie beispielsweise in der US-A 2006/0150750 vorgeschlagen, darüberhinaus noch weitere, dem Bilden von ein- bzw. auslaßseitigen Schwingungsknoten für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs bzw. für Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs dienende Kopplerelemente der vorgenannten Art aufweist, beispielsweise also insgesamt 6 oder 8 solcher Kopplerelemente erster Art.
  • Zur Schaffung eines möglichst kompakten Meßaufnehmers von ausreichend hoher Schwingungsgüte und hoher Empfindlichkeit bei möglichst geringem Druckabfall sind nach einer weiteren Ausgestaltung der Erfindung die Meßrohre 181, 182, 183, 184, abgestimmt auf die erwähnte freie Schwinglänge, so bemessen, daß ein Kaliber-zu-Schwinglänge-Verhältnis D18/L18x des Meßaufnehmers, definiert durch ein Verhältnis des Kalibers D18 des ersten Meßrohrs zur freien Schwinglänge L18x des ersten Meßrohrs, mehr als 0.03, insb. mehr als 0.05 und/oder weniger als 0.15, beträgt. Alternativ oder in Ergänzung hierzu sind nach einer weiteren Ausgestaltung der Erfindung die Meßrohre 181, 182, 183, 184, abgestimmt auf die oben erwähnte Einbaulänge L11 des Meßaufnehmer, so bemessen, daß ein Schwinglänge-zu-Einbaulänge-Verhältnis L18x/L11 des Meßaufnehmers, definiert durch ein Verhältnis der freien Schwinglänge L18x des ersten Meßrohrs zur Einbaulänge L11 des Meßaufnehmers, mehr als 0.55, insb. mehr als 0.6 und/oder weniger als 0.9, beträgt.
  • Nach einer weiteren Ausgestaltung der Erfindung sind die Schwingungssensoren, abgestimmt auf die freie Schwinglänge, so im Meßaufnehmer angeordnet, daß ein Meßlänge-zu-Schwinglänge-Verhältnis des Meßaufnehmers, definiert durch ein Verhältnis der erwähnten Meßlänge des Meßaufnehmers zur freien Schwinglänge des ersten Meßrohrs, mehr als 0.3, insb. mehr als 0.4 und/oder weniger als 0.95, beträgt.
  • Zur Schaffung eines möglichst kompakten, dennoch aber für den Massendurchfluß möglichst empfindlichen Meßaufnehmers sind nach einer weiteren Ausgestaltung der Erfindung die Schwingungssensoren, abgestimmt auf die Einbaulänge des Meßaufnehmers, so im Meßaufnehmer angeordnet, daß ein Meßlänge-zu-Einbaulänge-Verhältnis des Meßaufnehmers, welches durch ein Verhältnis der Meßlänge zur Einbaulänge des Meßaufnehmers definiert ist, mehr als 0.3, insb. mehr als 0.4 und/oder weniger als 0.7, beträgt. Alternativ oder in Ergänzung sind die Schwingungssensoren nach einer weiteren Ausgestaltung der Erfindung, abgestimmt auf die Meßrohre, so im Meßaufnehmer plaziert, daß ein Kaliber-zu-Meßlänge-Verhältnis D18/L19, des Meßaufnehmers, welches durch ein Verhältnis des Kalibers D18 des ersten Meßrohrs zur erwähnten Meßlänge L19 des Meßaufnehmers definiert ist, mehr als 0.05, insb. mehr als 0.09, beträgt. Gemäß einer weiteren Ausgestaltung der Erfindung ist ferner die oben erwähnte Meßlänge L19 kleiner als 1200 mm gehalten.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist ferner vorgesehen, die Meßrohre 181, 182, 183, 184 im Betrieb paarweise synchron, also mit gleicher Phasenlage, und insoweit die Schwingungen aller vier Meßrohre 181, 182, 183, 184 aufeinander entsprechend abzugleichen, daß die Meßrohre lediglich paarweise außerphasig schwingen gelassen sind. In vorteilhafter Weise sind das Schwingungsverhalten der mittels der vier Meßrohre 181, 182, 183, 184 gebildeten Rohranordnung wie auch die die Erregeranordnung steuernden Treibersignale so aufeinander abgestimmt, daß zumindest die im Nutzmode angeregten Schwingungen der vier Meßrohre 181, 182, 183, 184 so ausgebildet sind, daß das erste und das zweite Meßrohr 181, 182 zueinander im wesentlichen gegenphasig, also mit einer gegenseitigen Phasenverschiebung von etwa 180°, schwingen und auch das dritte und das vierte Meßrohr 183, 184 zueinander im wesentlichen gegenphasig schwingen, während gleichzeitig das erste und dritte Meßrohr 181, 183 zueinander im wesentlichen phasengleich schwingen und das zweite und vierte Meßrohr 182, 184 zueinander im wesentlichen phasengleich schwingen.
  • Daher umfaß die Rohranordnung gemäß einer weiteren Ausgestaltung der Erfindung ferner ein, z. B. plattenförmiges, erstes Kopplerelement 251 zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs 181 und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 sowohl vom ersten Kopplerelement 241 erster Art als auch vom zweiten Kopplerelement 242 erster Art beabstandet lediglich am ersten Meßrohr 181 und am dritten Meßrohr 183 fixiert ist. Desweiteren umfaßt die Rohranordnung zumindest bei dieser Ausgestaltung der Erfindung wenigstens ein, z. B. plattenförmiges, zweites Kopplerelement 252 zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs 182 und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs 184 sowohl vom ersten Kopplerelement 241 erster Art als auch vom zweiten Kopplerelement 241 erster Art wie auch vom ersten Kopplerelement 251 zweiter Art beabstandet lediglich am zweiten Meßrohr 182 und am vierten Meßrohr 184 fixiert ist. Wie aus der Zusammenschau der 4a, 4b, 5a und 5b ohne weiteres ersichtlich, sind das erste und zweite Kopplerelement 251, 252 zweiter Art möglichst einander gegenüberliegend im Meßaufnehmer 11 plaziert.
  • Ein Vorteil der mechanischen Kopplung der Meßrohre in der vorbeschriebenen Weise ist u. a. zu sehen, daß die vier Meßrohre 181, 182, 183, 184 zu zwei jeweils effektiv als ein Schwingungssystem wirkenden Meßrohr-Verbunden reduziert werden, die jeder für sich praktisch wie ein einziges Meßrohr wirken, da die von der Erregeranordnung 5 erzeugten Erregerkräfte aufgrund der mechanischen Kopplung sowohl zwischen dem ersten und dem zweiten Meßrohr 181, 182 als auch gleichermaßen zwischen dem dritten und vierten Meßrohr 183, 184 wirken bzw. auch die zum Zwecke der Messung im hindurchströmenden Medien verursachten Reaktionskräfte jeweils gemeinsam auf die Schwingungssensoren der Sensoranordnung 5 zurück übertragen werden. Des weiteren können allfällige Unterschiede zwischen den einzelnen Meßrohren 181, 182, 183, 184 hinsichtlich deren nominellen Schwingungsverhaltens, z. B. infolge ungleichmäßiger Strömung, unterschiedlicher Temperatur- und/oder unterschiedlicher Dichteverteilung etc., auf sehr einfache Weise ausgeglichen werden. Die Verwendung von Kopplerelementen zweiter Art hat ferner auch den Vorteil, daß jeder die somit auf sehr einfache Weise gebildeten zwei Meßrohr-Verbunde nicht nur für die Erreger- sondern gleichermaßen auch für die Sensoranordnung 19 und insoweit auch für die Meß- und Betriebsschaltung der Meßgerät-Elektronik 12 insgesamt praktisch jeweils als ein einziges Meßrohr wirkt und der Meßaufnehmer 11 insoweit aus Sicht der Meß- und Betriebsschaltung scheinbar lediglich zwei gegeneinander schwingen gelassenen Meßrohre aufweist. Infolge dessen kann zumindest für die Vorverarbeitung und allfällige Digitalisierungen der Schwingungsmeßsignale bewährte Signalverarbeitungstechnologien und auch bewährte, insb. zweikanalige, also von lediglich zwei Schwingungssensoren gelieferte Schwingungsmeßsignale verarbeitende, Meßschaltungen aus dem Bereich der Coriolis-Massendurchfluß- bzw. der Dichtemessung zurückgegriffen werden. Gleichermaßen kann somit auch für die die Erregeranordnung treibende Betriebsschaltung ohne weiteres dem Fachmann bekannte, insb. auf einkanalige, also genau ein Treibersignal für die Erregeranordnung liefernde, Treibererschaltungen verwendet werden. Falls erforderlich, können aber auch die von den zwei oder mehr Schwingungssensoren jeweils gelieferten Schwingungsmeßsignale aber auch einzeln in jeweils separaten Meßkanälen vorverarbeitet und entsprechend digitalisiert werden; gleichermaßen können, falls erforderlich, auch die ggf. vorhandenen zwei oder mehr Schwingungserreger mittels separaten Treibersignalen separat angesteuert werden.
  • Falls erforderlich – beispielsweise weil der Meßaufnehmer für die Messung extrem heißer Medien bzw. für die Messung in Anwendungen mit über einen weiten Bereich schwankender Betriebstemperatur, etwa infolge wiederkehrend in-situ durchgeführten Reinigungsvorgängen des Meßaufnehmers (”cleaning in process”, ”sterilizing in process”) vorgesehen ist und insoweit nennenswerte thermische Ausdehnungen der Meßrohre zu erwarten sind – können die Kopplerelemente zweiter Art ferner so ausgebildet sein, daß sie sich im wesentlichen gleichermaßen ausdehnen, wie die Meßrohre und/oder daß sie zumindest gegenüber von Kräften, die in Richtung einer durch die Scheitelpunkte der beiden durch das jeweilige Kopplerelemente zweiter Art miteinander verbundenen Meßrohre verlaufenden oder dazu parallelen Wirkungslinie ausreichend nachgiebig sind. Letzteres kann beispielsweise durch entsprechend in das jeweilige Kopplerelement eingeformte – hier jeweils im wesentlichen quer zu vorgenannter Wirkungslinie verlaufende – Schlitze oder aber auch durch Verwendung dünner Platten bzw. Stäbe als Kopplerelement zweiter Art realisiert werden. Im Ergebnis ist so auch eine geringfügige relative Bewegung der beiden mittels des jeweiligen Kopplerelements zweiter Art verbunden Meßrohre möglich, wodurch die gebogenen Meßrohre – falls für die spezielle Anwendung erforderlich – im Nutzmode jeweils auch zu typischen Biegeschwingungen nach Art eines endseitig eingespannten Auslegers angeregt werden können.
  • Nach einer Ausgestaltung der Erfindung sind die Meßrohre 181, 182, 183, 184 sowie die diese miteinander verbindenden Kopplerelementen daher ferner so geformt und miteinander mittels Kopplerelementen zweiter Art, ggf. zusätzlich auch mittels Kopplerelementen erster Art, so mechanisch gekoppelt, daß ein durch das erste und das dritte Meßrohr 181, 183 gebildeter erster Meßrohr-Verbund und ein durch das zweite und das vierte Meßrohr 182, 184 gebildeter zweiter Meßrohr-Verbund im wesentlichen die gleichen mechanischen Eigenfrequenzen aufweisen.
  • Im hier gezeigten Ausführungsbeispiel ist das erste Kopplerelement 251 zweiter Art im Bereich von 50% eines minimaler Abstand zwischen dem ersten Kopplerelement 241 erster Art und dem zweiten Kopplerelement 242 erster Art am ersten bzw. dritten Meßrohr 181, 183 fixiert – insoweit also bei etwa der halben freien Schwinglänge des ersten bzw. dritten Meßrohrs 181, 183. Ferner ist auch das zweite Kopplerelement zweiter Art in entsprechender Weise im Bereich von 50% eines minimaler Abstand zwischen dem ersten Kopplerelement 241 erster Art und dem zweiten Kopplerelement 242 erster Art am zweiten bzw. vierten Meßrohr 182, 184 fixiert, also etwa bei der halben freien Schwinglänge des zweiten bzw. vierten Meßrohrs 182, 184.
  • In vorteilhafter Weise können die Kopplerelemente zweiter Art zusätzlich auch als Halterung von Komponenten der Erregeranordnung 5 dienen. Daher ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, daß jeder der, insb. baugleichen bzw. gleichschweren, Schwingungserreger 51, 52 anteilig jeweils an zwei einander gegenüberliegenden Kopplerelementen zweiter Art – hier dem ersten und zweiten Kopplerelement 251, 252 – gehaltert ist. Somit kann auf sehr effektive, gleichwohl sehr einfache Weise sichergestellt werden, daß die mittels des Schwingungserregers 51 generierte Erregerkraft zumindest überwiegend synchrone, insb. auch einander im wesentlichen phasengleiche, Biegeschwingungen des ersten und dritten Meßrohr 181, 183 bzw. des zweiten und vierten Meßrohrs 182, 184 bewirkt. Beispielsweise können im Falle elektro-dynamischer Schwingungserreger die jeweilige Zylinderspule am ersten und der jeweils zugehörige Permanentmagnet am gegenüberliegenden zweiten Kopplerelement zweiter Art fixiert sein. Für den erwähnten Fall, daß die Erregeranordnung 5 zwei, insb. möglichst gleichschwere, Schwingungserreger 51, 52 aufweist können sowohl der erste Schwingungserreger 51 als auch der zweite Schwingungserreger 52 jeweils am ersten und zweiten Kopplerelement 251, 252 zweiter Art gehaltert sein, beispielsweise auch in der Weise, daß, wie aus den 4 bzw. 5a ohne weiteres ersichtlich, ein minimaler Abstand zwischen dem ersten und zweiten Schwingungserreger 51, 52 mehr als dreimal so groß wie ein Rohr-Außendurchmessers der Meßrohre 181, 182, 183, 184 , zumindest aber des ersten Meßrohrs 181, jedoch insgesamt möglichst klein gehalten ist, um so ein optimale Ausnutzung des im Innenraum des Aufnehmer-Gehäuses 71 angeboten Platzes wie auch eine einfache Montage der Schwingungserreger 51, 52 zu ermöglichen. Alternativ zur Verwendung eines am ersten und zweiten Kopplerelement 251, 252 zweiter Art gehalterten zweiten Schwingungserregers 52 oder in Ergänzung dazu können, wie beispielsweise auch in der eingangs erwähnten US-A 2007/0151368 gezeigt, zwecks Vermeidung von unerwünschten Torsionsmomenten, insb. um die Längsachse L, aber auch entsprechende Ausgleichsmassen an den beiden Kopplerelementen angebracht sein.
  • Nach einer weiteren Ausgestaltung der Erfindung umfaßt der Meßaufnehmer ferner ein, beispielsweise wiederum plattenförmiges oder stabförmiges, drittes Kopplerelement 253 zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs 181 und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 sowohl vom ersten Kopplerelement 241 erster Art als auch vom zweiten Kopplerelement 242 erster Art wie auch vom ersten Kopplerelement 251 zweiter Art beabstandet lediglich am ersten Meßrohr 181 und am dritten Meßrohr 183 fixiert ist, sowie ein, insb. plattenförmiges oder stabförmiges, viertes Kopplerelement 254 zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs 182 und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs 184 sowohl vom ersten und zweiten Kopplerelement erster Art als auch vom zweiten und dritten Kopplerelement zweiter Art jeweils beabstandet lediglich am zweiten Meßrohr 182 und am vierten Meßrohr 184 fixiert ist. Das dritte und vierte Kopplerelement 253, 254 zweiter Art sind, wie aus der Zusammenschau der 4a, 4b, 5a, 5b und 6a ohne weiteres ersichtlich, vorzugsweise einander gegenüberliegend im Meßaufnehmer 11 plaziert.
  • Ferner umfaßt der Meßaufnehmer 11 gemäß einer weiteren Ausgestaltung der Erfindung ein, insb. plattenförmiges oder stabförmiges, fünftes Kopplerelement 255 zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs 181 und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs 183 sowohl vom ersten und zweiten Kopplerelement erster Art als auch vom ersten und dritten Kopplerelement zweiter Art beabstandet lediglich am ersten Meßrohr 181 und am dritten Meßrohr 182 fixiert ist, sowie ein, insb. plattenförmiges oder stabförmiges, sechstes Kopplerelement 256 zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs sowohl vom ersten und zweiten Kopplerelement erster Art als auch vom zweiten, vierten und fünften Kopplerelement zweiter Art jeweils beabstandet lediglich am zweiten Meßrohr 182 und am vierten Meßrohr 184 fixiert ist. Das fünfte und sechste Kopplerelement 255, 256 zweiter Art sind in vorzugsweise wiederum einander gegenüberliegend im Meßaufnehmer 11 plaziert.
  • Desweiteren kann es von Vorteil sein, vorgenannte Kopplerelemente zweiter Art ferner auch zum Haltern einzelner Komponenten der Sensoranordnung verwenden. Demnach ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, daß der einlaßseitige erste Schwingungssensor 191 anteilig jeweils am dritten und vierten Kopplerelement 253, 254 zweiter Art gehaltert ist. Ferner ist der zweite Schwingungssensor 192 in entsprechender Weise am fünften und sechsten Kopplerelement 255, 256 zweiter Art gehaltert. Somit kann auf sehr effektive, gleichwohl sehr einfache Weise sichergestellt werden, daß das mittels des ersten Schwingungssensors 191 im Betrieb generierte Schwingungsmeßsignal zumindest überwiegend synchrone, insb. auch einander phasengleiche, einlaßseitige Biegeschwingungen des ersten und dritten Meßrohrs 181, 183 relativ zu den gleichermaßen synchronisierten, insb. auch einander phasengleichen, einlaßseitigen Biegeschwingungen des zweiten und vierten Meßrohrs 182, 184 repräsentiert, bzw. daß das mittels des zweiten Schwingungssensors 192 im Betrieb generierte Schwingungsmeßsignal zumindest überwiegend synchrone, insb. auch einander phasengleiche, auslaßseitige Biegeschwingungen des ersten und dritten Meßrohrs 181, 183 relativ zu den gleichermaßen synchronisierten, insb. auch einander phasengleichen, auslaßseitigen Biegeschwingungen des zweiten und vierten Meßrohrs 182, 184 repräsentiert. Beispielsweise können im Falle elektro-dynamischer Schwingungssensoren die Zylinderspule des ersten Schwingungssensors 191 am dritten Kopplerelement zweiter Art und der zugehörige Permanentmagnet am gegenüberliegenden vierten Kopplerelement zweiter Art bzw. die Zylinderspule des zweiten Schwingungssensors 192 am fünften und der zugehörige Permanentmagnet am gegenüberliegenden sechsten Kopplerelement zweiter Art fixiert sein. Für den erwähnten Fall, daß die Sensoranordnung 19 mittels vier Schwingungssensoren 191, 192, 193, 194 gebildet ist, sind nach einer weiteren Ausgestaltung der Erfindung sowohl der erste Schwingungssensor 191 als auch der dritte Schwingungssensor 193 jeweils anteilig am dritten und vierten Kopplerelement zweiter Art gehaltert, insb. derart, daß, wie aus der Zusammenschau der 4a, 4b, 5a und 5b ohne weiteres ersichtlich, ein minimaler Abstand zwischen dem ersten und dritten Schwingungssensor 191, 193 mehr als doppelt, insb. mehr 2.5 mal, so groß ist, wie ein Rohr-Außendurchmessers des ersten Meßrohrs 181. In entsprechender Weise können zudem auch der zweite Schwingungssensor 192 und der vierte Schwingungssensor 194 jeweils am fünften und sechsten Kopplerelement zweiter Art gehaltert sein. Alternativ zur Verwendung von an Kopplerelementen 251, 252 zweiter Art gehalterten dritten und vierten Schwingungssensoren oder in Ergänzung dazu können, wie beispielsweise auch in der eingangs erwähnten US-A 2007/0151368 gezeigt, zum Vermeiden von unerwünschten Torsionsmomenten, insb. um die Längsachse L, aber auch entsprechende Ausgleichsmassen an den jeweiligen Kopplerelementen angebracht sein.
  • Zur weiteren Verbesserung der Schwingungsgüte der Rohranordnung bei möglichst kurzer Einbaulänge L11 des Meßaufnehmers 11 bzw. möglichst kurzer freier Schwinglänge L18x der Meßrohre 181, 182, 183 bzw. 184 können ferner ringförmige Versteifungselementen an den Meßrohren verwendet werden, von denen jedes an genau einem der Meßrohre 181, 182, 183, 184 so angebracht ist, daß es dieses entlang einer von dessen, insb. zirkulär umlaufenden, gedachten Umfangslinien umgreift, vgl. hierzu auch die eingangs erwähnte US-B 69 20 798 . Im besonderen kann es hierbei von Vorteil sein, wenn auf jedem der Meßrohre 181, 182, 183 bzw. 184, wenigstens vier solcher, insb. baugleicher, Versteifungselemente angebracht sind. Die Versteifungselementen können dabei beispielsweise so im Meßaufnehmer 11 plaziert sein, daß zwei auf demselben Meßrohr angebrachte, benachbarte Versteifungselementen zueinander einen Abstand aufweisen, der mindestens 70% eines Rohr-Außendurchmessers nämlichen Meßrohrs, höchstens aber 150%. selbigen Rohr-Außendurchmessers beträgt. Als besonders geeignet hat sich hierbei ein gegenseitiger Abstand benachbarter Versteifungselementen erwiesen, der im Bereich von 80% bis 120% des Rohr-Außendurchmessers des jeweiligen Meßrohrs 181, 182, 183 bzw. 184 liegt.
  • Durch die Verwendung von vier statt wie bisher zwei parallel durchströmten Meßrohren ist es somit auch möglich, Meßaufnehmer der beschriebenen Art auch für große Massendurchflußraten bzw. mit großen nominellen Nennweiten von weit über 250 mm einerseits mit einer Meßgenauigkeit von über 99,8% bei einem akzeptablem Druckabfall, insb. von etwa 1 bar oder weniger, kostengünstig herzustellen und andererseits die Einbaumaße wie auch die Leermasse solcher Meßaufnehmer soweit in Grenzen zu halten, daß trotz großer Nennweite die Herstellung, der Transport, der Einbau wie auch der Betrieb immer noch wirtschaftlich sinnvoll erfolgen kann. Besonders auch durch Realisierung voranstehend erläuterter, die Erfindung weiter ausgestaltender Maßnahmen – einzeln oder auch in Kombination – können Meßaufnehmer der in Rede stehenden Art auch bei großer nomineller Nennweite so ausgeführt und so dimensioniert werden, daß ein durch ein Verhältnis der erwähnten Leermasse des Meßaufnehmers zu einer Gesamtmasse der Rohranordnung definiertes Massenverhältnis des Meßaufnehmers ohne weiteres kleiner als 3, insb. kleiner als 2.5, gehalten werden kann.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 1001254 A [0002, 0010]
    • EP 553939 A [0002, 0010]
    • US 4793191 A [0002, 0010]
    • US 2002/0157479 A [0002, 0010]
    • US 2006/0150750 A [0002, 0103]
    • US 2007/0151368 A [0002, 0003, 0010, 0113, 0116]
    • US 5370002 A [0002, 0010]
    • US 5796011 A [0002, 0003, 0010, 0010]
    • US 6308580 B [0002, 0010]
    • US 6415668 B [0002]
    • US 6711958 B [0002, 0010]
    • US 6920798 B [0002, 0117]
    • US 7134347 B [0002, 0010]
    • US 7392709 B [0002, 0074]
    • WO 03/027616 A [0002, 0010]
    • US 7350421 B [0003, 0010, 0010, 0051, 0069, 0071]
    • EP 1248084 A [0051, 0071]
    • US 4801897 A [0080]
    • US 6311136 B [0080]
    • US 4823614 A [0086]
    • US 4831885 A [0086]
    • US 2003/0070495 A [0086]
    • US 2006/0283264 A [0099]

Claims (81)

  1. Meßaufnehmer vom Vibrationstyp zum Erfassen wenigstens einer physikalischen Meßgröße eines in einer Rohrleitung geführten strömungsfähigen Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, und/oder zum Erzeugen von dem Erfassen einer Massendurchflußrate eines in einer Rohrleitung geführten strömungsfähigen Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, dienenden Corioliskräften, welcher Meßaufnehmer umfaßt: – ein, insb. im wesentlichen rohrförmiges und/oder außen kreiszylindrisches, Aufnehmer-Gehäuse (71), von dem ein einlaßseitiges erstes Gehäuseende mittels eines genau vier jeweils voneinander beabstandeten, insb. kreiszylindrische, kegelförmige oder konusförmige, Strömungsöffnungen (201A, 201B, 201C, 201D) aufweisenden einlaßseitigen ersten Strömungsteiler (201) und ein auslaßseitiges zweites Gehäuseende mittels eines genau vier jeweils voneinander beabstandeten, insb. kreiszylindrische, kegelförmige oder konusförmige, Strömungsöffnungen (202A, 202B, 202C, 202D) aufweisenden auslaßseitigen zweiten Strömungsteilers (202) gebildet sind; – eine Rohranordnung mit genau vier unter Bildung strömungstechnisch parallel geschalteter Strömungspfade an die, insb. baugleichen, Strömungsteiler (201, 202) angeschlossene, insb. lediglich mittels nämlicher Strömungsteiler (201, 202) im Aufnehmer-Gehäuse schwingfähig gehalterte und/oder baugleiche und/oder zueinander paarweise parallelen, gebogenen, insb. zumindest abschnittsweise V-förmige oder zumindest abschnittsweise kreisbogenförmigen, Meßrohre (181, 182, 183, 184) zum Führen von strömendem Medium, von denen – ein erstes Meßrohr (181) mit einem einlaßseitigen ersten Meßrohrende in eine erste Strömungsöffnung (201A) des ersten Strömungsteilers (201) und mit einem auslaßseitigen zweiten Meßrohrende in eine erste Strömungsöffnung (202A) des zweiten Strömungsteilers (202) mündet, – ein zum ersten Meßrohr zumindest abschnittsweise paralleles zweites Meßrohr (182) mit einem einlaßseitigen ersten Meßrohrende in eine zweite Strömungsöffnung (201B) des ersten Strömungsteilers (201) und mit einem auslaßseitigen zweiten Meßrohrende in eine zweite Strömungsöffnung (202B) des zweiten Strömungsteilers (202) mündet, – ein drittes Meßrohr (183) mit einem einlaßseitigen ersten Meßrohrende in eine dritte Strömungsöffnung (201C) des ersten Strömungsteilers (201) und mit einem auslaßseitigen zweiten Meßrohrende in eine dritte Strömungsöffnung (202C) des zweiten Strömungsteilers (202) mündet und – ein zum dritten Meßrohr zumindest abschnittsweise paralleles viertes Meßrohr (184) mit einem einlaßseitigen ersten Meßrohrende in eine vierte Strömungsöffnung (201D) des ersten Strömungsteilers (201) und mit einem auslaßseitigen zweiten Meßrohrende in eine vierte Strömungsöffnung (202D) des zweiten Strömungsteilers (202) mündet, – eine elektro-mechanische, insb. mittels elektro-dynamischer Schwingungserreger (51, 52) gebildete, Erregeranordnung (5) zum Erzeugen und/oder Aufrechterhalten von mechanischen Schwingungen, insb. von Biegeschwingungen, der vier Meßrohre (181, 182, 183, 184), – wobei die Meßrohre so ausgebildet und im Meßaufnehmer angeordnet sind, – daß die Rohranordnung eine sowohl zwischen dem ersten Meßrohr und dem dritten Meßrohr als auch zwischen dem zweiten Meßrohr und dem vierten Meßrohr liegende erste gedachte Längsschnittebene (XZ) aufweist, bezüglich der die Rohranordnung spiegelsymmetrisch ist, und – daß die Rohranordnung eine zu deren gedachter erster Längsschnittebene (XZ) senkrechte, sowohl zwischen dem ersten Meßrohr und zweiten Meßrohr als auch zwischen dem dritten Meßrohr und vierten Meßrohr verlaufende zweite gedachte Längsschnittebene (YZ) aufweist, bezüglich der die Rohranordnung gleichfalls spiegelsymmetrisch ist.
  2. Meßaufnehmer nach dem vorherigen Anspruch, wobei die beiden Strömungsteiler (201, 202) so ausgebildet und im Meßaufnehmer angeordnet sind, – daß eine die erste Strömungsöffnung (201A) des ersten Strömungsteilers (201) mit der ersten Strömungsöffnung (202A) des zweiten Strömungsteilers (202) imaginär verbindende gedachte erste Verbindungsachse (Z1) des Meßaufnehmers parallel zu einer die zweite Strömungsöffnung (201B) des ersten Strömungsteilers (201) mit der zweiten Strömungsöffnung (202B) des zweiten Strömungsteilers (202) imaginär verbindende gedachten zweiten Verbindungsachse (Z2) des Meßaufnehmers verläuft, und – daß eine die dritte Strömungsöffnung (201C) des ersten Strömungsteilers (201) mit der dritten Strömungsöffnung (202C) des zweiten Strömungsteilers (202) imaginär verbindende gedachte dritten Verbindungsachse (Z3) des Meßaufnehmers parallel zu einer die vierte Strömungsöffnung (201D) des ersten Strömungsteilers (201) mit der vierten Strömungsöffnung (202B) des zweiten Strömungsteilers (202) imaginär verbindende gedachten vierten Verbindungsachse (Z4) des Meßaufnehmers verläuft.
  3. Meßaufnehmer nach dem vorherigen Anspruch, wobei die beiden Strömungsteiler (201, 202) so ausgebildet und im Meßaufnehmer angeordnet sind, daß eine erste gedachte Längsschnittebene (XZ1) des Meßaufnehmers, innerhalb der die, insb. zu einer mit der Rohrleitung fluchtenden Hauptströmungsachse des Meßaufnehmers parallele, erste gedachte Verbindungsachse (Z1) und die zweite gedachte Verbindungsachse (Z1) verlaufen, parallel zu einer zweiten gedachten Längsschnittebene (XZ2) des Meßaufnehmers, innerhalb der die gedachte dritte Verbindungsachse (Z3) und die gedachte vierte Verbindungsachse (Z4) verlaufen, ist; insb. derart, daß die erste gedachte Längsschnittebene (XZ) der Rohranordnung zwischen der ersten und zweiten gedachten Längsschnittebene (XZ1, XZ2) des Meßaufnehmers liegt und/oder parallel zur ersten und zweiten gedachten Längsschnittebene (XZ1, XZ2) des Meßaufnehmers ist.
  4. Meßaufnehmer nach dem vorherigen Anspruch, wobei die beiden Strömungsteiler (201, 202) so ausgebildet und im Meßaufnehmer angeordnet sind, daß eine dritte gedachte Längsschnittebene (YZ1) des Meßaufnehmers, innerhalb der die gedachte erste Verbindungsachse (Z1) und die die gedachte dritte Verbindungsachse (Z3) verlaufen, parallel zu einer vierten gedachten Längsschnittebene (XY2) des Meßaufnehmers, innerhalb der die gedachte zweite Verbindungsachse (Z2) und die die gedachte vierte Verbindungsachse (Z4) verlaufen, ist.
  5. Meßaufnehmer nach dem vorherigen Anspruch, wobei die Meßrohre so ausgebildet und im Meßaufnehmer angeordnet sind, daß die zweite gedachte Längsschnittebene (YZ) der Rohranordnung zwischen der dritten gedachten Längsschnittebene (YZ1) des Meßaufnehmers und der vierten gedachten Längsschnittebene (YZ2) des Meßaufnehmers verläuft, insb. derart, daß die zweite gedachte Längsschnittebene (YZ) der Rohranordnung parallel zur dritten gedachten Längsschnittebene (YZ1) des Meßaufnehmers und parallel zur vierten gedachten Längsschnittebene (YZ2) des Meßaufnehmers ist.
  6. Meßaufnehmer nach einem der vorherigen Ansprüche, weiters umfassend – ein, insb. plattenförmigen, erstes Kopplerelement (241) erster Art, das zum Bilden von einlaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs sowohl vom ersten Strömungsteiler als auch vom zweiten Strömungsteiler beabstandet einlaßseitig zumindest am ersten Meßrohr und am zweiten Meßrohr fixiert ist, sowie – ein, insb. plattenförmigen und/oder zum ersten Kopplerelement (241) baugleiches, zweites Kopplerelement (242) erster Art, das zum Bilden von auslaßseitigen Schwingungsknoten zumindest für Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs und für dazu gegenphasige Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs sowohl vom ersten Strömungsteiler als auch vom zweiten Strömungsteiler wie auch vom ersten Kopplerelement beabstandet auslaßseitig zumindest am ersten Meßrohr und am zweiten Meßrohr fixiert ist.
  7. Meßaufnehmer nach Anspruch 6, wobei alle vier Meßrohre (181, 182, 183, 184) mittels des ersten Kopplerelements (241) erster Art sowie mittels des zweiten Kopplerelements (242) erster Art miteinander mechanisch verbunden sind.
  8. Meßaufnehmer nach dem vorherigen Anspruch, wobei das erste Kopplerelement (241) erster Art plattenförmig ausgebildet, insb. in derart, daß es eine rechteckförmige, quadratische, runde, kreuzförmig oder H-förmige Grundfläche aufweist.
  9. Meßaufnehmer nach dem vorherigen Anspruch, wobei das zweite Kopplerelement (242) erster Art, insb. gleichermaßen wie das erste Kopplerelement (241) erster Art, plattenförmig ausgebildet, insb. in derart, daß es eine rechteckförmige, quadratische, runde, kreuzförmig oder H-förmige aufweist.
  10. Meßaufnehmer nach Anspruch 6, wobei das erste Kopplerelement (241) erster Art auch am dritten Meßrohr (183) und am vierten Meßrohr (184) fixiert ist, und wobei das zweite Kopplerelement erster Art am dritten Meßrohr und am vierten Meßrohr fixiert ist.
  11. Meßaufnehmer nach einem der Ansprüche 6 bis 10, wobei eine einer Länge eines zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art verlaufenden Abschnitts der Biegelinie entsprechende freie Schwinglänge, L18x, des ersten Meßrohrs, insb. jedes der Meßrohre, weniger als 3000 mm, insb. weniger als 2500 mm und/oder mehr als 800 mm, beträgt.
  12. Meßaufnehmer nach einem der Ansprüche 6 bis 12, wobei das erste Meßrohr und das zweite Meßrohr zumindest über einen sich zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art erstreckenden Bereich zueinander parallel sind, und wobei das dritte Meßrohr und das vierte Meßrohr zumindest über einen sich zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art erstreckenden Bereich zueinander parallel sind.
  13. Meßaufnehmer nach einem der vorherigen Ansprüche, weiters umfassend – ein, insb. plattenförmiges oder stabförmiges, erstes Kopplerelement (251) zweiter Art, das zum. Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs (181) und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs (183) sowohl vom ersten Kopplerelement (241) erster Art als auch vom zweiten Kopplerelement (242) erster Art beabstandet lediglich am ersten Meßrohr (181) und am dritten Meßrohr (183) fixiert ist, sowie – ein, insb. plattenförmiges oder stabförmiges, zweites Kopplerelement (252) zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs (182) und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs (184) sowohl vom ersten Kopplerelement (241) erster Art als auch vom zweiten Kopplerelement (242) erster Art wie auch vom ersten Kopplerelement (251) zweiter Art beabstandet lediglich am zweiten Meßrohr (182) und am vierten Meßrohr (184) fixiert ist.
  14. Meßaufnehmer nach dem vorherigen Anspruch, wobei das erste Kopplerelement zweiter Art im Bereich von 50% eines minimaler Abstand zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art am ersten Meßrohr fixiert ist.
  15. Meßaufnehmer nach dem vorherigen Anspruch, wobei das erste Kopplerelement zweiter Art im Bereich von 50% eines minimaler Abstand zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art am dritten Meßrohr fixiert ist.
  16. Meßaufnehmer nach dem vorherigen Anspruch, wobei das zweite Kopplerelement zweiter Art im Bereich von 50% eines minimaler Abstand zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art am zweiten Meßrohr fixiert ist.
  17. Meßaufnehmer nach dem vorherigen Anspruch, wobei das zweite Kopplerelement zweiter Art im Bereich von 50% eines minimaler Abstand zwischen dem ersten Kopplerelement erster Art und dem zweiten Kopplerelement erster Art am vierten Meßrohr fixiert ist.
  18. Meßaufnehmer nach einem der Ansprüche 13 bis 17, wobei das erste und zweite Kopplerelement (251, 252) zweiter Art einander gegenüberliegend im Meßaufnehmer plaziert sind.
  19. Meßaufnehmer nach einem der Ansprüche 13 bis 18, weiters umfassend: – ein, insb. plattenförmiges oder stabförmiges, drittes Kopplerelement (253) zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs (181) und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs (183) sowohl vom ersten Kopplerelement erster Art (241) als auch vom zweiten Kopplerelement (242) erster Art wie auch vom ersten Kopplerelement (251) zweiter Art beabstandet lediglich am ersten Meßrohr (181) und am dritten Meßrohr (183) fixiert ist, sowie – ein, insb. plattenförmiges oder stabförmiges, viertes Kopplerelement (254) zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs (182) und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs (184) sowohl vom ersten und zweiten Kopplerelement (241, 242) erster Art als auch vom zweiten und dritten Kopplerelement (252, 253) zweiter Art jeweils beabstandet lediglich am zweiten Meßrohr (182) und am vierten Meßrohr (184) fixiert ist.
  20. Meßaufnehmer nach Anspruch 19, wobei das dritte und vierte Kopplerelement (253, 254) zweiter Art einander gegenüberliegend im Meßaufnehmer plaziert sind.
  21. Meßaufnehmer nach einem der Ansprüche 19 bis 20, weiters umfassend – ein, insb. plattenförmiges oder stabförmiges, fünftes Kopplerelement (255) zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des ersten Meßrohrs (181) und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des dritten Meßrohrs (183) sowohl vom ersten und zweiten Kopplerelement (241, 242) erster Art als auch vom ersten und dritten Kopplerelement (251, 253) zweiter Art beabstandet lediglich am ersten Meßrohr (181) und am dritten Meßrohr (183) fixiert ist, sowie – ein, insb. plattenförmiges oder stabförmiges, sechstes Kopplerelement (256) zweiter Art, das zum Synchronisieren von Vibrationen, insb. Biegeschwingungen, des zweiten Meßrohrs und von dazu frequenzgleichen Vibrationen, insb. Biegeschwingungen, des vierten Meßrohrs sowohl vom ersten und zweiten Kopplerelement (241, 242) erster Art als auch vom zweiten, vierten und fünften Kopplerelement (252, 254, 255) zweiter Art jeweils beabstandet lediglich am zweiten Meßrohr (182) und am vierten Meßrohr (184) fixiert ist.
  22. Meßaufnehmer nach Anspruch 21, wobei das fünfte und sechste Kopplerelement (255, 256) zweiter Art einander gegenüberliegend im Meßaufnehmer plaziert sind.
  23. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei jedes der vier, insb. gleichkalibrigen und/oder gleichlangen, Meßrohre (181, 182, 183, 184) ein Kaliber, D18, aufweist, das mehr als 40 mm, insb. mehr als 60 mm, beträgt.
  24. Meßaufnehmer nach Anspruch 11 und 23, wobei ein Kaliber-zu-Schwinglänge-Verhältnis, D18/L18x, des Meßaufnehmers, definiert durch ein Verhältnis des Kalibers, D18, des ersten Meßrohrs (181) zur freien Schwinglänge, L18x, des ersten Meßrohrs (181), mehr als 0.03, insb. mehr als 0.05 und/oder weniger als 0.15, beträgt.
  25. Meßaufnehmer nach Anspruch 23 oder 24, wobei die Meßrohre so gebogen und so angeordnet sind, daß ein Kaliber-zu-Höhe-Verhältnis der Rohranordnung, definiert durch ein Verhältnis des Kalibers, D18, des ersten Meßrohrs (181) zu einer maximalen seitlichen Ausdehnung der Rohranordnung, gemessen von einem Scheitelpunkt des ersten Meßrohrs zu einem Scheitelpunkt des dritten Meßrohrs, mehr als 0.1, insb. mehr als 0.2 und/oder weniger als 0.35, beträgt.
  26. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei der erste Strömungsteiler (201) einen Flansch (61) zum Anschließen des Meßaufnehmers an ein dem Zuführen von Medium zum Meßaufnehmer dienendes Rohrsegment der Rohrleitung und der zweite Strömungsteiler (202) einen Flansch (62) zum Anschließen des Meßaufnehmers an ein dem Abführen von Medium vom Meßaufnehmer dienendes Rohrsegment der Rohrleitung aufweisen.
  27. Meßaufnehmer nach dem vorherigen Anspruch, wobei jeder der beiden Flansche eine Masse von mehr als 50 kg, insb. von mehr als 60 kg, aufweist.
  28. Meßaufnehmer nach einem der Ansprüche 26 bis 27, wobei jeder der Flansche (61, 62) jeweils eine Dichtfläche (61A, 62A) zum fluiddichten Verbinden des Meßaufnehmers mit dem jeweils korrespondierenden Rohrsegment der Rohrleitung aufweist, und wobei ein Abstand zwischen den Dichtflächen (61A, 62A) beider Flansche (61, 62) eine, insb. mehr als 1200 mm betragende und/oder weniger als 3000 mm betragende, Einbaulänge, L11, des Meßaufnehmers definiert.
  29. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei eine einer Länge eines zwischen der ersten Strömungsöffnung (201A) des ersten Strömungsteilers (201) und der ersten Strömungsöffnung (202A) des zweiten Strömungsteilers (202) verlaufenden Abschnitts einer Biegelinie des ersten Meßrohrs entsprechende Meßrohrlänge, L18, des ersten Meßrohrs (181) mehr als 1000 mm, insb. mehr als 1200 mm und/oder weniger als 2000 mm, beträgt.
  30. Meßaufnehmer nach Anspruch 28 und 29, wobei ein Meßrohrlänge-zu-Einbaulänge-Verhältnis, L18/L11, des Meßaufnehmers, definiert durch ein Verhältnis der Meßrohrlänge, L18, des ersten Meßrohrs zur Einbaulänge, L11, des Meßaufnehmers, mehr als 0.7, insb. mehr als 0.8 und/oder weniger als 0.95, beträgt.
  31. Meßaufnehmer nach Anspruch 23 und 28, wobei ein Kaliber-zu-Einbaulänge-Verhältnis, D18/L11, des Meßaufnehmers, definiert durch ein Verhältnis des Kalibers, D18, des ersten Meßrohrs zur Einbaulänge, L11, des Meßaufnehmers, mehr als 0.02, insb. mehr als 0.05 und/oder weniger als 0.09, beträgt.
  32. Meßaufnehmer nach Anspruch 11 und 28, wobei ein Schwinglänge-zu-Einbaulänge-Verhältnis, L18x/L11, des Meßaufnehmers, definiert durch ein Verhältnis der freien Schwinglänge, L18x, des ersten Meßrohrs zur Einbaulänge, L11, des Meßaufnehmers, mehr als 0.55, insb. mehr als 0.6 und/oder weniger als 0.9, beträgt.
  33. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei jedes der vier, insb. gleichkalibrigen, Meßrohre (181, 182, 183, 184) so angeordnet ist, – daß ein kleinster seitlicher Abstand jedes der vier, insb. gleichlangen, Meßrohre von einer Gehäuseseitenwand des Aufnehmer-Gehäuses jeweils größer als Null, insb. größer als 3 mm und/oder größer als ein Doppeltes einer jeweiligen Rohrwandstärke, beträgt; und/oder – daß ein kleinster seitlicher Abstand zwischen zwei benachbarten Meßrohren jeweils größer als 3 mm und/oder größer als die Summe von deren jeweiligen Rohrwandstärken beträgt.
  34. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei jede der Strömungsöffnungen so angeordnet ist, – daß ein kleinster seitlicher Abstand jeder der Strömungsöffnungen von einer Gehäuseseitenwand des Aufnehmer-Gehäuses jeweils größer als Null, insb. größer als 3 mm und/oder größer als ein Doppeltes einer kleinsten Rohrwandstärke der Meßrohre, beträgt; und/oder – daß ein kleinster seitlicher Abstand zwischen den Strömungsöffnungen größer als 3 mm und/oder größer als ein Doppeltes einer kleinsten Rohrwandstärke der Meßrohre beträgt.
  35. Meßaufnehmer nach einem der vorherigen Ansprüche, weiters umfassend eine auf Vibrationen, insb. mittels der Erregeranordnung angeregten Biegeschwingungen, der Meßrohre (181, 182, 183, 184) reagierende, insb. elektro-dynamische und/oder mittels einander baugleicher Schwingungssensoren (191, 192, 193, 194) gebildete, Sensoranordnung (19) zum Erzeugen von Vibrationen, insb. Biegeschwingungen, der Meßrohre (181, 182, 183, 184) repräsentierenden Schwingungsmeßsignalen.
  36. Meßaufnehmer nach dem vorherigen Anspruch, wobei die Sensoranordnung (19) mittels eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs (181) relativ zum zweiten Meßrohr (182) differentiell erfassenden, einlaßseitigen ersten Schwingungssensors (191) sowie eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs (181) relativ zum zweiten Meßrohr (182) differentiell erfassenden, auslaßseitigen zweiten Schwingungssensors (192) gebildet ist.
  37. Meßaufnehmer nach dem vorherigen Anspruch, wobei die Sensoranordnung (19) mittels eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs (183) relativ zum vierten Meßrohr (184) differentiell erfassenden, einlaßseitigen dritten Schwingungssensors (193) sowie eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs (183) relativ zum vierten Meßrohr (184) differentiell erfassenden, auslaßseitigen vierten Schwingungssensors (194) gebildet ist.
  38. Meßaufnehmer nach dem vorherigen Anspruch, wobei der erste und dritte Schwingungssensor (191, 193) elektrisch seriell verschaltet sind, derart, daß ein gemeinsames Schwingungsmeßsignal gemeinsame einlaßseitige Schwingungen des ersten und dritten Meßrohrs (181, 183) relativ zum zweiten und vierten Meßrohr (182, 184) repräsentiert.
  39. Meßaufnehmer nach dem vorherigen Anspruch, wobei der zweite und vierte Schwingungssensor (192, 194) elektrisch seriell verschaltet sind, derart, daß ein gemeinsames Schwingungsmeßsignal gemeinsame auslaßseitige Schwingungen des ersten und dritten Meßrohrs (181, 183) relativ zum zweiten und vierten Meßrohr (182, 184) repräsentiert.
  40. Meßaufnehmer nach einem der Ansprüche 36 bis 39, wobei der erste Schwingungssensor (191) mittels eines am ersten Meßrohr (181) gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr (182) gehalterten Zylinderspule gebildet ist, und wobei der zweite Schwingungssensor (192) mittels eines am ersten Meßrohr (181) gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr (182) gehalterten Zylinderspule gebildet ist.
  41. Meßaufnehmer nach einem der Ansprüche 37 bis 40, wobei der dritte Schwingungssensor (193) mittels eines am dritten Meßrohr (181) gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr (182) gehalterten Zylinderspule gebildet ist, und wobei der vierte Schwingungssensor (194) mittels eines am dritten Meßrohr (181) gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr (182) gehalterten Zylinderspule gebildet ist.
  42. Meßaufnehmer nach einem der Ansprüche 36 bis 41, wobei eine einer Länge eines zwischen dem ersten Schwingungssensor (191) und dem zweite Schwingungssensor (192) verlaufenden Abschnitts einer Biegelinie des ersten Meßrohrs entsprechende Meßlänge, L19, des Meßaufnehmers mehr als 500 mm, insb. mehr als 600 mm und/oder weniger als 1200 mm, beträgt.
  43. Meßaufnehmer nach Anspruch 28 und 42, wobei ein Meßlänge-zu-Einbaulänge-Verhältnis, L19/L11, des Meßaufnehmers, definiert durch ein Verhältnis der Meßlänge, L19, zur Einbaulänge, L11, des Meßaufnehmers, mehr als 0.3, insb. mehr als 0.4 und/oder weniger als 0.7, beträgt.
  44. Meßaufnehmer nach Anspruch 23 und 42, wobei ein Kaliber-zu-Meßlänge-Verhältnis, D18/L19, des Meßaufnehmers, definiert durch ein Verhältnis des Kalibers, D18, des ersten Meßrohrs zur Meßlänge, L19, des Meßaufnehmers, mehr als 0.05, insb. mehr als 0.09, beträgt.
  45. Meßaufnehmer nach Anspruch 11 und 42, wobei ein Meßlänge-zu-Schwinglänge-Verhältnis, L19/L18x, des Meßaufnehmers, definiert durch ein Verhältnis der Meßlänge, L19, des Meßaufnehmers zur freien Schwinglänge, L18x, des ersten Meßrohrs, mehr als 0.3, insb. mehr als 0.4 und/oder weniger als 0.95, beträgt.
  46. Meßaufnehmer nach einem der Ansprüche 36 bis 45, jeweils in Verbindung mit einem der Ansprüche 19 bis 22, wobei jeder der, insb. baugleichen, Schwingungssensoren (191; 192; 193; 194) der Sensoranordnung jeweils an zwei einander gegenüberliegenden Kopplerelementen (253, 254; 255, 256) zweiter Art gehaltert ist.
  47. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei ein Massenverhältnis, M11/M18, einer Leermasse, M11, des gesamten Meßaufnehmers zu einer Leermasse, M18, des ersten Meßrohrs größer als 10, insb. größer als 15 und kleiner als 25, ist.
  48. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei jeder der beiden Strömungsteiler (201, 202) jeweils eine Masse von mehr als 20 kg, insb. von mehr als 40 kg, aufweist.
  49. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei eine Leermasse, M18, des ersten Meßrohrs, insb. jedes der Meßrohre (181, 182, 183, 184), größer als 20 kg, insb. größer als 30 kg und/oder kleiner als 50 kg, ist.
  50. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei eine Leermasse, M11, des Meßaufnehmers größer als 200 kg, insb. größer als 300 kg, ist.
  51. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei eine nominellen Nennweite, D11, des Meßaufnehmers, die einem Kaliber der Rohrleitung, in deren Verlauf der Meßaufnehmer einzusetzen ist, entspricht, mehr als 50 mm beträgt, insb. größer als 100 mm ist.
  52. Meßaufnehmer nach Anspruch 50 und 51, wobei ein Masse-zu-Nennweite-Verhältnis, M11/D11, des Meßaufnehmers, definiert durch ein Verhältnis der Leermasse, M11, des Meßaufnehmers zur nominellen Nennweite, D11, des Meßaufnehmers kleiner als 2 kg/mm, insb. kleiner als 1 kg/mm und/oder größer als 0.5 kg/mm, ist.
  53. Meßaufnehmer nach Anspruch 28 und 51, wobei ein Nennweite-zu Einbaulänge-Verhältnis, D11/L11, des Meßaufnehmers, definiert durch ein Verhältnis der nominellen Nennweite des Meßaufnehmers zur Einbaulänge des Meßaufnehmers kleiner als 0.3, insb. kleiner als 0.2 und/oder größer als 0.1, ist.
  54. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei das erste und das zweite Meßrohr (181, 182) zumindest hinsichtlich eines Materials, aus dem deren Rohrwände jeweils bestehen, und/oder hinsichtlich ihrer geometrischer Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich sind.
  55. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei das dritte und das vierte Meßrohr (183, 184) zumindest hinsichtlich eines Materials, aus dem deren Rohrwände jeweils bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge; einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich sind.
  56. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei die vier Meßrohre (181, 182, 183, 184) hinsichtlich eines Materials, aus dem deren Rohrwände bestehen, und/oder hinsichtlich ihrer geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, baugleich sind.
  57. Meßaufnehmer nach einem der Ansprüche 1 bis 55, wobei sowohl das dritte Meßrohr als auch das vierte Meßrohr (183, 184) hinsichtlich ihrer jeweiligen geometrischen Rohr-Abmessungen, insb. einer Meßrohrlänge, einer Rohrwandstärke, eines Rohr-Außendurchmessers und/oder eines Kalibers, verschieden sind vom ersten Meßrohr und vom zweiten Meßrohr Meßrohre (181, 182).
  58. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei ein Material, aus dem die Rohrwände der vier Meßrohre (181, 182, 183, 184) zumindest anteilig bestehen, Titan und/oder Zirconium und/oder Duplexstahl und/oder Superduplexstahl ist.
  59. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei das Aufnehmer-Gehäuse (71), die Strömungsteiler (201, 202) und Rohrwände der Meßrohre (181, 182, 183, 184) jeweils aus, insb. rostfreiem, Stahl bestehen.
  60. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei jedes der Meßrohre (181, 182, 183, 184) einen Biegeschwingungsgrundmode von minimaler Biegeschwingungs-Resonanzfrequenz, f181; f182; f183; f184, aufweist, und wobei die minimalen Biegeschwingungs-Resonanzfrequenzen, f181, f182, zumindest des ersten und zweiten Meßrohrs (181, 182) im wesentlichen gleich sind und die minimalen Biegeschwingungs-Resonanzfrequenzen, f183, f184, zumindest des dritten und vierten Meßrohrs (183, 184) im wesentlichen gleich sind.
  61. Meßaufnehmer nach dem vorherigen Anspruch, wobei die minimalen Biegeschwingungs-Resonanzfrequenzen, f181, f182, f183, f184, aller vier Meßrohre (181, 182, 183, 184) im wesentlichen gleich sind.
  62. Meßaufnehmer nach Anspruch 60, wobei die minimalen Biegeschwingungs-Resonanzfrequenzen, f181, f182, f183, f184, der vier Meßrohre (181, 182, 183, 184) lediglich paarweise gleich sind.
  63. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei die vier Strömungsöffnungen (201A, 201B, 201C, 201D) des ersten Strömungsteilers (202) so angeordnet sind, daß zu, insb. kreisförmigen, Querschnittsflächen der Strömungsöffnungen (201A; 201B; 201D; 201D) des ersten Strömungsteilers (201) zugehörige gedachte Flächenschwerpunkte die Eckpunkte eines gedachten Quadrats bilden, wobei nämliche Querschnittsflächen in einer, insb. zur ersten gedachten Längsschnittebene des Meßaufnehmers bzw. zur zweiten gedachten Längsschnittebene des Meßaufnehmers senkrechten, gemeinsamen gedachten Querschnittsschnittebene des ersten Strömungsteilers (201) liegen.
  64. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei die vier Strömungsöffnungen (202A, 202B, 202C, 202D) des zweiten Strömungsteilers (202) so angeordnet sind, daß zu, insb. kreisförmigen, Querschnittsflächen der Strömungsöffnungen (202A; 202B; 202C; 202D) des zweiten Strömungsteilers (202) zugehörige gedachte Flächenschwerpunkte die Eckpunkte eines gedachten Quadrats bilden, wobei nämliche Querschnittsflächen in einer, insb. zur ersten gedachten Längsschnittebene des Meßaufnehmers bzw. zur zweiten gedachten Längsschnittebene des Meßaufnehmers senkrechten, gemeinsamen gedachten Querschnittsschnittebene des zweiten Strömungsteilers (202) liegen.
  65. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei die Erregeranordnung derart ausgebildet ist, daß damit das erste Meßrohr (181) und das zweite Meßrohr (182) im Betrieb zu gegenphasigen Biegeschwingungen und das dritte Meßrohr (183) und das vierte Meßrohr (184) im Betrieb zu gegenphasigen Biegeschwingungen anregbar sind.
  66. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei die Erregeranordnung (5) mittels eines, insb. elektrodynamischen und/oder Schwingungen des ersten Meßrohrs (181) relativ zum zweiten Meßrohr (182) differentiell anregenden, ersten Schwingungserregers (51) gebildet ist.
  67. Meßaufnehmer nach dem vorherigen Anspruch, wobei die Erregeranordnung mittels eines, insb. elektrodynamischen und/oder Schwingungen des dritten Meßrohrs (183) relativ zum vierten Meßrohr (184) differentiell anregenden, zweiten Schwingungserregers (52) gebildet ist.
  68. Meßaufnehmer nach dem vorherigen Anspruch, wobei der erste und zweite Schwingungserreger (51, 52) elektrisch seriell verschaltet sind, derart, daß ein gemeinsames Treibersignal gemeinsame Schwingungen des ersten und dritten Meßrohrs (181, 183) relativ zum zweiten und vierten Meßrohr (182, 184) anregt.
  69. Meßaufnehmer nach einem der Ansprüche 66 bis 68, wobei der erste Schwingungserreger (51) mittels eines am ersten Meßrohr (181) gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am zweiten Meßrohr (182) gehalterten Zylinderspule gebildet ist, und wobei der zweite Schwingungserreger (52) mittels eines am dritten Meßrohr (181) gehalterten Permanentmagneten und einer von dessen Magnetfeld durchfluteten, am vierten Meßrohr (182) gehalterten Zylinderspule gebildet ist.
  70. Meßaufnehmer nach einem der Ansprüche 66 bis 69, jeweils in Verbindung mit einem der Ansprüche 13 bis 22, wobei jeder der, insb. baugleichen, Schwingungserreger (51; 52) jeweils an zwei einander gegenüberliegenden Kopplerelementen (251, 252) zweiter Art gehaltert ist.
  71. Meßaufnehmer nach dem vorherigen Anspruch in Verbindung mit Anspruch 13 oder einem davon abhängigen Anspruch, wobei sowohl der erste Schwingungserreger (51) als auch der zweite Schwingungserreger (52) jeweils am ersten und zweiten Kopplerelement (251, 252) zweiter Art gehaltert sind, insb. in der Weise, daß ein minimaler Abstand zwischen dem ersten und zweiten Schwingungserreger (521, 52) mehr als doppelt so groß ist, wie ein Rohr-Außendurchmessers des ersten Meßrohrs (181).
  72. Meßaufnehmer nach dem vorherigen Anspruch in Verbindung mit Anspruch 19 oder einem davon abhängigen Anspruch, wobei sowohl der erste Schwingungssensor (191) als auch der dritte Schwingungssensor (193) jeweils am dritten und vierten Kopplerelement (253, 254) zweiter Art gehaltert sind, insb. in der Weise, daß ein minimaler Abstand zwischen dem ersten und dritten Schwingungssensor (191, 193) mehr als doppelt so groß ist, wie ein Rohr-Außendurchmessers des ersten Meßrohrs (181).
  73. Meßaufnehmer nach dem vorherigen Anspruch in Verbindung mit Anspruch 21 oder einem davon abhängigen Anspruch, wobei sowohl der zweite Schwingungssensor (192) als auch der vierte Schwingungssensor (194) jeweils am fünften und sechsten Kopplerelement (255, 256) zweiter Art gehaltert sind, insb. in der Weise, daß ein minimaler Abstand zwischen dem zweiten und vierten Schwingungssensor (192, 194) mehr als doppelt so groß ist, wie ein Rohr-Außendurchmessers des ersten Meßrohrs (181).
  74. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei ein Mittelsegment (71A) des Aufnehmer-Gehäuses (71) mittels eines geraden, insb. kreiszylindrischen, Rohres gebildet ist.
  75. Meßaufnehmer nach einem der vorherigen Ansprüche, wobei das Aufnehmer-Gehäuse (71) im wesentlichen rohrförmig, insb. kreiszylindrisch, ausgebildet ist.
  76. Meßaufnehmer nach dem vorherigen Anspruch, wobei das Aufnehmer-Gehäuse (71) einen größten Gehäuse-Innendurchmesser, D7, aufweist, der größer als 150 mm, insb. größer als 250 mm, ist.
  77. Meßaufnehmer nach dem vorherigen Anspruch, wobei ein Gehäuse-zu-Meßrohr-Innendurchmesser-Verhältnis, D7/D18, des Meßaufnehmers, definiert durch ein Verhältnis des größten Gehäuse-Innendurchmessers, D7, zu einem Kaliber, D18, des ersten Meßrohrs größer als 3, insb. größer als 4 und/oder kleiner als 5, ist.
  78. Meßaufnehmer nach Anspruch 76 oder 77, jeweils in Verbindung mit Anspruch 51, wobei ein Gehäuse-Innendurchmesser-zu-Nennweite-Verhältnis, D7/D11, des Meßaufnehmers, definiert durch ein Verhältnis des größten Gehäuse-Innendurchmessers, D7, zur nominellen Nennweite, D11, des Meßaufnehmers kleiner als 1.5, insb. kleiner als 1.2 und/oder größer als 0.9, ist.
  79. Meßaufnehmer nach dem vorherigen Anspruch, wobei das Gehäuse-Innendurchmesser-zu-Nennweite-Verhältnis, D7/D11, des Meßaufnehmers gleich eins ist.
  80. In-Line-Meßgerät zum Messen einer Dichte und/oder einer Massendurchflußrate, insb. auch eines über ein Zeitintervall totalisierten Gesamt-Massendurchflusses, eines in einer Rohrleitung zumindest zeitweise, insb. mit einer Massendurchflußrate von mehr als 1000 t/h, strömenden Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes, welches, insb. als Kompaktgerät ausgebildete, In-Line-Meßgerät einen Meßaufnehmer gemäß einem der vorherigen Ansprüche sowie eine mit dem Meßaufnehmer elektrisch gekoppelte, insb. auch mechanisch starr verbundene, Meßgerät-Elektronik umfaßt.
  81. Verwenden eines Meßaufnehmers gemäß einem der Ansprüche 1 bis 79 zum Messen einer Dichte und/oder einer Massendurchflußrate, insb. auch eines über ein Zeitintervall totalisierten Gesamt-Massendurchflusses, eines in einer Rohrleitung zumindest zeitweise mit einer Massendurchflußrate von mehr als 1000 t/h, insb. mehr als 1500 t/h, strömenden Mediums, insb. eines Gases, einer Flüssigkeit, eines Pulvers oder eines anderen strömungsfähigen Stoffes.
DE102009055069A 2009-12-21 2009-12-21 Meßaufnehmer vom Vibrationstyp Withdrawn DE102009055069A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DE102009055069A DE102009055069A1 (de) 2009-12-21 2009-12-21 Meßaufnehmer vom Vibrationstyp
PCT/EP2010/068251 WO2011085852A1 (de) 2009-12-21 2010-11-25 Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
CN201080063841.7A CN102753947B (zh) 2009-12-21 2010-11-25 振动型测量转换器
EP10779827.4A EP2516971B1 (de) 2009-12-21 2010-11-25 Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
RU2012131135/28A RU2526296C2 (ru) 2009-12-21 2010-11-25 Измерительный датчик вибрационного типа, способ изготовления измерительного датчика и измерительная система, применение измерительного датчика
EP19208439.0A EP3640606A1 (de) 2009-12-21 2010-11-25 Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
RU2012131136/28A RU2538422C2 (ru) 2009-12-21 2010-11-25 Первичный измерительный преобразователь вибрационного типа
CA2783666A CA2783666C (en) 2009-12-21 2010-11-25 Measuring transducer of vibration-type and measuring system formed therewith
EP10792868.1A EP2516972B1 (de) 2009-12-21 2010-11-25 Messaufnehmer vom vibrationstyp
CN201080058734.5A CN102667421B (zh) 2009-12-21 2010-11-25 振动式测量换能器和由此形成的测量系统
PCT/EP2010/068250 WO2011085851A1 (de) 2009-12-21 2010-11-25 Messaufnehmer vom vibrationstyp
CA2783328A CA2783328C (en) 2009-12-21 2010-11-25 Measuring transducer of vibration-type
US12/970,072 US8613227B2 (en) 2009-12-21 2010-12-16 Measuring transducer of vibration-type with four curved measuring tubes
US12/971,515 US8695436B2 (en) 2009-12-21 2010-12-17 Measuring transducer of vibration-type with four curved measuring tubes
US14/242,059 US9410835B2 (en) 2009-12-21 2014-04-01 Measuring transducer of vibration-type with four curved measuring tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009055069A DE102009055069A1 (de) 2009-12-21 2009-12-21 Meßaufnehmer vom Vibrationstyp

Publications (1)

Publication Number Publication Date
DE102009055069A1 true DE102009055069A1 (de) 2011-06-22

Family

ID=44311036

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009055069A Withdrawn DE102009055069A1 (de) 2009-12-21 2009-12-21 Meßaufnehmer vom Vibrationstyp

Country Status (1)

Country Link
DE (1) DE102009055069A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044179A1 (de) 2010-11-11 2012-05-16 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler von Vibrationstyp
WO2013149817A1 (de) * 2012-04-03 2013-10-10 Endress+Hauser Flowtec Ag MEßWANDLER VOM VIBRATIONSTYP
DE102014118367A1 (de) * 2014-12-10 2016-06-16 Endress+Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp sowie damit gebildetes Meßsystem
DE102015104931A1 (de) 2014-12-31 2016-06-30 Endress + Hauser Flowtec Ag Coriolis-Massedurchfussmessgerät mit vier gebogenen Messrohren
WO2018001635A1 (de) * 2016-06-30 2018-01-04 Endress+Hauser Flowtec Ag Verfahren zum betreiben eines messaufnehmers vom vibrationstyp
WO2018001634A1 (de) * 2016-06-30 2018-01-04 Endress+Hauser Flowtec Ag Verfahren zum bestimmen eines physikalischen parameters eines kompressiblen mediums mit einem messaufnehmer vom vibrationstyp und messaufnehmer zur durchführung eines solchen verfahrens
DE102016125616A1 (de) * 2016-12-23 2018-06-28 Endress+Hauser Flowtec Ag Messaufnehmer vom Vibrationstyp
DE102016125615A1 (de) * 2016-12-23 2018-06-28 Endress + Hauser Flowtec Ag Messaufnehmer vom Vibrationstyp zum Messen der Dichte und/oder des Massedurchflusses eines Mediums
DE102018133318A1 (de) * 2018-12-21 2020-06-25 Endress+Hauser Flowtec Ag Vibronisches Meßsystem
WO2022242975A1 (de) * 2021-05-21 2022-11-24 Endress+Hauser Flowtec Ag VIBRONISCHES MEßSYSTEM
CN118226424A (zh) * 2024-05-16 2024-06-21 中交华南勘察测绘科技有限公司 一种配合测深仪换能器进行声呐校准的测试件及测试方法

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119638A1 (de) * 1983-02-21 1984-09-26 Shell Internationale Researchmaatschappij B.V. Massendurchflussmesser vom Coriolistyp mit wenigstens zwei geraden, parallelen, schwingenden Rohren
US4793191A (en) 1986-09-26 1988-12-27 Flowtec Ag Mass flow meter operating by the cariolis principle
US4801897A (en) 1986-09-26 1989-01-31 Flowtec Ag Arrangement for generating natural resonant oscillations of a mechanical oscillating system
US4823614A (en) 1986-04-28 1989-04-25 Dahlin Erik B Coriolis-type mass flowmeter
US4831885A (en) 1986-04-28 1989-05-23 Dahlin Erik B Acoustic wave supressor for Coriolis flow meter
US4879910A (en) * 1987-07-10 1989-11-14 Lew Hyok S Torsional vibration convective inertia force flowmeter
EP0553939A2 (de) 1985-08-29 1993-08-04 Micro Motion Incorporated Coriolis-Massendurchflussmesser Coriolis-Massendurchflussmesser
US5370002A (en) 1993-07-23 1994-12-06 Micro Motion, Inc. Apparatus and method for reducing stress in the brace bar of a Coriolis effect mass flow meter
WO1996008697A2 (en) * 1994-09-08 1996-03-21 Smith Meter Inc. Mass flowmeter and conduit assembly
US5796011A (en) 1993-07-20 1998-08-18 Endress + Hauser Flowtech Ag Coriolis-type mass flow sensor
US5969264A (en) * 1998-11-06 1999-10-19 Technology Commercialization Corp. Method and apparatus for total and individual flow measurement of a single-or multi-phase medium
EP1001254A1 (de) 1998-05-29 2000-05-17 Oval Corporation Coriolismassendurchflussmesser
US6311136B1 (en) 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US6308580B1 (en) 1999-03-19 2001-10-30 Micro Motion, Inc. Coriolis flowmeter having a reduced flag dimension
US6415668B1 (en) 2001-07-23 2002-07-09 Fmc Technologies, Inc. De-coupling extraneous modes of vibration in a coriolis mass flowmeter
EP1248084A1 (de) 2001-04-05 2002-10-09 Endress + Hauser Flowtec AG Coriolis-Massedurchfluss-Aufnehmer mit zwei gebogenen Messrohren
US20020157479A1 (en) 1999-10-29 2002-10-31 Matthew T. Crisfield Coriolis flowmeter having a reduced flag dimension for handling large mass flows
WO2003027616A1 (de) 2001-09-21 2003-04-03 Endress + Hauser Flowtec Ag Messaufnehmer vom vibrationstyp
US20030070495A1 (en) 2000-01-21 2003-04-17 Kourush Kolahi Mass flow rate measuring device
US6711958B2 (en) 2000-05-12 2004-03-30 Endress + Hauser Flowtec Ag Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
US6920798B2 (en) 2001-09-21 2005-07-26 Endress + Hauser Flowtec Ag Vibratory transducer
DE102004035971A1 (de) * 2004-07-23 2006-02-16 Endress + Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp zum Messen von in zwei Mediumsleitungen strömenden Medien sowie In-Line-Meßgerät mit einem solchen Meßaufnehmer
US20060150750A1 (en) 2004-12-13 2006-07-13 Endress + Hauser Flowtec Ag Vibratory measurement transducer
US7134347B2 (en) 2001-08-29 2006-11-14 Endress+Hauser Flowtec Ag Vibration-type measuring sensor
US20060283264A1 (en) 2003-08-26 2006-12-21 Siemens Flow Instruments A/S Coriolis mass flow meter
US20070151368A1 (en) 2005-12-15 2007-07-05 Krohne Ag Device for measuring the mass rate of flow
US7392709B2 (en) 2005-05-16 2008-07-01 Endress + Hauser Flowtec Ag Inline measuring device with a vibration-type measurement pickup

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119638A1 (de) * 1983-02-21 1984-09-26 Shell Internationale Researchmaatschappij B.V. Massendurchflussmesser vom Coriolistyp mit wenigstens zwei geraden, parallelen, schwingenden Rohren
EP0553939A2 (de) 1985-08-29 1993-08-04 Micro Motion Incorporated Coriolis-Massendurchflussmesser Coriolis-Massendurchflussmesser
US4823614A (en) 1986-04-28 1989-04-25 Dahlin Erik B Coriolis-type mass flowmeter
US4831885A (en) 1986-04-28 1989-05-23 Dahlin Erik B Acoustic wave supressor for Coriolis flow meter
US4793191A (en) 1986-09-26 1988-12-27 Flowtec Ag Mass flow meter operating by the cariolis principle
US4801897A (en) 1986-09-26 1989-01-31 Flowtec Ag Arrangement for generating natural resonant oscillations of a mechanical oscillating system
US4879910A (en) * 1987-07-10 1989-11-14 Lew Hyok S Torsional vibration convective inertia force flowmeter
US5796011A (en) 1993-07-20 1998-08-18 Endress + Hauser Flowtech Ag Coriolis-type mass flow sensor
US5370002A (en) 1993-07-23 1994-12-06 Micro Motion, Inc. Apparatus and method for reducing stress in the brace bar of a Coriolis effect mass flow meter
WO1996008697A2 (en) * 1994-09-08 1996-03-21 Smith Meter Inc. Mass flowmeter and conduit assembly
US6311136B1 (en) 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
EP1001254A1 (de) 1998-05-29 2000-05-17 Oval Corporation Coriolismassendurchflussmesser
US5969264A (en) * 1998-11-06 1999-10-19 Technology Commercialization Corp. Method and apparatus for total and individual flow measurement of a single-or multi-phase medium
US6308580B1 (en) 1999-03-19 2001-10-30 Micro Motion, Inc. Coriolis flowmeter having a reduced flag dimension
US20020157479A1 (en) 1999-10-29 2002-10-31 Matthew T. Crisfield Coriolis flowmeter having a reduced flag dimension for handling large mass flows
US20030070495A1 (en) 2000-01-21 2003-04-17 Kourush Kolahi Mass flow rate measuring device
US6711958B2 (en) 2000-05-12 2004-03-30 Endress + Hauser Flowtec Ag Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
EP1248084A1 (de) 2001-04-05 2002-10-09 Endress + Hauser Flowtec AG Coriolis-Massedurchfluss-Aufnehmer mit zwei gebogenen Messrohren
US6415668B1 (en) 2001-07-23 2002-07-09 Fmc Technologies, Inc. De-coupling extraneous modes of vibration in a coriolis mass flowmeter
US7134347B2 (en) 2001-08-29 2006-11-14 Endress+Hauser Flowtec Ag Vibration-type measuring sensor
WO2003027616A1 (de) 2001-09-21 2003-04-03 Endress + Hauser Flowtec Ag Messaufnehmer vom vibrationstyp
US6920798B2 (en) 2001-09-21 2005-07-26 Endress + Hauser Flowtec Ag Vibratory transducer
US20060283264A1 (en) 2003-08-26 2006-12-21 Siemens Flow Instruments A/S Coriolis mass flow meter
DE102004035971A1 (de) * 2004-07-23 2006-02-16 Endress + Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp zum Messen von in zwei Mediumsleitungen strömenden Medien sowie In-Line-Meßgerät mit einem solchen Meßaufnehmer
US20060150750A1 (en) 2004-12-13 2006-07-13 Endress + Hauser Flowtec Ag Vibratory measurement transducer
US7350421B2 (en) 2004-12-13 2008-04-01 Endress + Hauser Flowtec Ag Vibratory measurement transducer
US7392709B2 (en) 2005-05-16 2008-07-01 Endress + Hauser Flowtec Ag Inline measuring device with a vibration-type measurement pickup
US20070151368A1 (en) 2005-12-15 2007-07-05 Krohne Ag Device for measuring the mass rate of flow

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044179A1 (de) 2010-11-11 2012-05-16 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler von Vibrationstyp
WO2013149817A1 (de) * 2012-04-03 2013-10-10 Endress+Hauser Flowtec Ag MEßWANDLER VOM VIBRATIONSTYP
CN104204735A (zh) * 2012-04-03 2014-12-10 恩德斯+豪斯流量技术股份有限公司 振动型测量变换器
US9097570B2 (en) 2012-04-03 2015-08-04 Endress + Hauser Flowtec Ag Measuring transducer of a vibration-type having slits in the coupling elements for tuning eigenfrequency of the measuring tubes
RU2579818C1 (ru) * 2012-04-03 2016-04-10 Эндресс + Хаузер Флоутек Аг Измерительный преобразователь вибрационного типа, измерительная система для протекающей через трубопровод среды и способ постройки частоты системы труб
CN104204735B (zh) * 2012-04-03 2017-12-29 恩德斯+豪斯流量技术股份有限公司 振动型测量变换器
DE102014118367A1 (de) * 2014-12-10 2016-06-16 Endress+Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp sowie damit gebildetes Meßsystem
US10705055B2 (en) 2014-12-10 2020-07-07 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type as well as measuring system formed therewith
US10408652B2 (en) 2014-12-31 2019-09-10 Endress + Hauser Flowtec Ag Coriolis mass flow measuring device with four bent measuring tubes
DE102015104931A1 (de) 2014-12-31 2016-06-30 Endress + Hauser Flowtec Ag Coriolis-Massedurchfussmessgerät mit vier gebogenen Messrohren
WO2016107694A1 (de) 2014-12-31 2016-07-07 Endress+Hauser Flowtec Ag Coriolis-massedurchfussmessgerät mit vier gebogenen messrohren
US10718648B2 (en) 2016-06-30 2020-07-21 Endress+Hauser Flowtec Ag Method for determining a physical parameter of a compressible medium with a measuring transducer of vibration-type and measuring transducer for performing such a method
DE102016112002B4 (de) 2016-06-30 2023-03-23 Endress + Hauser Flowtec Ag Verfahren zum Bestimmen eines physikalischen Parameters eines kompressiblen Mediums mit einem Messaufnehmer vom Vibrationstyp und Messaufnehmer zur Durchführung eines solchen Verfahrens
DE102016112002A1 (de) * 2016-06-30 2018-01-04 Endress + Hauser Flowtec Ag Verfahren zum Bestimmen eines physikalischen Parameters eines kompressiblen Mediums mit einem Messaufnehmer vom Vibrationstyp und Messaufnehmer zur Durchführung eines solchen Verfahrens
WO2018001634A1 (de) * 2016-06-30 2018-01-04 Endress+Hauser Flowtec Ag Verfahren zum bestimmen eines physikalischen parameters eines kompressiblen mediums mit einem messaufnehmer vom vibrationstyp und messaufnehmer zur durchführung eines solchen verfahrens
US10712189B2 (en) 2016-06-30 2020-07-14 Endress+Hauser Flowtec Ag Method for operating a measuring transducer of vibration-type
WO2018001635A1 (de) * 2016-06-30 2018-01-04 Endress+Hauser Flowtec Ag Verfahren zum betreiben eines messaufnehmers vom vibrationstyp
DE102016125615A1 (de) * 2016-12-23 2018-06-28 Endress + Hauser Flowtec Ag Messaufnehmer vom Vibrationstyp zum Messen der Dichte und/oder des Massedurchflusses eines Mediums
DE102016125616A1 (de) * 2016-12-23 2018-06-28 Endress+Hauser Flowtec Ag Messaufnehmer vom Vibrationstyp
US10768034B2 (en) 2016-12-23 2020-09-08 Endress+Hauser Flowtec Ag Measurement sensor of the vibrational type for measuring the density and/or the mass flow of a flowing medium
US10866129B2 (en) 2016-12-23 2020-12-15 Endress+Hauser Flowtec Ag Vibration-type sensor for measuring the density and/or mass flow rate of a medium
DE102018133318A1 (de) * 2018-12-21 2020-06-25 Endress+Hauser Flowtec Ag Vibronisches Meßsystem
US12018966B2 (en) 2018-12-21 2024-06-25 Endress+Hauser Flowtec Ag Vibronic measuring system with two driver circuits and two measurement transmitter circuits each in communication with an exciter and a pair of sensors
WO2022242975A1 (de) * 2021-05-21 2022-11-24 Endress+Hauser Flowtec Ag VIBRONISCHES MEßSYSTEM
CN118226424A (zh) * 2024-05-16 2024-06-21 中交华南勘察测绘科技有限公司 一种配合测深仪换能器进行声呐校准的测试件及测试方法

Similar Documents

Publication Publication Date Title
EP2516972B1 (de) Messaufnehmer vom vibrationstyp
EP2406590B1 (de) MEßAUFNEHMER VOM VIBRATIONSTYP SOWIE IN-LINE-MEßGERÄT MIT EINEM SOLCHEN MEßAUFNEHMER
EP2705334B1 (de) Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
EP2612114B1 (de) Messsystem mit einem messaufnehmer vom vibrationstyp
EP2659236B1 (de) Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
EP2616780B1 (de) MEßSYSTEM MIT EINEM MEßAUFNEHMER VOM VIBRATIONSTYP
EP2406588B1 (de) MEßAUFNEHMER VOM VIBRATIONSTYP SOWIE IN-LINE-MESSGERÄT MIT EINEM SOLCHEN MESSAUFNEHMER
DE102009055069A1 (de) Meßaufnehmer vom Vibrationstyp
EP1381830B1 (de) Messwandler vom vibrationstyp
DE102014118367A1 (de) Meßaufnehmer vom Vibrationstyp sowie damit gebildetes Meßsystem
EP2694929A1 (de) Frequenzabgleichsverfahren für eine rohranordnung
DE102010039627A1 (de) Meßaufnehmer vom Vibrationstyp sowie damit gebildetes Meßsystem
DE102009027580A1 (de) Meßaufnehmer vom Vibrationstyp sowie In-line-Meßgerät mit einem solchen Meßaufnehmer
DE102020131649A1 (de) Vibronisches Meßsystem

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: HAHN, CHRISTIAN, DIPL.-PHYS. DR.RER.NAT., DE

R120 Application withdrawn or ip right abandoned