DE102009035421A1 - Method for measuring near-field dispersion of electromagnetic transient emissions of measuring object, involves forming correlation functions from measuring signals detected by near-field sensors that are movable along surface within object - Google Patents
Method for measuring near-field dispersion of electromagnetic transient emissions of measuring object, involves forming correlation functions from measuring signals detected by near-field sensors that are movable along surface within object Download PDFInfo
- Publication number
- DE102009035421A1 DE102009035421A1 DE102009035421A DE102009035421A DE102009035421A1 DE 102009035421 A1 DE102009035421 A1 DE 102009035421A1 DE 102009035421 A DE102009035421 A DE 102009035421A DE 102009035421 A DE102009035421 A DE 102009035421A DE 102009035421 A1 DE102009035421 A1 DE 102009035421A1
- Authority
- DE
- Germany
- Prior art keywords
- measuring
- field
- probes
- near field
- electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0892—Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Nahfeldmessung von elektromagnetischen Emissionen im Zeitbereich sowie eine Anordnung zur Durchführung des Verfahrens. Zur Beurteilung der elektromagnetischen Verträglichkeit von Schaltungen und Systemen ist die Messung der strahlungsgebundenen Störaussendungen von großer Bedeutung. Unter elektromagnetischer Verträglichkeit wird die Eigenschaft von Bauelementen, Schaltungen und Systemen verstanden, andere Einrichtungen nicht zu stören bzw. von anderen Einrichtungen nicht gestört zu werden. Die Eigenschaft, andere Einrichtungen nicht zu stören, wird als aktive elektromagnetische Verträglichkeit bezeichnet.The The invention relates to a method for near field measurement of electromagnetic Emissions in the time domain and an order to carry them out of the procedure. To assess the electromagnetic compatibility of circuits and systems is the measurement of the radiated emissions of great importance. Under electromagnetic compatibility becomes the property of components, circuits and systems understood not to disturb other facilities or of other facilities are not disturbed. The property, Not disturbing other facilities is called active electromagnetic Compatibility called.
Zur Feststellung der aktiven elektromagnetischen Verträglichkeit werden die Störaussendungen gemessen. Diese Messungen erfolgen in der Regel spektral aufgelöst, so dass die spektrale Verteilung der Störaussendungen festgestellt werden kann.to Determination of active electromagnetic compatibility the emissions are measured. These measurements take place usually spectrally resolved, so that the spectral Distribution of the emissions can be found.
Gegenüber den traditionellen spektralen Messmethoden bilden die im letzten Jahrzehnt entwickelten Zeitbereichsmethoden zur Messung elektromagnetischer Störaussendungen die Vorteile einer um Gröoessenordnungen verringerten Messzeit sowie einer verbesserten Parametererfassung.Across from The traditional spectral measuring methods are the last ones Decade developed time domain methods for measuring electromagnetic Noise emissions the benefits of order of magnitude reduced measurement time and improved parameter acquisition.
Verfahren und Anordnungen zur Zeitbereichsmessung der elektromagnetischer Störaussendungen wurden in der Patentschrift
- •
DE 103 15 372 B4
- •
F. Krug, P. Russer, ”The time-domain electromagnetic interference measurement system”, IEEE Transactions an Electromagnetic Compatibility, Vol. 45, No. 2, Mai 2003 S. 330–338 - •
F. Krug, D. Müller, P. Russer, Signal processing strategies with the TDEMI measurement system IEEE Transactions an Instrumentation and Measurement, Vol. 53, No. 5, Oktober 2004 S. 1402–1408 - •
S. Braun, F. Krug, und P. Russer, ”A novel automatic digital quasi-peak detector for a time domain measurement system,” 2004 InternationalSymposium an Electromagnetic Compatibility, EMC 2004, S. 919–924, 2004
- • Die Zeitbereichsmessung kann wesentlich schneller erfolgen als eine Messung im Frequenzbereich.
- • Darüber hinaus liefert eine Zeitbereichsmessung auch die Phaseninformation sowie Impulsfominformation über die Störungen, die bei der Frequenzbereichsmessung in der Regel verloren gehen.
- •
DE 103 15 372 B4
- •
F. Krug, P. Russer, "The time-domain electromagnetic interference measurement system", IEEE Transactions on Electromagnetic Compatibility, Vol. 2, May 2003 pp. 330-338 - •
F. Krug, D. Müller, P. Russer, Signal Processing Strategies with the TDEMI Measurement System IEEE Transactions on Instrumentation and Measurement, Vol. 5, October 2004 p. 1402-1408 - •
S. Braun, F. Krug, and P. Russer, "A novel automatic digital quasi-peak detector for a time domain measurement system," 2004 International Symposium on Electromagnetic Compatibility, EMC 2004, pp. 919-924, 2004
- • The time domain measurement can be much faster than a measurement in the frequency domain.
- • In addition, a time domain measurement also provides the phase information as well as pulse information about the disturbances that are usually lost in the frequency domain measurement.
Bei den Zeitbereichsmethoden zur Messungen elektromagnetischer Störemissionen tritt das Problem der Dynamikbegrenzung durch die begrenzte Amplitudenauflösung breitbandiger Analog-Digital-Wandler mit Abtastraten im GHz-Bereich auf. Verfahren sowie Anordnungen zur zur Erhöhung der Dynamik wurden in den Offenlegungsschriften
- •
DE 10 2005 026 928 A1 - •
DE 10 2005 032 982 A1
- •
S. Braun und P. Russer, ”A low-noise multiresolution high-dynamic Ultra-broad-band time-domain EMI measurement system,” IEEE Transactions an Microwave Theory and Techniques, vol. 53, 2005, S. 3354–3363 - •
S. Braun, T. Donauer, und P. Russer, 'A Real-Time Time-Domain EMI Measurement System for Full-Compliance Measurements According to CISPR 16-1-1,” IEEE Transactions an Electromagnetic Compatibility, vol. 50, S. 259–267, 2008
- •
DE 10 2005 026 928 A1 - •
DE 10 2005 032 982 A1
- •
S. Braun and P. Russer, "A low-noise multiresolution high-dynamic ultra-broadband time domain EMI measurement system," IEEE Transactions to Microwave Theory and Techniques, vol. 53, 2005, pp. 3354-3363 - •
S. Braun, T. Donauer, and P. Russer, "Real Time Time-Domain EMI Measurement System for Full-Compliance Measurements According to CISPR 16-1-1," IEEE Transactions to Electromagnetic Compatibility, vol. 50, pp. 259-267, 2008
Gegenüber früheren Systemen zur Messung der Störaussendungen, bei denen Störaussendungen mit Hilfe eines abstimmbaren Empfängers gemessen wurden, weisen moderne Zeitbereichsmesssysteme den Vorteil wesentlich kürzerer Messzeiten auf, da bei diesen Systemen das Störsignal mit hoher Abtastrate in einem breiten Frequenzband digitalisiert wird und das Störaussendungsspektrum danach durch digitale Signalverarbeitung aus dem abgetasteten Signal berechnet wird.Across from previous systems for the measurement of emissions, where emissions with the help of a tunable Receivers were measured, have modern time domain measuring systems the advantage of much shorter measurement times, since at These systems, the interference signal with high sampling rate in a wide frequency band is digitized and the emission spectrum then by digital signal processing from the sampled signal is calculated.
Die Messung der strahlungsgebundenen Störaussendungen wird vielfach in einer geschirmten und breitbandig reflexionsfrei innen ausgekleideten Messkabine durchgeführt. Derartige Messkabinen sind sehr teuer.The Measurement of radiation-bound emissions often in a screened and broadband reflection-free interior lined measuring booth carried out. Such measuring booths are very expensive.
Eine Alternative zu Messungen der Störaussendungen in großen Messkabinen steht in der Nahfeldmessung der Störaussendungen. Dabei wird mit Nahfeldsonden die räumliche Verteilung des elektrischen oder magnetischen Feldes oder sowohl des elektrischen als auch des magnetischen Feldes in einer Fläche oberhalb des zu vermessenden Objektes gemessen. Derartige Anordnungen sind z. B. in den Druckschriften
- •
X. Dong, S. Deng, T. Hubing, und D. Beetner, ”Analysis of chip-level EMI using near-field magnetic scanning,” Electromagnetic Compatibility, 2004. EMC 2004. 2004 InternationalSymposium on, vol. 1, 2004 - •
A. Tankielun, U. Keller, E. Sicard, P. Kralicek, und B. Vrignon, ”Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation,” IEEE EMC Society Newsletter (October 2006) - •
A. Tankielun, ”Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanner,” Dissertation, Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover, (2007)
- •
D. Baudry, A. Louis, und B. Mazari, ”Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications,” Progress In Electromagnetics Research, vol. 60, 2006, S. 311–333 - •
A. Tankielun, U. Keller, E. Sicard, P. Kralicek, und B. Vrignon, ”Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation,” IEEE EMC Society Newsletter (October 2006) - •
T. Ordas, M. Lisart, E. Sicard, P. Maurine, und L. Torres, ”Near-Field Mapping System to Scan in Time Domain the Magnetic Emissions of Integrated Circuits,” Proceedings of the 18th International Workshop an Power and Timing Modeling Optimization and Simulation, 2008
- •
X. Dong, S. Deng, T. Hubing, and D. Beetner, "Analysis of chip-level EMI using near-field magnetic scanning," Electromagnetic Compatibility, 2004. EMC 2004. 2004 International Symposium on, vol. 1, 2004 - •
A. Tankielun, U. Keller, E. Sicard, P. Kralicek, and B. Vrignon, "Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation," IEEE EMC Society Newsletter (October 2006) - •
A. Tankielun, "Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanners," Dissertation, Faculty of Electrical Engineering and Computer Science, Gottfried Wilhelm Leibniz Universität Hannover, (2007)
- •
D. Baudry, A. Louis, and B. Mazari, "Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications," Progress In Electromagnetics Research, vol. 60, 2006, pp. 311-333 - •
A. Tankielun, U. Keller, E. Sicard, P. Kralicek, and B. Vrignon, "Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation," IEEE EMC Society Newsletter (October 2006) - •
T. Ordas, M. Lisart, E. Sicard, P. Maurine, and L. Torres, "Near-Field Mapping System to Scan in Time Domain of the Magnetic Emissions of Integrated Circuits," Proceedings of the 18th International Workshop on Power and Timing Modeling Optimization and Simulation, 2008
Zu einer vollständigen Charakterisierung des Nahfeldes genügt es, das emittierende Objekt auf einer das Objekt vollständig umschließenden Fläche zu vermessen, wobei eine vollständige Beschreibung durch Vermessung entweder des tangentialen elektrischen Feldes oder des tangentialen magnetischen Feldes entlang der Fläche erforderlich ist. Nahfeldmessungen entlang von das Objekt umschließenden zylindrischen Flächen sind in den Druckschriften
- •
O. M. Bucci, C. Gennarelli, G. Riccio, V. Speranza, und C. Savarese, ”Nonredundant representation of the electromagnetic fields over a cylinder with application to the near-field far-field transformation,” Electromagnetics, vol. 16, 1996, S. 273–290 - •
F. D'Agostino, F. Ferrara, C. Gennarelli, G. Riccio, und C. Savarese, ”NF-FF transformation with cylindrical scanning from a minimum number of data,” Microwave and Optical Technology Letters, vol. 35, 2002
- •
Y. Rahmat-Samii und J. Lemanczyk, ”Application of spherical near-field measurements to microwave holographic diagnosis of antennas,” Antennas and Propagation, IEEE Transactions on, vol. 36, 1988, S. 869–878 - •
H. Thal und J. Manges, ”Theory and practice for a spherical-scan near-field antenna range”, IEEE Transactions on Antennas and Propagation, vol. 36, 1988, S. 815–821
- •
T. K. Sarkar und A. Taaghol, ”Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current andMoM,” IEEE Transactions on Antennas and Propagation, vol. 47, 1999, S. 566–573
- •
OM Bucci, C. Gennarelli, G. Riccio, V. Speranza, and C. Savarese, "Nonredundant representation of the electromagnetic fields of a cylinder with application to the near-field far-field transformation," Electromagnetics, vol. 16, 1996, pp. 273-290 - •
F. D'Agostino, F. Ferrara, C. Gennarelli, G. Riccio, and C. Savarese, "NF-FF Transformation with Cylindrical Scanning from a Minimum Number of Data," Microwave and Optical Technology Letters, vol. 35, 2002
- •
Y. Rahmat-Samii and J. Lemanczyk, "Application of spherical near-field measurements to microwave holographic diagnosis of antennas," Antennas and Propagation, IEEE Transactions on, vol. 36, 1988, pp. 869-878 - •
H. Thal and J. Manges, "Theory and practice for a spherical-scan near-field antenna range", IEEE Transactions on Antennas and Propagation, vol. 36, 1988, p. 815-821
- •
TK Sarkar and A. Taaghol, "Near-field to near / far-field transformation for arbitrary near-field, using an equivalent electric current and MO," IEEE Transactions on Antennas and Propagation, vol. 47, 1999, pp. 566-573
Im Falle eines deterministischen elektromagnetischen Feldes ermöglicht die Kenntnis der tangentialen elektrischen oder magnetischen Feldverteilungen auf einer das Objekt umschließenden Fläche eine Berechnung der Winkelverteilung der abgestrahlten elektromagnetischen Energie. Ebenso kann in diesem Fall bei Einbettung des Objektes in eine beliebige Umgebung berechnet werden.in the Case of a deterministic electromagnetic field the knowledge of the tangential electrical or magnetic field distributions on a surface enclosing the object Calculation of the angular distribution of radiated electromagnetic Energy. Similarly, in this case, when embedding the object be calculated in any environment.
Bei genannten Methoden zur Messung der Nahfeldverteilung wird nur die räumliche Verteilung der Amplituden oder der Energiedichte gemessen. Es wird keine Korrelation zwischen den Amplituden an zwei beliebigen Abtastpunkten des Nahfeldes gebildet. Eine rechnerische Bestimmung der Fernfeldverteilung aus diesen gemessenen Nahfeldwerten bzw. eine Simulation der von dem Messobjekt in einer komplexen Umgebung hervorgerufenen räumlichen Feldverteilung ist hierbei nur für deterministische Nahfelder, d. h. für Nahfelder mit bekanntem räumlich-zeitlichem Verlauf, nicht jedoch für stochastische Nahfelder möglich.at mentioned methods for measuring the near field distribution is only the spatial distribution of amplitudes or energy density measured. There will be no correlation between the amplitudes at two formed arbitrary sampling points of the near field. A mathematical one Determination of the far field distribution from these measured near field values or a simulation of the object being measured in a complex environment caused spatial field distribution is here only for deterministic near fields, d. H. for near fields with a known spatial-temporal course, but not possible for stochastic near fields.
Bei elektromagnetischen Störaussendungen handelt es sich um stochastische elektromagnetische Felder. Wie aus der Literatur, siehe z. B.
- •
H. Bittel und L. Storm, Rauschen, Springer, Berlin, (1998) - •
P. Russer, ”Noise Analysis of Linear Microwave Circuits with General TopolÂogy”, in: ”Review of Radio Sience 1993–1996”, Hrsg.: W. Ross Stone, Oxford University Press, S. 361–393, (1996) - •
P. Russer, S. Müller, ”Noise analysis of linear microwave circuits”, International Journal of, Numerical Modelling, Electronic Networks, Devices and Fields, No. 3, S. 287–316, 1990
- •
H. Bittel and L. Storm, Rauschen, Springer, Berlin, (1998) - •
P. Russer, "Noise Analysis of Linear Microwave Circuits with General Topology", in: "Review of Radio Science 1993-1996", ed.: W. Ross Stone, Oxford University Press, pp. 361-393, (1996) - •
P. Russer, S. Müller, "Noise Analysis of Linear Microwave Circuits", International Journal of Numerical Modeling, Electronic Networks, Devices and Fields, no. 3, pp. 287-316, 1990
Für eine vollständige Beschreibung der stochastischen Nahfeldverteilung, die eine Berechnung der Fernfeldwinkelverteilung bzw. eine Berechnung der Energieverteilung in einer beliebigen Umgebung, in welche das strahlende Objekt eingebettet wird, ermöglicht, sind daher die Korrelationsfunktionen bzw. Korrelationsspektren messtechnisch zu erfassen, wobei in jedem Abtastpunkt die Autokorrelationsfunktion bzw. das Autokorrelationsspektrum des gemessenen Feldwertes zu bestimmen ist und für jedes Paar von Abtastpunkten die Kreuzkorrelationsfunktion bzw. das Kreuzkorrelationsspektrum zu messen ist. Zur Realisierung dieses Messverfahrens wird das elektrische und/oder magnetische Feld gleichzeitig an zwei verschiedenen Messpunkten mit Feldsonden gemessen und es wird aus den digitalisierten Messsignalen beider Feldsonden die durch digitale Signalverarbeitung in bekannter Weise die Kreuzkorrelationsfunktion und/oder das Kreuzkorrelationsspektrum gebildet.For a complete description of the stochastic near-field distribution, a calculation of the far field angle distribution or a calculation of the Energy distribution in any environment in which the radiant Object is embedded, therefore, are the correlation functions or correlation spectra metrologically to capture, with in each Sample point the autocorrelation function or the autocorrelation spectrum of the measured field value and for each pair of sampling points, the cross-correlation function or the cross-correlation spectrum to measure. To realize this measuring method, the electrical and / or magnetic field simultaneously at two different measuring points measured with field probes and it will be from the digitized measurement signals both field probes by digital signal processing in known Form the cross-correlation function and / or the cross-correlation spectrum.
Ein System, bei dem die Störemissionen von zwei unabhängigen Antennen detektiert werden und die von den Antennen erfassten Signale in zwei unabängigen Kanälen digitalisiert und weiter verarbeitet werden wird in der Offenlegungsschrift
- •
DE 10 2007 042 266 A1
- •
Arnd Frech, Amer Zakaria, Stephan Braun und Peter Russer ”Ambient Noise Cancelation with a Time-domain EMI Measurement System using Adaptive Filtering”, Proc. 2008 Asia-Pacific Sympsoium an Electromagnetic Compatibility, 19–22 May 2008, Singapore, 2008
- •
DE 10 2007 042 266 A1
- •
Arnd Frech, Amer Zakaria, Stephan Braun and Peter Russer "Ambient Noise Canceling with a Time Domain EMI Measurement System using Adaptive Filtering", Proc. 2008 Asia-Pacific Symposium on Electromagnetic Compatibility, 19-22 May 2008, Singapore, 2008
Die in dieser Patentschrift beschriebene Erfindung gibt ein Verfahren an, welches es erlaubt, stochastische Nahfelder messtechnisch so zu erfassen, dass aus den gewonnenen Daten die Fernfeldverteilung der spektrlen Leistungsdichte und die spektrale Energiedichteverteilung in komplexen Umgebungen berechnet werden können. Die erfindungsgemäße Lösung des Problems besteht darin, in einer oberhalb des Messobjektes oder in einer das Messobjekt umschließenden Fläche das zur Fläche tangentiale elektromagnetische Feld mit jeweils zwei elektrischen und/oder magnetischen vektoriellen Feldsonden abzutasten und dabei die Richtung und Betrag der tangentialen elektrischen und/oder magnetischen Feldkomponenten paarweise gleichzeitig in zwei verschiedenen Abtastpunkten zu messen und für jedes Paar von Messwerten die Korrelationsfunkion und/oder das Korrelationsspektrum der von beiden Feldsonden gemessenen Feldwerte zu bilden.The The invention described in this patent gives a method which allows stochastic nearfields so metrologically to grasp that from the data obtained the far field distribution the spectral power density and the spectral energy density distribution can be calculated in complex environments. The inventive Solution to the problem is to be in one above the DUT or in a measuring object enclosing Area the surface tangential electromagnetic Field with two electric and / or magnetic vectorial field probes to scan while keeping the direction and magnitude of the tangential electrical and / or magnetic field components in pairs simultaneously in to measure two different sampling points and for each Pair of measurements, the correlation function and / or the correlation spectrum form the field values measured by both field probes.
Sind die Autokorrelationsspektren der tangentialen elektrischen und/oder magnetischen Feldkomponenten in allen Abtastpunkten, sowie die Kreuzkorrelationsspektren der gemessenen Feldwerte für alle Paare von Abtastpunkten bekannt, so läßt sich aus diesen Parametern in bekannter Weise die Winkelverteilung der spektralen Leistungsdichte im Fernfeld sowie die räumliche Verteilung der spektralen Energiedichte in komplexen Umgebungen des Messobjekts berechnen.are the autocorrelation spectra of the tangential electrical and / or magnetic field components in all sampling points, as well as the cross-correlation spectra the measured field values for all pairs of sample points known, can be determined from these parameters in the angular distribution of the spectral power density in the known manner Far field as well as the spatial distribution of the spectral Calculate energy density in complex environments of the DUT.
In
einer in
In
einer weiteren vorteilhaften Ausführung der erfindungsgemässen
Anordnung nach
In
der in
In
der in
Beschreibung der AbbildungenDescription of the pictures
ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- - DE 10315372 B4 [0004] - DE 10315372 B4 [0004]
- - DE 102005026928 A1 [0005] DE 102005026928 A1 [0005]
- - DE 102005032982 A1 [0005] - DE 102005032982 A1 [0005]
- - DE 102007042266 A1 [0014] DE 102007042266 A1 [0014]
Zitierte Nicht-PatentliteraturCited non-patent literature
- - F. Krug, P. Russer, ”The time-domain electromagnetic interference measurement system”, IEEE Transactions an Electromagnetic Compatibility, Vol. 45, No. 2, Mai 2003 S. 330–338 [0004] F. Krug, P. Russer, "The time-domain electromagnetic interference measurement system", IEEE Transactions on Electromagnetic Compatibility, Vol. 2, May 2003 pp. 330-338 [0004]
- - F. Krug, D. Müller, P. Russer, Signal processing strategies with the TDEMI measurement system IEEE Transactions an Instrumentation and Measurement, Vol. 53, No. 5, Oktober 2004 S. 1402–1408 [0004] F. Krug, D. Müller, P. Russer, Signal Processing Strategies with the TDEMI Measurement System IEEE Transactions on Instrumentation and Measurement, Vol. 5, October 2004 p. 1402-1408 [0004]
- - S. Braun, F. Krug, und P. Russer, ”A novel automatic digital quasi-peak detector for a time domain measurement system,” 2004 InternationalSymposium an Electromagnetic Compatibility, EMC 2004, S. 919–924, 2004 [0004] - S. Braun, F. Krug, and P. Russer, "A novel automatic digital quasi-peak detector for a time domain measurement system," 2004 International Symposium on Electromagnetic Compatibility, EMC 2004, pp. 919-924, 2004 [0004]
- - S. Braun und P. Russer, ”A low-noise multiresolution high-dynamic Ultra-broad-band time-domain EMI measurement system,” IEEE Transactions an Microwave Theory and Techniques, vol. 53, 2005, S. 3354–3363 [0005] S. Braun and P. Russer, "A low-noise multiresolution high-dynamic ultra-broad band time domain EMI measurement system," IEEE Transactions to Microwave Theory and Techniques, vol. 53, 2005, pp. 3354-3363 [0005]
- - S. Braun, T. Donauer, und P. Russer, 'A Real-Time Time-Domain EMI Measurement System for Full-Compliance Measurements According to CISPR 16-1-1,” IEEE Transactions an Electromagnetic Compatibility, vol. 50, S. 259–267, 2008 [0005] - S. Braun, T. Donauer, and P. Russer, "A Real-Time Time-Domain EMI Measurement System for Full-Compliance Measurements According to CISPR 16-1-1," IEEE Transactions to Electromagnetic Compatibility, vol. 50, pp. 259-267, 2008 [0005]
- - X. Dong, S. Deng, T. Hubing, und D. Beetner, ”Analysis of chip-level EMI using near-field magnetic scanning,” Electromagnetic Compatibility, 2004. EMC 2004. 2004 InternationalSymposium on, vol. 1, 2004 [0008] X. Dong, S. Deng, T. Hubing, and D. Beetner, "Analysis of chip-level EMI using near-field magnetic scanning," Electromagnetic Compatibility, 2004. EMC 2004. 2004 International Symposium on, vol. 1, 2004 [0008]
- - A. Tankielun, U. Keller, E. Sicard, P. Kralicek, und B. Vrignon, ”Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation,” IEEE EMC Society Newsletter (October 2006) [0008] A. Tankielun, U. Keller, E. Sicard, P. Kralicek, and B. Vrignon, "Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation," IEEE EMC Society Newsletter (October 2006) [0008]
- - A. Tankielun, ”Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanner,” Dissertation, Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover, (2007) [0008] - A. Tankielun, "Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanners," Dissertation, Faculty of Electrical Engineering and Computer Science, Gottfried Wilhelm Leibniz Universität Hannover, (2007) [0008]
- - D. Baudry, A. Louis, und B. Mazari, ”Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications,” Progress In Electromagnetics Research, vol. 60, 2006, S. 311–333 [0008] D. Baudry, A. Louis, and B. Mazari, "Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications," Progress In Electromagnetics Research, vol. 60, 2006, pp. 311-333 [0008]
- - A. Tankielun, U. Keller, E. Sicard, P. Kralicek, und B. Vrignon, ”Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation,” IEEE EMC Society Newsletter (October 2006) [0008] A. Tankielun, U. Keller, E. Sicard, P. Kralicek, and B. Vrignon, "Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation," IEEE EMC Society Newsletter (October 2006) [0008]
- - T. Ordas, M. Lisart, E. Sicard, P. Maurine, und L. Torres, ”Near-Field Mapping System to Scan in Time Domain the Magnetic Emissions of Integrated Circuits,” Proceedings of the 18th International Workshop an Power and Timing Modeling Optimization and Simulation, 2008 [0008] - T. Ordas, M. Lisart, E. Sicard, P. Maurine, and L. Torres, "Near-Field Mapping System to Scan in Time Domain of the Magnetic Emissions of Integrated Circuits," Proceedings of the 18th International Workshop on Power and Technology Timing Modeling Optimization and Simulation, 2008 [0008]
- - O. M. Bucci, C. Gennarelli, G. Riccio, V. Speranza, und C. Savarese, ”Nonredundant representation of the electromagnetic fields over a cylinder with application to the near-field far-field transformation,” Electromagnetics, vol. 16, 1996, S. 273–290 [0009] - OM Bucci, C. Gennarelli, G. Riccio, V. Speranza, and C. Savarese, "Nonredundant representation of the electromagnetic fields over a cylinder with application to the near-field far-field transformation," Electromagnetics, vol. 16, 1996, pp. 273-290 [0009]
- - F. D'Agostino, F. Ferrara, C. Gennarelli, G. Riccio, und C. Savarese, ”NF-FF transformation with cylindrical scanning from a minimum number of data,” Microwave and Optical Technology Letters, vol. 35, 2002 [0009] F. D'Agostino, F. Ferrara, C. Gennarelli, G. Riccio, and C. Savarese, "NF-FF transformation with cylindrical scanning from a minimum number of data", Microwave and Optical Technology Letters, vol. 35, 2002 [0009]
- - Y. Rahmat-Samii und J. Lemanczyk, ”Application of spherical near-field measurements to microwave holographic diagnosis of antennas,” Antennas and Propagation, IEEE Transactions on, vol. 36, 1988, S. 869–878 [0009] Y. Rahmat-Samii and J. Lemanczyk, "Application of spherical near-field measurements to microwave holographic diagnosis of antennas," Antennas and Propagation, IEEE Transactions on, vol. 36, 1988, pp. 869-878 [0009]
- - H. Thal und J. Manges, ”Theory and practice for a spherical-scan near-field antenna range”, IEEE Transactions on Antennas and Propagation, vol. 36, 1988, S. 815–821 [0009] H. Thal and J. Manges, "Theory and practice for a spherical scan near-field antenna range", IEEE Transactions on Antennas and Propagation, vol. 36, 1988, pp. 815-821 [0009]
- - T. K. Sarkar und A. Taaghol, ”Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current andMoM,” IEEE Transactions on Antennas and Propagation, vol. 47, 1999, S. 566–573 [0009] TK Sarkar and A. Taaghol, "Near-field to near-far-field transformation for arbitrary near-field, using an equivalent electric current and MO," IEEE Transactions on Antennas and Propagation, vol. 47, 1999, pp. 566-573 [0009]
- - H. Bittel und L. Storm, Rauschen, Springer, Berlin, (1998) [0012] - H. Bittel and L. Storm, Rauschen, Springer, Berlin, (1998) [0012]
- - P. Russer, ”Noise Analysis of Linear Microwave Circuits with General TopolÂogy”, in: ”Review of Radio Sience 1993–1996”, Hrsg.: W. Ross Stone, Oxford University Press, S. 361–393, (1996) [0012] P. Russer, "Noise Analysis of Linear Microwave Circuits with General Topology", in: "Review of Radio Science 1993-1996", ed. W. Ross Stone, Oxford University Press, pp. 361-393, (1996) [0012]
- - P. Russer, S. Müller, ”Noise analysis of linear microwave circuits”, International Journal of, Numerical Modelling, Electronic Networks, Devices and Fields, No. 3, S. 287–316, 1990 [0012] P. Russer, S. Müller, "Noise Analysis of Linear Microwave Circuits", International Journal of Numerical Modeling, Electronic Networks, Devices and Fields, no. 3, pp. 287-316, 1990 [0012]
- - Arnd Frech, Amer Zakaria, Stephan Braun und Peter Russer ”Ambient Noise Cancelation with a Time-domain EMI Measurement System using Adaptive Filtering”, Proc. 2008 Asia-Pacific Sympsoium an Electromagnetic Compatibility, 19–22 May 2008, Singapore, 2008 [0014] Arnd Frech, Amer Zakaria, Stephan Braun and Peter Russer "Ambient Noise Cancellation with a Time Domain EMI Measurement System Using Adaptive Filtering", Proc. 2008 Asia-Pacific Symposium on Electromagnetic Compatibility, 19-22 May 2008, Singapore, 2008 [0014]
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009035421.2A DE102009035421B4 (en) | 2009-07-31 | 2009-07-31 | Method for near-field measurement of electromagnetic emissions in the time domain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009035421.2A DE102009035421B4 (en) | 2009-07-31 | 2009-07-31 | Method for near-field measurement of electromagnetic emissions in the time domain |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102009035421A1 true DE102009035421A1 (en) | 2011-02-03 |
DE102009035421B4 DE102009035421B4 (en) | 2020-07-02 |
Family
ID=43402591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102009035421.2A Active DE102009035421B4 (en) | 2009-07-31 | 2009-07-31 | Method for near-field measurement of electromagnetic emissions in the time domain |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102009035421B4 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130002275A1 (en) * | 2011-06-30 | 2013-01-03 | Kyung Jin Min | System and method for measuring near field information of device under test |
DE102011115113A1 (en) | 2011-10-07 | 2013-04-11 | Peter Russer | Method for measuring auto-correlation function of signal, involves providing signal in adjustable time interval which is integral multi-face base interval, where two samples are extracted by scanner and are digitalized |
DE102020003581A1 (en) | 2020-06-16 | 2021-12-16 | Peter Russer | Electromagnetic field probe |
WO2024109503A1 (en) * | 2022-11-24 | 2024-05-30 | 吴伟 | Electromagnetic interference measurement method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10315372B4 (en) | 2003-04-03 | 2005-03-31 | Technische Universität München | Method and device for providing a measurement signal and device for detecting an electromagnetic interference |
DE102005026928A1 (en) | 2004-07-14 | 2006-02-09 | Technische Universität München | Analog to digital conversion process for an input signal with high dynamics amplifies and converts signals in at least two channels with at least one having an over control limiter |
DE102005032982A1 (en) | 2004-07-14 | 2006-02-16 | Technische Universität München | Signal-conversion method for converting an incoming analog/digital signal splits the incoming signal into numerous amplitude ranges to make it available to multiple channels for digitalizing |
DE102007042266A1 (en) | 2007-09-06 | 2009-03-12 | Stephan Braun | Method for rejection of ambient interference signal during measurement of interference emissions of electric and electronic devices, involves digitalizing signal of antenna through analog to digital converter |
-
2009
- 2009-07-31 DE DE102009035421.2A patent/DE102009035421B4/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10315372B4 (en) | 2003-04-03 | 2005-03-31 | Technische Universität München | Method and device for providing a measurement signal and device for detecting an electromagnetic interference |
DE102005026928A1 (en) | 2004-07-14 | 2006-02-09 | Technische Universität München | Analog to digital conversion process for an input signal with high dynamics amplifies and converts signals in at least two channels with at least one having an over control limiter |
DE102005032982A1 (en) | 2004-07-14 | 2006-02-16 | Technische Universität München | Signal-conversion method for converting an incoming analog/digital signal splits the incoming signal into numerous amplitude ranges to make it available to multiple channels for digitalizing |
DE102007042266A1 (en) | 2007-09-06 | 2009-03-12 | Stephan Braun | Method for rejection of ambient interference signal during measurement of interference emissions of electric and electronic devices, involves digitalizing signal of antenna through analog to digital converter |
Non-Patent Citations (19)
Title |
---|
A. Tankielun, "Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanner," Dissertation, Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover, (2007) |
A. Tankielun, U. Keller, E. Sicard, P. Kralicek, und B. Vrignon, "Electromagnetic Near-Field Scanning for Microelectronic Test Chip Investigation," IEEE EMC Society Newsletter (October 2006) |
Arnd Frech, Amer Zakaria, Stephan Braun und Peter Russer "Ambient Noise Cancelation with a Time-domain EMI Measurement System using Adaptive Filtering", Proc. 2008 Asia-Pacific Sympsoium an Electromagnetic Compatibility, 19-22 May 2008, Singapore, 2008 |
D. Baudry, A. Louis, und B. Mazari, "Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications," Progress In Electromagnetics Research, vol. 60, 2006, S. 311-333 |
F. D'Agostino, F. Ferrara, C. Gennarelli, G. Riccio, und C. Savarese, "NF-FF transformation with cylindrical scanning from a minimum number of data," Microwave and Optical Technology Letters, vol. 35, 2002 |
F. Krug, D. Müller, P. Russer, Signal processing strategies with the TDEMI measurement system IEEE Transactions an Instrumentation and Measurement, Vol. 53, No. 5, Oktober 2004 S. 1402-1408 |
F. Krug, P. Russer, "The time-domain electromagnetic interference measurement system", IEEE Transactions an Electromagnetic Compatibility, Vol. 45, No. 2, Mai 2003 S. 330-338 |
H. Bittel und L. Storm, Rauschen, Springer, Berlin, (1998) |
H. Thal und J. Manges, "Theory and practice for a spherical-scan near-field antenna range", IEEE Transactions on Antennas and Propagation, vol. 36, 1988, S. 815-821 |
O. M. Bucci, C. Gennarelli, G. Riccio, V. Speranza, und C. Savarese, "Nonredundant representation of the electromagnetic fields over a cylinder with application to the near-field far-field transformation," Electromagnetics, vol. 16, 1996, S. 273-290 |
P. Russer, "Noise Analysis of Linear Microwave Circuits with General TopolÂogy", in: "Review of Radio Sience 1993-1996", Hrsg.: W. Ross Stone, Oxford University Press, S. 361-393, (1996) |
P. Russer, S. Müller, "Noise analysis of linear microwave circuits", International Journal of, Numerical Modelling, Electronic Networks, Devices and Fields, No. 3, S. 287-316, 1990 |
S. Braun und P. Russer, "A low-noise multiresolution high-dynamic Ultra-broad-band time-domain EMI measurement system," IEEE Transactions an Microwave Theory and Techniques, vol. 53, 2005, S. 3354-3363 |
S. Braun, F. Krug, und P. Russer, "A novel automatic digital quasi-peak detector for a time domain measurement system," 2004 InternationalSymposium an Electromagnetic Compatibility, EMC 2004, S. 919-924, 2004 |
S. Braun, T. Donauer, und P. Russer, 'A Real-Time Time-Domain EMI Measurement System for Full-Compliance Measurements According to CISPR 16-1-1," IEEE Transactions an Electromagnetic Compatibility, vol. 50, S. 259-267, 2008 |
T. K. Sarkar und A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current andMoM," IEEE Transactions on Antennas and Propagation, vol. 47, 1999, S. 566-573 |
T. Ordas, M. Lisart, E. Sicard, P. Maurine, und L. Torres, "Near-Field Mapping System to Scan in Time Domain the Magnetic Emissions of Integrated Circuits," Proceedings of the 18th International Workshop an Power and Timing Modeling Optimization and Simulation, 2008 |
X. Dong, S. Deng, T. Hubing, und D. Beetner, "Analysis of chip-level EMI using near-field magnetic scanning," Electromagnetic Compatibility, 2004. EMC 2004. 2004 InternationalSymposium on, vol. 1, 2004 |
Y. Rahmat-Samii und J. Lemanczyk, "Application of spherical near-field measurements to microwave holographic diagnosis of antennas," Antennas and Propagation, IEEE Transactions on, vol. 36, 1988, S. 869-878 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130002275A1 (en) * | 2011-06-30 | 2013-01-03 | Kyung Jin Min | System and method for measuring near field information of device under test |
US9244145B2 (en) * | 2011-06-30 | 2016-01-26 | Amber Precision Instruments, Inc. | System and method for measuring near field information of device under test |
DE102011115113A1 (en) | 2011-10-07 | 2013-04-11 | Peter Russer | Method for measuring auto-correlation function of signal, involves providing signal in adjustable time interval which is integral multi-face base interval, where two samples are extracted by scanner and are digitalized |
DE102020003581A1 (en) | 2020-06-16 | 2021-12-16 | Peter Russer | Electromagnetic field probe |
WO2024109503A1 (en) * | 2022-11-24 | 2024-05-30 | 吴伟 | Electromagnetic interference measurement method and system |
Also Published As
Publication number | Publication date |
---|---|
DE102009035421B4 (en) | 2020-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0890108B1 (en) | Field sensor and device and use of the device for measuring electric and/or magnetic fields | |
EP0782692B1 (en) | Sensor arrangement and method of detecting measured values using said sensor arrangement | |
DE102011086288B4 (en) | Magnetic resonance imaging system, receiving device for such a system and method for obtaining an image signal in the system | |
DE102009035421B4 (en) | Method for near-field measurement of electromagnetic emissions in the time domain | |
DE69733829T2 (en) | AMPLITUDE CALIBRATION OF A MEASURING INSTRUMENT | |
DE102014203068B4 (en) | Pseudo-random acquisition of MR data of a two-dimensional volume section | |
EP1734374A1 (en) | Method for testing a wafer, in particular hall-magnetic field sensor and wafer or hall sensor, respectively | |
DE69923366T2 (en) | Test probe for electromagnetic radiation sources and their use | |
DE102019132367A1 (en) | Electronic arrangement for generating and evaluating microwave signals and a method for operating such | |
DE102006005595B4 (en) | Apparatus and method for measuring spurious emissions in real time | |
EP0729039A2 (en) | Method and arrangement for electromagnetic object detection | |
EP1390737B1 (en) | Non-destructive ultrasound test method for detection of damage | |
DE102016100261A1 (en) | Method for electronic analysis of a time-varying signal | |
Quizhpi-Cuesta et al. | Classification of partial discharge in pin type insulators using fingerprints and neural networks | |
EP0845107A1 (en) | Measurement system for electric disturbances in a high-voltage switchboard plant | |
WO1990002955A1 (en) | Process and device for measuring states and variations over time | |
DE102021111169A1 (en) | CALIBRATION OF A MAGNETIC FIELD SENSOR FOR A CURRENT PROBE | |
Russer et al. | A novel vector near-field scanning system for emission measurements in time-domain | |
DE3733040C2 (en) | ||
WO2003052434A2 (en) | Method and device for the detection of non-homogeneities in the shielding behavior of shielded electric conductors | |
DE102018205103B3 (en) | Method for determining electrical characteristics of a power transmission system | |
DE102019003878A1 (en) | Method and arrangement for the simultaneous measurement of electrical and / or magnetic fields and thermal radiation | |
DE19926019A1 (en) | Process for monitoring growing layers used in vacuum coating processes comprises directing a measuring beam before starting the layer growth into a galvanic bath and onto a layer substrate | |
DE3855060T2 (en) | Ion beam position sensor | |
Mark M. Nieva et al. | Op-Amp Gain-Bandwidth Measurement using Impulse Response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R084 | Declaration of willingness to licence | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |