DE102009030476B4 - Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes - Google Patents

Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes Download PDF

Info

Publication number
DE102009030476B4
DE102009030476B4 DE200910030476 DE102009030476A DE102009030476B4 DE 102009030476 B4 DE102009030476 B4 DE 102009030476B4 DE 200910030476 DE200910030476 DE 200910030476 DE 102009030476 A DE102009030476 A DE 102009030476A DE 102009030476 B4 DE102009030476 B4 DE 102009030476B4
Authority
DE
Germany
Prior art keywords
layer
type
nanowire
zno
nanowire layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE200910030476
Other languages
English (en)
Other versions
DE102009030476A1 (de
Inventor
PD Dr. Voß Tobias
Dr. Dev Apurba
Jan-Peter Richters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Bremen
Original Assignee
Universitaet Bremen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Bremen filed Critical Universitaet Bremen
Priority to DE200910030476 priority Critical patent/DE102009030476B4/de
Publication of DE102009030476A1 publication Critical patent/DE102009030476A1/de
Application granted granted Critical
Publication of DE102009030476B4 publication Critical patent/DE102009030476B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, bei dem auf eine Keimschicht aus ZnO eine Nanodrahtschicht (12, 13) aus Zinkoxid (ZnO) mittels Aufwachsen aus einer Lösung bei einer erhöhten Temperatur erzeugt wird, dadurch gekennzeichnet, dass die erhöhte Temperatur beim Aufwachsen zum Erzeugen einer p-leitenden Nanodrahtschicht (12) aus Zinkoxid (ZnO) über 100°C beträgt.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, bei dem auf eine Keimschicht aus ZnO eine Nanodrahtschicht aus Zinkoxid (ZnO) mittels Aufwachsen aus einer Lösung bei einer erhöhten Temperatur erzeugt wird.
  • Aus der US 2005/0009224 A1 ist ein Verfahren bekannt, bei dem eine n-leitende Nanodrahtschicht aus Zinkoxid auf einem Substrat bei einer Temperatur zwischen 60°C und 95°C aufgewachsen wird.
  • Der WO 2005/062785 A2 ist die Herstellung von ZnO Nanodrähten aus einer wässrigen Lösung, die Zn(NO3)2 und KOH enthält, bei einer erhöhten Temperatur und erhöhtem Druck zu entnehmen. Die erhaltenen ZnO Nanodrähte werden zur Herstellung von Halbleiterbauelementen eingesetzt.
  • Aus der WO 2008/140611 A2 und der WO 2006/113345 A2 ist jeweils der Aufbau von Halbleiterbauelementen aus p- und n-dotierten ZnO-Schichten sowie die Verwendung als Licht emittierende Dioden bekannt. Die Verwendung eines Nanodrahtes wird beispielsweise in der WO 2006/130359 A2 beschrieben.
  • Für die technische Realisierung optoelektronischer Bauelemente auf Halbleiterbasis werden in der Regel pn-Übergänge benötigt. Dazu wird ein Bereich des verwendeten Halbleiters mit einem Element dotiert, welches unter Betriebsbedingungen zusätzliche Elektronen bereitstellt, die sich an der Leitfähigkeit beteiligen (n-Dotierung). Für die Dotierung der anderen Hälfte wird ein Element verwendet, welches eine Elektronenlücke, ein sogenanntes Loch erzeugt, dass ebenfalls die Leitfähigkeit des Materials deutlich erhöht (p-Dotierung). Der Übergangsbereich, in dem p- und n-dotiertes Material aneinander grenzen, wird als pn-Übergang bezeichnet. Er ist der aktive Bereich von Leuchtdioden und Halbleiterlasern, in dem Licht durch Rekombination von Elektronen und Löchern erzeugt wird. In Solarzellen und Fotodetektoren wird im umgekehrten Prozess durch die Absorption von Photonen im Bereich des pn-Übergangs ein elektrisches Signal beziehungsweise elektrische Energie erzeugt.
  • Der Verbindungshalbleiter Zinkoxid ist ein sehr viel versprechendes Material, das im Bereich der Blau-UV-Optoelektronik eingesetzt werden kann. Beispielsweise die DE 102 11 531 A1 beschreibt eine LED und deren Herstellung. Der Verbindungshalbleiter Zinkoxid ist fast im gesamten sichtbaren Spektralbereich transparent und kann zur Erzeugung beziehungsweise Detektion von Photonen mit einer Wellenlänger kleiner als 400 nm (je nach Temperatur und Zusammensetzung) eingesetzt werden. Zinkoxid ist in vielerlei Hinsicht vergleichbar mit dem etablierten Material Galliumnitrid, weist aber sowohl technologische als auch physikalische Unterschiede auf: Es lässt sich sehr einfach, kostengünstig und umweltverträglich herstellen, sowohl die Ausgangsstoffe als auch das Material selbst sind in Regel ungiftig und es besitzt eine große Exzitonenbindungsenergie, welche eine effiziente Licht-Materie-Wechselwirkung in Zinkoxid zur Folge hat. Die Herstellung von stabilem und technologisch relevantem p-dotiertem Zinkoxid ist bislang ein ungelöstes Problem. In den letzten Jahren gab es immer wieder Veröffentlichungen, denen zufolge einzelne Gruppen teilweise in sehr komplexen Herstellungsprozessen die p-Dotierung von Zinkoxid gelungen ist, z. B. Xiang et. Al., NANO LEITERS 2007, Vol. 7, No. 2, 323–328. Allerdings konnte das Problem bislang nicht so befriedigend gelöst werden, dass optoelektronische Bauelemente aus Zinkoxid hergestellt und kommerziell vertrieben werden könnten.
  • Es ist gibt alternative Ansätze, in denen n-Zinkoxid mit p-leitfähigen organischen Polymeren beschichtet wird. Die auf diese Weise erzeugten pn-Übergänge sind seit längerem bekannt und ihre Funktionsweise als Lichtquellen und (mit geeigneten Zusätzen) Solarzellen ist in der Literatur dokumentiert. Das grolle Problem dieser Technologie ist allerdings die sehr begrenzte Lebensdauer der Bauelemente, da unter Betriebsbedingungen die organischen Polymere in der Regel auf einer Zeitskala von Minuten bis Stunden signifikant degradieren und somit sehr schnell technologisch unbrauchbar werden. Es besteht somit der Bedarf an einem einfachen, kostengünstigen und skalierbaren Verfahren zur nasschemischen Herstellung eines Zinkoxid-Nanodraht-Dioden-Arrays, welches die notwendigen Eigenschaften besitzt, um daraus stabile und effiziente optoelektronische Bauelemente zu entwickeln. Anwendungen liegen im Bereich der UV- und Weisslichterzeugung sowie in der UV-Licht-Detektion und (wieder mit geeigneten Zusätzen) in der Fotovoltaik. Das System Zinkoxid als Basis für ein Halbleiterbauelement ist deshalb neben der Ungiftigkeit auch darum von Bedeutung, weil es eine breite Bandlücke aufweist und somit eine Emission von Licht bis hin zu einer Wellenlänge von etwa 400 nm ermöglicht. Zinkoxid weist eine starke Coulombwechselwirkung auf, weshalb die delokalisierten Elektronen/Lochpaare gut korreliert sind und effizient strahlend rekombinieren können. Es ist ein breites Emissionsspektrum möglich was für die Erzeugung von weissem Licht vorteilhaft ist. Außerdem ist Zinkoxid ungiftig, was für die Herstellung wie auch für die Entsorgung und das Recycling große Vorteile bietet.
  • Das der Erfindung zugrunde liegende Problem ist es, ein Verfahren anzugeben, mit dem sich p-leitende Schichten für ein Halbleiterbauelement herstellen lassen.
  • Das Problem wird mit einem Verfahren der eingangsgenannten Art gelöst, bei dem die erhöhte Temperatur beim Aufwachsen zum Erzeugen einer p-leitenden Nanodrahtschicht aus Zinkoxid über 100°C beträgt.
  • Es hat sich gezeigt, dass beim Aufwachsen aus einer Lösung bei einem an sich bekannten System durch Erhöhen der Temperatur Nanodrahtschichten erzeugt werden können, die eine p-leitende Charakteristik aufweisen. Dieses Ergebnis ist überraschend und liefert reproduzierbar und mit hoher Qualität p-leitende Nanodrahtschichten.
  • Eine Weiterbildung der Erfindung zeichnet sich dadurch aus, dass die erhöhte Temperatur beim Aufwachsen über 150°C, bevorzugt über 200° und insbesondere 200°C beträgt. Bei diesen hohen Temperaturen lassen sich Nanodrahtschichten mit p-leitender Charakteristik in hoher Güte erzeugen. Vorzugsweise sollte das Aufwachsen bei der erhöhten Temperatur bei erhöhtem Druck, vorzugsweise in einem Druckbehälter, insbesondere bei 14,5 bar erfolgen. Bei hohen Temperaturen besteht die Gefahr, dass das Lösungsmittel zu sieden beginnt. Dieses Sieden könnte sich nachteilig auf die Ausbildung der Nanodrahtschichten auswirken. Mit Verwendung des Druckbehälters lässt sich jedoch auf einfache Weise das Sieden verhindern, da der Druck in dem Druckbehälter beim Erhöhen der Temperatur jeweils nur soweit ansteigt, dass die Lösung gerade noch nicht siedet. Auf diese Weise ließen sich gute Ergebnisse erzielen. Eine besonders bevorzugte Ausführungsform der Erfindung zeichnet sich dadurch aus, dass die Lösung eine wässrige Lösung von Zinknitrat und Kaliumhydroxid ist, insbesondere 0,5 mol Zinknitrat auf 10 ml Wasser und 4 mol Kaliumhydroxid auf 10 ml Wasser. Durch Verwendung dieser wässrigen Lösung ließ sich mittels Aufwachsen bei erhöhter Temperatur eine p-leitende Nanodrahtschicht auf der Keimschicht erzeugen.
  • Es ist aber auch möglich, die Nanodrahtschicht zum Erzeugen und Verbessern einer n-Leitfähigkeit unter einer mindestens einen Anteil Sauerstoff enthaltenden Atmosphäre auszuheizen, insbesondere bei 400°C, vorzugsweise 60 Minuten. Auf diese Weise kann eine vormals p-leitende Nanodrahtschicht in eine n-leitende Nanodrahtschicht überführt werden. Es hat sich außerdem gezeigt, dass die Überführung einer p-leitenden Nanodrahtschicht in eine n-leitende Nanodrahtschicht und umgekehrt sequenziell beliebig aufeinanderfolgend möglich ist, ohne dass sich die Qualität der Nanodrahtschichten messbar verschlechtert. So kann die jeweilige Schicht für ein Halbleiterbauelement bei Bedarf entsprechend eingestellt werden.
  • Bei einer Ausführungsform der Erfindung haben die Zinkoxidnanodrähte der Nanodrahtschicht eine Länge von 1 bis 5 Mikrometern und eine Dicke von weniger als 150 Nanometer, vorzugsweise weniger als 100 Nanometer, mehr bevorzugt weiniger als 70 Nanometer und insbesondere von 60 bis 70 Nanometer. Bei der genannten Charakteristik der Nanodrähte der Nanodrahtschicht lassen sich besonders gute Halbleiterschichten erzeugen.
  • Eine Weiterbildung der Erfindung zeichnet sich dadurch aus, dass die Keimschicht eine geschlossene Schicht von Nanokristallen aus Zinkoxid aufweist. Eine derartige Keimschicht aus einer geschlossenen Schicht von Nanokristallen bietet gute Startbedingungen zum Aufwachsen von Nanodrähten. Es ist außerdem von Vorteil, wenn zum Herstellen der Keimschicht eine Lösung aus Zinkacetat, Ethanol und Diethanolamin auf ein Trägermaterial, insbesondere mittels Tauchen aufgebracht wird, und wenn anschließend das Trägermaterial, insbesondere in einem Ofen, ausgeheizt wird, vorzugsweise für 30 Minuten, insbesondere bei 550°C. Eine gute Keimschicht lässt sich beispielsweise bei Verwendung einer Lösung aus 4,377 mmol Zinkacetat-Hexahydrat und 2,85 mmol Diethanolamin in 13,07 ml Ethanol erzielen.
  • Es ist außerdem von Vorteil, wenn als Trägermaterial für die Keimschicht ein elektrisch leitendes oder leitfähig beschichtetes Trägermaterial, vorzugsweise leitendes oder leitfähig beschichtetes Glas, insbesondere Fluordotiertes Transparentes Oxid FTO oder Indiumdotiertes Transparentes Oxid ITO, vorzugsweise InSnO oder eine hoch chlordotierte Zinkoxidschicht als leitfähige Schicht, oder eine Metallfolie verwendet wird, und wenn das Trägermaterial vorzugsweise optisch transparent ist. Die Verwendung eines optisch transparenten Trägermaterials ermöglicht die Wechselwirkung der Nanodrahtschicht mit Licht auch im fertigen Halbleiterbauelement. Glas als Trägermaterial hat dabei die Vorteile, dass es einerseits transparent und andererseits stabil ist, gleichzeitig aber ein gutes Aufwachsen der Keimschicht und der Nanodrahtschicht ermöglicht. Ein gutes Glasmaterial ist beispielsweise das Glas TCO10-10 von Solaronix SA.
  • Ein Verfahren zum Herstellen eines Halbleiterbauelementes ergibt sich dann, wenn eine erfindungsgemäße p-leitende ZnO Nanodrahtschicht mit einer n-leitenden Schicht flächig elektrisch verbunden wird. Auf diese Weise lässt sich eine Diode herstellen. Dies kann beispielsweise dadurch erzeugt werden, dass die p-leitende Nanodrahtschicht kraftschlüssig mit der n-leitenden Schicht flächig elektrisch verbunden wird, insbesondere mittels Aneinanderpressen. Da insbesondere bei Zinkoxid eine chemische Veränderung der Nanodrahtschicht nicht mehr zu befürchten ist, ist eine elektrische Verbindung beispielsweise durch einfaches Aneinanderpressen möglich. Um hier jedoch ein Eindringen von Flüssigkeit in den Zwischenraum der beiden Schichten zu verhindern, sollten die Längskanten versiegelt werden. Es ist aber auch möglich, dass die p-leitende Nanodrahtschicht materialschlüssig mit der n-leitenden Schicht flächig elektrisch verbunden wird, wobei vorzugsweise die n-leitende Schicht auf der p-leitenden Nanodrahtschicht erzeugt wird, insbesondere in einer Core-Shell-Struktur. Auf diese Weise lässt sich durch Aufwachsen der n-leitenden Schicht auf der p-leitenden Nanodrahtschicht eine besonders große Kontaktfläche zwischen den beiden Schichten erzeugen, so dass eine besonders effiziente Diode erzeugt werden kann.
  • Bei einer Weiterbildung der Erfindung wird eine n-leitende Schicht als n-leitende ZnO Nanodrahtschicht bei einer Temperatur unter 100°C erzeugt. Auf diese Weise kann unter Verwendung des gleichen Ausgangsmaterials Zinkoxid für beide Schichten einmal eine p-leitende Schicht und einmal eine n-leitende Schicht erzeugt werden. Für die Herstellung und das Recycling ist ein solches Halbleiterbauelement besonders einfach. Es ist aber auch möglich, dass die n-leitende Schicht eine Nanodrahtschicht ist, die unter einer mindestens einen Anteil Sauerstoff enthaltenden Atmosphäre ausgeheizt wird. So lässt sich eine n-leitende Charakteristik erzeugen. Andererseits kann als n-leitende Schicht aber auch eine Polymerschicht oder ein organischer Farbstoff verwendet werden. Darüber hinaus ist es ebenfalls möglich, dass die n-leitende Schicht mittels chemischer Elektrodeposition hergestellt wird, insbesondere unter Verwendung einer wässrigen Lösung von Zinkchlorid und Kaliumchlorid, in die eine Keimschicht eingebracht wird.
  • Eine andere Ausführungsform der Erfindung zeichnet sich dadurch aus, dass zwischen der p-leitenden Nanodrahtschicht und der n-leitenden Schicht eine Licht absorbierende Zwischenschicht angeordnet wird. Die Zwischenschicht kann eine Polymerschicht oder ein organischer Farbstoff sein. Diese Zwischenschicht kann zum Einstellen der Stahlungs- oder Absorbtionscharakteristik dienen. Es ist aber auch möglich, dass die Zwischenschicht als Farbstoff dient oder selektiv auf Partikel oder Atome wirkt. In diesem Fall wird eine Ausbildung als Sensor ermöglicht.
  • Ein Halbleiterbauelement mit mindestens einer Nanodrahtschicht, die nach dem Verfahren mit den Erfindungsmerkmalen hergestellt worden ist, kann einfach und kostengünstig hergestellt werden. Insbesondere wird die Verwendung von Zinkoxid als Halbleitermaterial auch für breitemittierende Leuchtdioden ermöglicht.
  • Eine p-leitende Zinkoxidnanodrahtschicht und eine n-Zinkoxidnanodrahtschicht können vorgesehen sein, die flächig elektrisch miteinander verbunden sind. Hierdurch lässt sich einerseits die verhältnismäßig breite Bandlücke von Zinkoxid für optische Anwendungen vorteilhaft nutzen. Andererseits sind Gesundheitsgefährdungen bei der Herstellung wie beim Recycling praktisch ausgeschossen.
  • Ein solches Halbleiterbauelement kann als Sensor, insbesondere Gassensor, als Detektor, insbesondere Fotodetektor, als Fotozelle, Solarzelle, Diode oder als Leuchtdiode verwendet werden. in all diesen und weiteren Bereichen lässt sich ein Halbleiterbauelement einsetzen. Von besonderem Vorteil ist dabei eine kostengünstige und einfache Produktion sowie eine geringe Gefahr hinsichtlich der Gesundheit von Anwendern und Herstellern wie auch in Bezug auf die Kontamination der Umgebung.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
  • 1 eine Aufnahme einer Zinkoxidnanodrahtschicht mit einem Rasterelektronenmikroskop,
  • 2 eine Auftragung der Strom-Spannungs-Kennlinien von drei Zinkoxidnanodrahtschichten,
  • 3 die Strom-Spannungs-Kennlinien von drei Zinkoxidnanodrahtschichten mit verschiedener Leitfähigkeitcharakteristik in logarithmischer Auftragung,
  • 4 eine schematische Darstellung eines Diodenaufbaus mit zwei Zinkoxidnanodrahtschichten mit den Erfindungsmerkmalen,
  • 5 eine Darstellung der Strom-Spannungs-Kennlinie einer Zinkoxidnanodrahtschichtdiode, und
  • 6 eine Darstellung des Emissionsspektrums der Zinkoxidnanodrahtschichtdiode.
  • 1 zeigt die Wiedergabe einer Aufnahme der Oberfläche einer Nanodrahtschicht mit einem Rasterelektronenmikroskop. Zur Herstellung der wiedergegebenen Schicht wurde ein elektrisch leitfähiges, transparentes Substrat, im vorliegenden Fall das Glas TCO10-10 der Solaronix SA, zunächst mit einer Keimschicht versehen. Im Einzelnen diente als Keimsicht eine geschlossene Schicht von Zinkoxidnanokristallen, die folgendermaßen hergestellt wurde:
    Zunächst wurde eine Lösung aus Zinkacetat, Ethanol und Diethanolamin hergestellt. Dazu wurde im Einzelnen eine Menge von 4,377 mmol Zinkacetat-Hexahydrat und 2,85 mmol Diethanolamin in 13,07 ml Ethanol gelöst. In diese Lösung wurde ein mit einer leitfähigen Beschichtung versehenes Glassubstrat getaucht. Dieses mit der Lösung überzogene Glassubstrat wurde sodann in einem Ofen ausgeheizt. Im vorliegenden Fall erfolgte das Ausheizen über einen Zeitraum von etwa 30 Minuten bei einer Temperatur von etwa 550°C. Auf diese Weise wurde eine geschlossene Schicht von Zinkoxidnanokristalliten erzeugt, welche als Keime für das anschließende Wachstum dienen.
  • Anschließend wurde eine Nanodrahtschicht auf der vorhergehend hergestellten Keimschicht hergestellt. Dazu wurde zunächst eine wässrige Lösung aus Zinknitrat (0,5 mol/10 ml) und Kaliumhydroxid (4 mol/10 ml) hergestellt und mit dem Substrat mit der Keimschicht in einen Druckbehälter gegeben und auf 200°C geheizt. Mit diesem Prozess wachsen Zinkoxidnanodrahte auf den Keimkristallen auf. Mit dem Rasterelektronenmikroskop ergibt sich das Bild von 1.
  • Wie sich der Figur entnehmen lässt, haben die Nanodrähte typischer Weise einen Durchmesser von unter 100 Nanometern, im Einzelnen von 60 bis 70 Nanometern und eine Länge von 1–5 Mikrometern.
  • Die auf diese Weise erzeugten Zinkoxidnanodrähte wurden anschließend hinsichtlich ihrer elektrischen Eigenschaften charakterisiert, indem ein Silberkontakt auf die Oberfläche der Nanodrahtschicht aufgebracht und die Strom-Spannungs-Charakteristik zwischen diesem Silberkontakt und der Oberfläche des leitfähigen Glassubstrates gemessen wurde.
  • 2 zeigt eine Wiedergabe der elektrischen Kennlinien dreier Nanodrahtschichten, in der Figur bezeichnet mit Probe 1 bis 3. Aufgetragen ist auf der X-Achse die angelegte Spannung und auf der Y-Achse der gemessene Strom. Wie sich der Figur entnehmen lässt, zeigen die Proben bei positiven Spannungen keinen oder nur einen geringen Strom, während die Proben bei negativen Spannungen einen starken negativen Strom zeigen. Dieses Verhalten entspricht einem p-dotierten Halbleiter. Es ließ sich dabei zeigen, dass dieses Verhalten über einen längeren Zeitraum bis hin zu mehreren Monaten keine Änderungen zeigte.
  • Es ließ sich weiterhin beobachten, dass dieses Verhalten entsprechend einer p-Leitfähigkeit weiter verbessert werden konnte, wenn das beschichtete Substrat einem Argon-Plasma ausgesetzt wurde. Das Ausheizen des Substrates mit der Nanodrahtschicht unter einer Sauerstoffatmosphäre hingegen änderte die Strom-Spannungs-Kennlinie auf das Verhalten, welches man von einem n-dotierten Halbleiter erwarten würde. Unter Sauerstoffatmosphäre ist in diesem Zusammenhang zu verstehen, dass die Gasatmosphäre über der Probe mindestens einen geringen Anteil an Sauerstoff aufwies. Im Einzelnen wurde dieses Ausheizen in Sauerstoffatmosphäre bei ca. 400°C für eine Stunde durchgeführt. Durch anschließende Behandlung mit dem Argon-Plasma konnte das Verhalten entsprechend einem p-dotierten Halbleiter wiederhergestellt werden. Auf diese Weise waren mehrere Zyklen mit Wechsel von p-Leitung zu n-Leitung möglich. Durch Argon-Plasma-Behandlung (führt zur Charakteristik entsprechend p-Leitfähigkeit) und Ausheizen in Sauerstoffatmosphäre (führt zur Charakteristik entsprechend n-Leitfähigkeit) ist somit die Strom-Spannungs-Charakteristik der Zinkoxidnanodrahtschichten reversibel einstellbar.
  • 3 zeigt eine Auftragung der Strom-Spannungs-Kennlinien von drei unterschiedlich behandelten Zinkoxidnanodrahtschichten. Aufgetragen ist auf der X-Achse die angelegte Spannung und auf der Y-Achse der daraus resultierende Strom. Es ist aber darauf hinzuweisen, dass die Auftragung des Stroms auf der Y-Achse logarithmisch erfolgt, wobei nur der Betrag des Stromes und nicht auch dessen Vorzeichen berücksichtig wird. Punktiert dargestellt ist in der Figur eine Zinkoxidnanodrahtschicht, die nach dem vorstehend beschriebenen Verfahren hergestellt aber nicht weiter behandelt worden ist. Mit einer Durchgezogenen Linie ist eine mittels eines Argon-Plasmas behandelte Zinkoxidnanodrahtschicht beschrieben. Mit einer unterbrochenen Linie wiederum ist das Verhalten einer unter Sauerstoffatmosphäre ausgeheizten Zinkoxidnanodrahtschicht dargestellt. Wie sich der Figur entnehmen lässt, zeigt die mit dem Argon-Plasma behandelte Zinkoxidnanodrahtschicht im Wesentlichen das Gleiche Verhalten wie die unbehandelte Zinkoxidnanodrahtschicht. Davon abweichend ist das Verhalten der in Sauerstoffatmosphäre ausgeheizten Zinkoxidnanodrahtschicht.
  • 4 zeigt eine schematische Darstellung eines Halbleiterbauelementes 10, das aus zwei Nanodrahtschichten besteht. Wie sich der Figur entnehmen lässt, hat das Halbleiterbauelement 10 bei dem es sich in der Figur um eine Diode 10 handelt, zwei Substrate 11, die auf den einander zugewandten Seiten jeweils eine p-ZnO-Nanodrahtschicht 12 und eine n-ZnO-Nanodrahtschicht 13 aufweisen. Die p-ZnO-Nanodrahtschicht 12 und die n-ZnO-Naodrahtschicht 13 sind in der vorstehend beschriebenen Art hergestellt worden und kommen bei der gezeigten Anordnung aufeinander zu liegen. In einem mittleren Bereich der Substrate 11, bei denen es sich um leitende Glassubstrate, insbesondere TCO10-10 Glas von Solaronix SA handelt, ist eine Klammer 14 angeordnet. Die Klammer 14 dient zum flächigen elektrischen Verbinden der Schichten 12, 13 mittels Aneinanderdrücken. Die Substrate 11 sind mittels Anschlussklemmen 15, sogenannter Krokodilklemmen, randseitig jeweils kontaktiert, wie sich der Figur entnehmen lässt. Im Einzelnen ragt in der Figur das obere Substrat 11 nach rechts über das untere Substrat 11 über und ist in diesem Bereich nicht mit der p-ZnO-Nanodrahtschicht 12 versehen. In diesem Bereich ist die Krokodilklemme 15 auf das leitfähige Substrat 11 aufgeklemmt. Auf gleiche Weise steht in der Figur das untere Substrat 11 nach links über das obere Substrat 11 über und ist dort nicht mit der n-ZnO-Nanodrahtschicht 13 versehen, auf diesem Bereich ist ebenfalls die Klemme 15 aufgeklemmt.
  • Auf diese Weise wird die Diode 10 gebildet, indem die p-ZnO-Nanodrahtschicht auf die n-ZnO-Nanodrahtschicht gedrückt wird, während die beiden Schichten jeweils mit einer Anschlussklemme 15 elektrisch über die jeweiligen Substrate 11 verbunden sind. Bei der p-ZnO-Nanodrahtschicht 12 handelt es sich um eine solche, die bei einer Temperatur von 200°C hergestellt worden ist oder die nachträglich mit Argon-Plasma behandelt worden ist. Bei der n-ZnO-Nanodrahtschicht 13 handelt es sich um eine solche, die bei einer niedrigeren Temperatur, beispielsweise unterhalb von 100°C, hergestellt worden ist oder die nachträglich unter Sauerstoffatmosphäre ausgeheizt worden ist. Alternativ kann die n-ZnO-Nanodrahtschicht 13 auch durch Elektrodepositionen hergestellt worden sein. Hierzu wird eine wässrige Lösung von Zinkchlorid und Kaliumchlorid verwendet.
  • 5 zeigt eine Auftragung der Strom-Spannungs-Kennlinie des Halbleiterbauelementes 10. Aufgetragen ist auf der X-Achse die Spannung in Volt und auf der Y-Achse der Strom in Milliampere. Wie sich der Figur entnehmen lässt, steigt der Strom mit ansteigender positiver Spannung an, während er bei größeren Absolutwerten mit negativen Vorzeichen zunächst auf etwa 0 bleibt. Erst bei großen negativen Spannungswerten beginnt ein Strom in umgekehrter Richtung zu fließen. Dieses Verhalten entspricht dem einer Diode.
  • 6 zeigt eine Auftragung des mittels der Diode emittierten Lichtes in Abhängigkeit von der Wellenlänge. Aufgetragen ist die gemessene Lichtintensität in willkürlichen Einheiten auf der Y-Achse gegen die Wellenlänge in Nanometern auf der X-Achse. Wie sich der Figur entnehmen lässt, zeigt die Diode 10 ein im Wesentlichen kontinuierliches Spektrum in nahezu dem gesamten Bereich sichtbaren Lichtes. Aufgenommen wurde dieses Spektrum bei einer Spannung von 20 Volt und einem Strom von 150 Milliampere. Das beobachtete Leuchten besitzt eine rötlich/orange Färbung. Die Emission war über mehrere Minuten stabil zu beobachten.
  • Auf die beschriebene Weise lassen sich Halbleiterbauelemente 10 insbesondere Dioden 10 oder Leuchtdioden herstellen, die einfach, kostengünstig, gesundheitlich unbedenklich und langfristig stabil sind. Derartige Halbleiterbauelemente lassen sich für eine Vielzahl von Anwendungen einsetzen, beispielsweise als Gassensoren, für Detektoren, Fotodetektoren, Fotozellen, Solarzellen, Dioden oder Leuchtdioden.
  • Bezugszeichenliste
  • 10
    Halbleiterbauelement
    11
    Substrat
    12
    p-ZnO-Nanodrahtschicht
    13
    n-ZnO-Nanodrahtschicht
    14
    Isolierplättchen
    15
    Anschlussklemme

Claims (18)

  1. Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, bei dem auf eine Keimschicht aus ZnO eine Nanodrahtschicht (12, 13) aus Zinkoxid (ZnO) mittels Aufwachsen aus einer Lösung bei einer erhöhten Temperatur erzeugt wird, dadurch gekennzeichnet, dass die erhöhte Temperatur beim Aufwachsen zum Erzeugen einer p-leitenden Nanodrahtschicht (12) aus Zinkoxid (ZnO) über 100°C beträgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erhöhte Temperatur beim Aufwachsen über 150°C, bevorzugt über 200°C und insbesondere 200°C beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Aufwachsen bei der erhöhten Temperatur bei erhöhtem Druck, vorzugsweise in einen Druckbehälter, Insbesondere bei 14,5 bar erfolgt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Lösung eine wässrige Lösung von Zinknitrat und Kaliumhydroxid ist, insbesondere 0,5 mal Zinknitrat auf 10 ml Wasser und 4 mol Kaliumhydroxid auf 10 ml Wasser.
  5. Verfahren zum Überführen einer p-leitenden Nanodrahtschicht (12, 13) nach einem der vorhergehenden Ansprüche in eine n-leitende Nanodrahtschicht (12, 13), wobei die Nanodrahtschicht (12, 13) zum Erzeugen und Verbessern einer n-Leitfähigkeit unter einer mindestens einen Anteil an Sauerstoff enthaltenden Atmosphäre ausgeheizt wird, insbesondere bei 400°C, vorzugsweise 60 Minuten.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ZnO Nanodrähte der Nanodrahtschicht (12, 13) eine Länge von 1 bis 5 Mikrometern und eine Dicke von weniger als 150 Nanometer, vorzugsweise weiniger als 100 Nanometer, mehr bevorzugt weniger als 70 Nanometer und insbesondere von 60 bis 70 Nanometer haben.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Keimschicht eine geschlossene Schicht von Nanokristallen aus ZnO aufweist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Herstellen der Keimschicht eine Lösung aus Zinkacetat, Ethanol und Diethanolamin auf ein Trägermaterial, insbesondere mittels Tauchen, aufgebracht wird, und dass anschließend das Trägermaterial, insbesondere in einen Ofen, ausgeheizt wird, vorzugsweise für 30 Minuten, insbesondere bei 550°C.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Trägermaterial für die Keimschicht ein elektrisch leitendes oder leitfähig beschichtetes Trägermaterial, vorzugsweise leitendes oder leitfähig beschichtetes Glas, insbesondere Fluordotiertes Transparentes Oxid FTO oder Indiumdotiertes Transparentes Oxid ITO, vorzugsweise InSnO, oder eine hochchlordotierte ZnO Schicht als leitfähige Schicht, oder eine Metallfolie verwendet wird, und dass das Trägermaterial vorzugsweise optisch transparent ist.
  10. Verfahren zum Herstellen eines Halbleiterbauelementes, dadurch gekennzeichnet, dass eine p-leitende ZnO-Nanodrahtschicht (12) nach einem der Ansprüche 1 bis 9 mit einer n-leitenden Schicht (13) elektrisch flächig verbunden wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die p-leitende Nanodrahtschicht (12) kraftschlüssig mit der n-leitenden Schicht (13) flächig elektrisch verbunden wird, insbesondere mittels Aneinanderpressen.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die p-leitende Nanodrahtschicht (12) materialschlüssig mit der n-leitenden Schicht (13) flächig elektrisch verbunden wird, wobei vorzugsweise die n-leitende Schicht (13) auf der p-leitenden Nanodrahtschicht (12) erzeugt wird, insbesondere in einer Core-Shell-Struktur.
  13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die n-leitende Schicht (13) als n-leitende ZnO Nanodrahtschicht bei einer Temperatur unter 100°C erzeugt wird.
  14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die n-leitende Schicht (13) eine Nanodrahtschicht ist, die unter einer mindestens einen Anteil Sauerstoff enthaltenden Atmosphäre ausgeheizt wird.
  15. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die n-leitende Schicht (13) eine Polymerschicht oder ein organischer Farbstoff ist.
  16. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die n-leitende Schicht (13) mittels chemischer Elektrodeposition hergestellt wird, insbesondere unter Verwendung einer wässrigen Lösung von Zinkchlorid und Kaliumchlorid, in die eine Keimschicht eingebracht wird.
  17. Verfahren nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass zwischen der p-leitenden Nanodrahtschicht (12) und der n-leitenden Schicht (13) eine Licht absorbierende Zwischenschicht angeordnet wird.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Zwischenschicht eine Polymerschicht oder ein organischen Farbstoff ist.
DE200910030476 2009-06-24 2009-06-24 Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes Expired - Fee Related DE102009030476B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200910030476 DE102009030476B4 (de) 2009-06-24 2009-06-24 Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910030476 DE102009030476B4 (de) 2009-06-24 2009-06-24 Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes

Publications (2)

Publication Number Publication Date
DE102009030476A1 DE102009030476A1 (de) 2011-01-05
DE102009030476B4 true DE102009030476B4 (de) 2011-11-10

Family

ID=43298909

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200910030476 Expired - Fee Related DE102009030476B4 (de) 2009-06-24 2009-06-24 Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes

Country Status (1)

Country Link
DE (1) DE102009030476B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117381A1 (de) 2011-10-28 2013-05-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
CN111816729B (zh) * 2019-04-11 2021-08-31 中国科学院半导体研究所 LED/ZnO纳米线阵列集成的光电晶体管芯片及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050009224A1 (en) * 2003-06-20 2005-01-13 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
WO2005062785A2 (en) * 2003-12-17 2005-07-14 The University Of North Carolina At Chapel Hill Solution-phase synthesis of metal oxide nanostructures
WO2006113345A2 (en) * 2005-04-14 2006-10-26 Duke University Bright visible wavelength luminescent nanostructures and methods of making and devices for using the same
WO2008140611A2 (en) * 2006-12-18 2008-11-20 The Regents Of The University Of California Nanowire array-based light emitting diodes and lasers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050009224A1 (en) * 2003-06-20 2005-01-13 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
WO2005062785A2 (en) * 2003-12-17 2005-07-14 The University Of North Carolina At Chapel Hill Solution-phase synthesis of metal oxide nanostructures
WO2006113345A2 (en) * 2005-04-14 2006-10-26 Duke University Bright visible wavelength luminescent nanostructures and methods of making and devices for using the same
WO2008140611A2 (en) * 2006-12-18 2008-11-20 The Regents Of The University Of California Nanowire array-based light emitting diodes and lasers

Also Published As

Publication number Publication date
DE102009030476A1 (de) 2011-01-05

Similar Documents

Publication Publication Date Title
An et al. Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics
Swarnkar et al. Beyond colloidal cesium lead halide perovskite nanocrystals: analogous metal halides and doping
Panda et al. One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications
Zeng et al. Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector
EP0545388B1 (de) Einrichtung mit einen lumineszenzfähigen Material und Verfahren zu ihrer Herstellung
DE102006060366B4 (de) Verfahren zur Herstellung von von einer Matrix abgedeckten Quantenpunkten
DE112015006988T5 (de) Quantenpunkt basierte optoelektronische Vorrichtung
DE202008009492U1 (de) Halbleitermaterial und dessen Verwendung als Absorptionsmaterial für Solarzellen
DE1144846B (de) Verfahren zur Herstellung und zur Erhoehung der Oberflaechenleitfaehigkeit elektrisch leitender Filme sowie zur schichtweisen AEnderung des Leitungstyps fuer n- und p-Schichten, insbesondere fuer elektrolumineszente Flaechenlampen und Photozellen
Chiu et al. Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas
Maurya et al. Comparative study of photoresponse from vertically grown ZnO nanorod and nanoflake films
SAWYER et al. Zinc oxide nanoparticles for ultraviolet photodetection
Lu et al. Charge-separation kinetics of photoexcited oxygen vacancies in ZnO nanowire field-effect transistors
Paul et al. Efficient charge separation in plasmonic ZnS@ Sn: ZnO nanoheterostructure: nanoscale Kirkendall effect and enhanced photophysical properties
DE102009030476B4 (de) Verfahren zum Herstellen einer p-leitenden Schicht für ein Halbleiterbauelement, Verfahren zum Überführen einer p-leitenden Nanodrahtschicht und Verfahren zum Herstellen eines Halbleiterbauelementes
Aqoma et al. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells
DE102016202607A1 (de) Verfahren zur Fertigung einer Schicht mit perowskitischem Material und Vorrichtung mit einer solchen Schicht
KR101976939B1 (ko) 기능성 금속산화물 제조 방법 및 이에 의해 제조된 전자소자
WO2006117389A1 (de) Versetzungsbasierter lichtemitter
Qaid et al. Aprotic solvent effect in preparation of organo lead iodide perovskite nanowires by two-step spin-coating procedure
Aziz et al. Au decorated ZnO nanostructures for enhanced visible emission and memory applications
DE2949359A1 (de) Photoelement
Singh et al. Enhanced Visible-Light Photodetection with Undoped and Doped ZnO Thin-Film Self-Powered Photodetectors
WO2006045600A1 (de) Photovoltaische zelle mit einem photovoltaisch aktiven halbleitermaterial
Huang et al. Electrochemical control of emission enhancement in solid-state nitrogen-doped carbon quantum dots

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R082 Change of representative

Representative=s name: ZACCO DR. PETERS UND PARTNER, DE

Representative=s name: ZACCO DR. PETERS UND PARTNER, 28359 BREMEN, DE

Representative=s name: ZACCO PATENT- UND RECHTSANWALTS GMBH, DE

Representative=s name: ZACCO PATENTANWALTS- UND RECHTSANWALTSGESELLSC, DE

R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120211

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee