DE102009015260A1 - Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren - Google Patents

Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren Download PDF

Info

Publication number
DE102009015260A1
DE102009015260A1 DE102009015260A DE102009015260A DE102009015260A1 DE 102009015260 A1 DE102009015260 A1 DE 102009015260A1 DE 102009015260 A DE102009015260 A DE 102009015260A DE 102009015260 A DE102009015260 A DE 102009015260A DE 102009015260 A1 DE102009015260 A1 DE 102009015260A1
Authority
DE
Germany
Prior art keywords
steam
housing
contraption
heating elements
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102009015260A
Other languages
English (en)
Other versions
DE102009015260B4 (de
Inventor
Barnaby Bruce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Priority to DE102009015260A priority Critical patent/DE102009015260B4/de
Priority to PCT/EP2010/001436 priority patent/WO2010112123A2/de
Priority to US13/262,713 priority patent/US20120023944A1/en
Priority to CN2010800149872A priority patent/CN102378877B/zh
Priority to JP2012502480A priority patent/JP5584281B2/ja
Priority to EP10713120.3A priority patent/EP2414730B1/de
Publication of DE102009015260A1 publication Critical patent/DE102009015260A1/de
Application granted granted Critical
Publication of DE102009015260B4 publication Critical patent/DE102009015260B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/266Separator reheaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/04Multiple arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/32Steam-separating arrangements using centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/32Steam-separating arrangements using centrifugal force
    • F22B37/327Steam-separating arrangements using centrifugal force specially adapted for steam generators of nuclear power plants

Abstract

Eine Vorrichtung (1) zur Phasenseparation eines Mehrphasen-Fluidstroms mit einem im Wesentlichen um eine Mittelachse (M) rotationssymmetrisch ausgestalteten, einen Hohlraum (3) umschließenden Gehäuse (2), mit wenigstens einer Zufuhrleitung (6) für den Fluidstrom, die für eine im Wesentlichen tangential zur Gehäuseinnenseite (11) gerichtete Einströmung des Fluidstroms ausgelegt ist, und mit wenigstens einer Abfuhrleitung (24) für den separierten gasförmigen Anteil des Fluidstroms, soll den gasförmigen Anteil des Fluidstroms, z. B. Dampfes, erhitzen, und geringe Anforderungen an Material und Platzbedarf stellen. Dazu sind im Hohlraum (3) zur Erhitzung des gasförmigen Anteils ausgelegte Heizelemente in einem konzentrisch um die Mittelachse (M) gelegenen Ringraum (14) angeordnet.

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung zur Phasenseparation eines Mehrphasenfluidstroms mit einem im Wesentlichen um eine Mittelachse rotationssymmetrisch ausgestalteten, einen Hohlraum umschließenden Gehäuse, mit wenigstens einer Zufuhrleitung für den Fluidstrom, die für eine im Wesentlichen tangential zur Gehäuseinnenseite gerichtete Einströmung des Fluidstroms ausgelegt ist, und mit wenigstens einer Abfuhrleitung für den separierten gasförmigen Anteil des Fluidstroms. Die Erfindung bezieht sich weiterhin auf eine Dampfturbinenanlage mit einer Hochdruckturbine und einer Niederdruckturbine und mit einer derartigen Vorrichtung. Sie bezieht sich ferner auf ein Verfahren zum Betreiben einer derartigen Dampfturbinenanlage.
  • In Kraftwerken, insbesondere Kernkraftwerken, in denen zur Energieerzeugung bzw. Energieumwandlung Dampf verwendet wird, werden gewöhnlich unterschiedliche Turbinen eingesetzt, die mit unterschiedlichem Dampfdruck arbeiten. Der in einem Kraftwerk erzeugte Frischdampf wird dabei beispielsweise in eine Hochdruckturbine geleitet, leistet dort Arbeit und wird somit entspannt. Bevor der Dampf nun in eine Niederdruckturbine, die für geringeren Dampfdruck ausgelegt ist, eingeleitet wird, wird gewöhnlich sein Wasseranteil reduziert. Darüber hinaus ist gewöhnlich eine Überhitzung des Dampfes vor seiner Einleitung in die Niederdruckturbine vorgesehen. Durch diese Maßnahmen wird einerseits der Wirkungsgrad der Niederdruckturbine gesteigert, andererseits wird die Lebensdauer der Turbine erhöht, da Schäden, die beispielsweise durch tropfenbedingte Erosion bzw. Korrosion der Bauteile entstehen können, reduziert bzw. vermieden werden.
  • Um den aus der Hochdruckturbine austretenden, entspannten Dampf derartig aufzubereiten, werden gewöhnlich strömungsmäßig in Reihe geschaltete Was serabscheider und Zwischenüberhitzer verwendet, die baulich in der Art einer Neben- oder Hintereinanderaufstellung miteinander kombiniert sein können (kombinierter Wasserabscheider/Zwischenüberhitzer, kurz WaZü). Dabei wird gewöhnlich in einer ersten Komponente des Wasserabscheiders/Zwischenüberhitzers der Wasseranteil des Dampfes reduziert, bevor der nun im Wesentlichen gasförmige Anteil in eine zweite Komponente geführt wird, in der er überhitzt wird. Der somit überhitzte Dampf wird nun in die Niederdruckturbine eingeleitet, wo er entspannt wird und dadurch Arbeit verrichtet.
  • Zur Abscheidung des Wasseranteils können verschiedene Vorrichtungen verwendet werden. Dazu gehören beispielsweise Bleche, an denen der Dampfstrom entlang geleitet wird. Zur Abscheidung des Wasseranteils kann ferner auch ein sogenannter Zyklonabscheider oder Zyklon verwendet werden, in dessen im Wesentlichen rotationssymmetrisches Gehäuse der Dampfstrom tangential zur Gehäuseinnenseite eingeführt wird. Dadurch wird der schwerere Wasseranteil durch die Zentrifugalkraft nach außen gedrängt, und der leichtere, im Wesentlichen gasförmige Anteil strömt aufgrund der sich im Zyklon ausbildenden Strömungsverhältnisse in das Innere des vom Gehäuse umgebenen Hohlraumes und sammelt sich dort. In beiden Fällen wird der gasförmige Anteil des Dampfes nun in eine strömungsmäßig nachgeschaltete und baulich/räumlich separierte zweite Komponente des WaZü geleitet, in der er überhitzt wird. Dies wird gewöhnlich dadurch erreicht, dass von dem Dampf Heizrohre angeströmt werden, die den Dampf durch Wärmeübertragung entsprechend erhitzen bzw. überhitzen.
  • Damit die Abscheidung von Wasser bzw. die Zwischenüberhitzung des Dampfes zufriedenstellend erfolgen können, müssen die jeweiligen Komponenten entsprechend großvolumig dimensioniert werden, woraus sich unmittelbar ein entsprechender Materialaufwand und räumlicher Platzbedarf ergibt. Andererseits sind bei der Konstruktion von Kraftwerken möglichst geringer Materialbedarf und Raumbedarf erstrebenswert.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms bereitzustellen, die sich zur Erhitzung des gasförmigen Anteils des Fluidstroms, z. B. Dampfes, eignet, und geringe Anforderungen an Material und Platzbedarf stellt. Weiterhin soll eine Dampfturbinenanlage mit einer Hochdruckturbine und einer Niederdruckturbine, in der eine derartige Vorrichtung besonders vorteilhaft verwendet werden kann, angegeben werden. Ferner soll ein Verfahren zum Betreiben einer solchen Dampfturbinenanlage angegeben werden.
  • Bezüglich der Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms wird diese Aufgabe erfindungsgemäß gelöst, indem im Hohlraum zur Erhitzung des gasförmigen Anteils ausgelegte Heizelemente in einem konzentrisch um die Mittelachse gelegenen Ringraum angeordnet sind.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die Erfindung geht von der Überlegung aus, dass der vergleichsweise große Raumbedarf herkömmlicher Wasserabscheider/Zwischenüberhitzer unter anderem darauf beruht, dass die Abscheidung von Wasser aus dem ursprünglich aus der Hochdruckturbine austretenden Dampf und die anschließende Überhitzung des separierten gasförmigen Anteils zeitlich nacheinander in zwei räumlich voneinander getrennten Raumbereichen oder Gerätekomponenten erfolgt, die in der Art einer strömungsseitigen Reihenschaltung hintereinander angeordnet sind. Dadurch werden spezifische Anforderungen an die bauliche Konstruktion der Wasserabscheider/Zwischenüberhitzer gestellt, die systembedingt einen relativ großen Einbauraum benötigen.
  • Wie aber nun erkannt wurde, müssen diese zwei Raumbereiche nicht notwendigerweise baulich hintereinander in getrennten Gehäusen angeordnet sein. Geeignete Strömungsverhältnisse vorausgesetzt, lassen sich diese Raumbereiche nämlich auch in einem einzigen Gehäuse ineinander geschachtelt anordnen, wobei die Flüssigkeitsabscheidung und die Überhitzung des gasförmigen Fluidanteils für ein gegebenes Volumenelement des Fluids zeitlich gesehen im Wesentlichen simultan bzw. kurz nacheinander erfolgen.
  • Derartige geeignete Strömungsverhältnisse werden von einem Wasserabscheider in Zyklonbauweise geliefert. Durch das tangentiale Anströmen der Gehäuseinnenseite des Zyklons erfolgt durch die auf den Strom wirkende Zentrifugalkraft das Abscheiden der schweren Komponente, beispielsweise Wasser, im Außenbereich des vom Gehäuse umgebenen Hohlraums an der Gehäuseinnenseite. Der leichtere, gasförmige Anteil des ursprünglichen Fluidstroms, beispielsweise Wasserdampf, strömt dabei in das Innere des Hohlraums. Werden nun in einem inneren oder mittleren Bereich des Hohlraums, insbesondere in einem Ringraum, Heizelemente zur Erhitzung bzw. Überhitzung des gasförmigen Anteils derart angeordnet, dass der Übertritt der leichteren Phase in den Innenbereich weiterhin ermöglicht ist, so werden die gasförmigen Anteile direkt während ihres Übertritts in den Innenbereich erhitzt bzw. überhitzt. Dadurch entsteht im Inneren des zur Wasserabscheidung ausgelegten äußeren Raumbereiches ein innerer Raumbereich, der im Wesentlichen den überhitzten Dampf enthält. Der überhitzte, gasförmige Anteil kann dann aus dem inneren Raumbereich herausgeführt und bedarfsmäßig weiter verwendet werden. Durch diese Ineinanderschachtelung der zwei funktionell unterschiedlichen Raumbereiche kann ein kombinierter Wasserabscheider/Zwischenüberhitzer in ausgesprochen kompakter Bauweise realisiert werden. Zusätzlich dazu können Materialkosten eingespart werden, da für die beiden Prozesse nur ein einziges Gehäuse notwendig ist.
  • Eine derartige Konstruktion ist nicht auf die Behandlung von Wasserdampf beschränkt. Sie kann immer dann eingesetzt werden, wenn aus einem mehrkomponentigen Fluidstrom eine oder mehrere Phasen von schweren Teilchen bzw. Bestandteilen absepariert werden sollen, und der oder die leichten Anteile des ursprünglichen Fluidstroms erhitzt werden sollen.
  • In einer bevorzugten Ausführungsform ist der Ringraum mit den Heizelementen für eine Durchströmung des gasförmigen Anteils des Fluidstroms ausgelegt. Dabei separiert er den Hohlraum in einen zwischen Gehäuseinnenseite und Ringraum liegenden Einströmraum und einen innerhalb des Ringraums liegenden Abströmraum. Eine klare Trennung der beiden Raumgebiete erlaubt in optimierter Weise eine Separation der beiden aufeinanderfolgenden Prozesse. Es ist insbe sondere vorteilhaft, wenn der in den Einströmraum strömende Anteil des Fluidstroms einen möglichst geringen Anteil der schweren Komponente hat, um Energie für seine Erhitzung zu sparen. Bei einem Einsatz in einer Dampfturbinenanlage können dadurch Wirkungsgrad und Lebenszeit bzw. Wartungsintervalle der Turbine erhöht werden.
  • Je nach Zusammensetzung des mehrkomponentigen Fluidstromes sind unterschiedliche Ausgestaltungen des rotationssymmetrischen Gehäuses vorteilhaft. Beispielsweise kann sich das Gehäuse zu einer Richtung hin, insbesondere in Richtung zur Abfuhrleitung (Strömungsauslass) hin in seinem Querschnitt verjüngen. Eine Abscheidung von Wasser aus einem Wasserdampf-/Wasser-Strom wird vorzugsweise in einem im Wesentlichen hohlzylindrisch ausgestalteten Gehäuse durchgeführt.
  • Um die Schwerkraft zur Abscheidung der schweren Komponente des Mehrphasen-Fluidstroms in optimierter Weise zu nutzen, hat die Mittelachse des Gehäuses vorzugsweise eine im Wesentlichen vertikale Ausrichtung. Die schwere Komponente des Fluidstromes bewegt sich (fließt) dann an der Gehäuseinnenseite nach unten und kann dort gesammelt bzw. abgeführt werden. Generell ist eine Vertikalaufstellung des Zyklonabscheiders vorteilhaft, da in diesem Fall die Schwerkraft keine Unwucht in der Wirbelströmung hervorruft.
  • Für die Verwendung der Vorrichtung in einer Dampfturbinenanlage mit einer Hochdruckturbine und einer Niederdruckturbine sollte der der Hochdruckturbine entnommene Dampf der Niederdruckturbine im überhitzten Zustand zugeführt werden. Dazu sollten die Heizelemente hinsichtlich ihrer Heizleistung zur Überhitzung des gasförmigen Anteils des Fluidstromes, insbesondere Wasserdampfes, ausgelegt sein.
  • Eine möglichst effektive Nutzung der Vorrichtung wird erreicht, wenn der Mehrphasen-Fluidstrom durch mehrere Zufuhrleitungen zugeführt wird. Liegen die Zufuhrleitungen – jedenfalls im Bereich ihres Gehäuseanschlusses – in einer zur Mittelachse des Gehäuses im Wesentlichen senkrechten Ebene, sind sie vorteil hafterweise derart ausgelegt, dass der Geschwindigkeitsvektor des in den Hohlraum einströmenden Fluidstroms eine Komponente hat, die aus dieser Ebene heraus weist. Hierbei ist ein gemittelter Geschwindigkeitsvektor gemeint, der über die einzelnen Bestandteile des Fluidstroms gemittelt ist. Dadurch kann verhindert werden, dass die durch die verschiedenen Zufuhrleitungen einströmenden Fluidströme miteinander kollidieren, und die Fluidströme erhalten eine Vorzugsrichtung in Richtung der Mittelachse. Vorteilhafterweise strömt dabei der Fluidstrom in einem Winkel zwischen 10° und 30°, insbesondere von etwa 15°, zu einer senkrecht zur Mittelachse stehenden Ebene ein. Das heißt, der sich infolge der Wandgeometrie einstellenden Wirbelströmung wird vorzugsweise eine Geschwindigkeitskomponente in Richtung der Mittelachse überlagert, so dass sich insgesamt eine helixartige Strömung ausbildet. Bei einer Vertikalaufstellung der Separationsvorrichtung weist die in Richtung der Mittelachse gerichtete Geschwindigkeitskomponente vorteilhafterweise nach unten.
  • Vorzugsweise werden für die Einströmung des Fluidstroms vier Zufuhrleitungen verwendet, die gleichmäßig und symmetrisch über den Umfang des Gehäuses verteilt angeordnet sind. Bei geeigneter Dimensionierung des Gehäuses kann auf diese Weise der einströmende Fluidstrom vorteilhaft auf vier gleich große Bereiche der Gehäuseinnenseite aufgeteilt werden, ohne dass die einzelnen Ströme aufeinandertreffen und sich dabei stören.
  • Die sich im Gehäuse der Vorrichtung ausbildenden Strömungsverhältnisse sorgen dafür, dass der gasförmige Anteil des Fluidstroms in das Innere des vom Gehäuse umgebenen Hohlraums strömt. Dort strömt er die Heizelemente an und wird dabei erhitzt bzw. überhitzt. Die Richtung, mit der die Heizelemente angeströmt werden, kann durch im Einströmraum angeordnete Leitbleche bzw. Leitschaufeln optimiert werden. Zum Beispiel kann auf diese Weise erreicht werden, dass die Heizrohre im Wesentlichen frontal angeströmt werden, bzw. die tangentiale Komponente kann reduziert werden. Da andererseits diese Leitelemente den Einströmraum verkleinern, sollte je nach Anwendung entschieden werden, ob und mit welchen Abmessungen sie verwendet werden.
  • Im Bedarfsfall, falls der durch die Zyklonwirkung erzielte Abscheidegrad zu schlecht ist und der in den Innenbereich übertretende gasförmige Anteil des Fluidstroms eine für die beabsichtigte Verwendung bzw. für die weitere Erhitzung zu große Menge der schwereren flüssigen Komponente mit sich trägt, können in dem Einströmraum zur weiteren Abscheidung Feinabscheider angeordnet werden. Das sich im Feinabscheider bildende Kondensat kann durch eine Kondensatableitung aus dem Hohlraum abgeführt werden.
  • Die Vorrichtung eignet sich sowohl zur einstufigen als auch zur mehrstufigen (Zwischen-)Überhitzung. Zur zwei- bzw. mehrstufigen Überhitzung können beispielsweise im Ringraum in Richtung der Mittelachse gesehen zwei bzw. mehrere Gruppen von Heizelementen hintereinander angeordnet sein. Die den einzelnen Gruppen zugehörigen Heizelemente können dabei für jeweils unterschiedliche Heizleistungen bzw. Heiztemperaturen ausgelegt sein.
  • In einer bevorzugten Ausführungsform der Vorrichtung sind die Heizelemente rohrförmig ausgestaltet. Zur Erhitzung bzw. Überhitzung des gasförmigen Anteils können die Heizelemente von einem fluiden Heizmedium, insbesondere Wasserdampf, durchströmt werden. Für eine mehrstufige Erhitzung kann dazu beispielsweise in unterschiedlichen Gruppen von Heizelementen Dampf mit unterschiedlichem Druck und/oder unterschiedlicher Temperatur verwendet werden.
  • Für eine möglichst effektive Erhitzung des gasförmigen Anteils werden als Heizelemente geradlinige Rohre verwendet, die parallel zur Mittelachse des Gebäudes ausgerichtet sind. Hierzu kann im Ringraum eine Mehrzahl von Rohren angeordnet sein, die je nach Anwendung unterschiedlich ausgestaltet sein können. Beispielsweise können Glattrohre oder Rippenrohre, oder günstige Kombinationen dieser Rohrtypen, verwendet werden. Zweckmäßigerweise sind die einzelnen Rohre derart voneinander beabstandet, dass durch die verbleibenden Zwischenräume ein möglichst ungehinderter Übertritt der aus der Fluidströmung separierten gasförmigen Phase vom außen liegenden Einströmraum in den innen liegenden Abströmraum erfolgen kann. Andererseits ist natürlich eine gewisse „Dichte” von Rohren erforderlich, um die angestrebte Heizwirkung zu realisieren.
  • Die Heizrohre sind vorteilhafterweise zu Rohrbündeln zusammengefasst. Dabei können sogenannte Ringbündel eingesetzt werden, bei denen die Rohre mehr oder weniger gleichmäßig verteilt im Ringraum angeordnet sind. Alternativ oder in Kombination dazu können sogenannte Einzelbündel Verwendung finden. Dabei sind jeweils mehrere zueinander benachbarte Heizelemente zu einem Bündel zusammengefasst. Die Einzelbündel können vormontiert sein und lassen sich als Ganzes handhaben. Im Bedarfsfall lassen sie sich leichter montieren, demontieren bzw. austauschen als Einzelrohre.
  • In einer bevorzugten Ausführungsform ist in das Gehäuse eine ringförmige, senkrecht zur Mittelachse ausgerichtete Trennplatte eingesetzt ist, die den Hohlraum in zwei Teilräume aufteilt, und deren Innenkreis im Wesentlichen mit dem Innenkreis des Ringraums übereinstimmt, und deren Außenkreisradius etwas geringer als der Radius der Gehäuseinnenseite ist. Dadurch sind die beiden Teilräume strömungsmäßig nur durch einen im Innenkreis der Trennplatte und damit im Innern des Ringraums liegenden Durchgang miteinander verbunden. Vorteilhafterweise befinden sich die Zufuhrleitungen und die Abfuhrleitungen in jeweils unterschiedlichen Teilräumen. Der gasförmige Anteil des Fluidstroms kann auf diese Weise besonders günstig durch das Gehäuse geführt werden, wobei sicher gestellt wird, dass er den Ringraum zweimal, nämlich einmal von außen nach innen, und einmal von innen nach außen, durchströmt. Da die Trennplatte in radialer Richtung nicht bis zur Gehäuseinnenseite reicht, kann das Kondensat dort ungehindert abfließen.
  • Bezüglich der Dampfturbinenanlage wird die oben genannte Aufgabe erfindungsgemäß gelöst, indem die Zufuhrleitung oder alle Zufuhrleitungen der oben beschriebenen Separationsvorrichtung mit dem Dampfauslass der Hochdruckturbine verbunden sind, und die Abfuhrleitung oder alle Abfuhrleitungen mit dem Dampfeinlass der Niederdruckturbine verbunden sind. Somit wird der Dampf aus der Hochdruckturbine in die Separationsvorrichtung eingeleitet, in der einerseits der Wasseranteil aus dem Dampf abgeschieden wird und anderseits der gasförmige Anteil überhitzt wird. Der überhitzte Dampf wird anschließend in die Niederdruckturbine eingeleitet, wo er zur weiteren Energiegewinnung verwendet wird.
  • Bezüglich des Verfahrens wird die oben genannte Aufgabe erfindungsgemäß gelöst, indem der dem Dampfauslass der Hochdruckturbine entströmende Dampf in einen Hohlraum geleitet wird, der von einem im Wesentlichen um eine Mittelachse rotationssymmetrischen Gehäuse umschlossen ist, wodurch der Dampf in Rotation versetzt wird und sein gasförmiger Anteil vom flüssigen Anteil separiert und in einem innerem Bereich des vom Gehäuse umgebenen Hohlraumes gesammelt wird, und wobei der gasförmige Anteil bei seinem Übertritt in den inneren Bereich durch Heizelemente erhitzt wird und anschließend dem Dampfeinlass der Niederdruckturbine zugeführt wird.
  • In einer bevorzugten Version des Verfahrens sind zumindest einige der Heizelemente rohrförmig ausgestaltet, bilden also Heizrohre. Der von einem Dampferzeuger erzeugte Frischdampf wird in zumindest einige der Heizrohe geleitet, wodurch der mit den Außenseiten der Heizrohre im Kontakt tretende gasförmige Anteil des in die Separationsvorrichtung eingeleiteten Fluidstroms erhitzt bzw. überhitzt wird. Alternativ oder in Kombination dazu kann der Hochdruckturbine Anzapfdampf entnommen werden, der dann in zumindest einige der Heizelemente geleitet wird. Auf diese Weise kann insbesondere eine zwei- oder mehrstufige Überhitzung des gasförmigen Anteils des Fluidstroms erreicht werden.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch eine geschickte Anordnung von Heizelementen innerhalb eines Zyklonabscheiders eine Abscheidung einer schweren Komponente bzw. einer flüssigen Phase eines Mehrphasen-Fluidstroms bei gleichzeitiger Erhitzung bzw. Überhitzung des gasförmigen Anteils des Fluidstroms in ausgesprochen raumsparender und Material und Baukosten schonender Weise realisiert werden kann. Dadurch ist die Vorrichtung insbesondere für den Einsatz in Anlagen geeignet, die auf engem Raum gebaut werden müssen. Zur primären Abscheidung der schweren Komponente oder Phase des Fluidstroms wird dabei das Zyklonprinzip genutzt. Der Einbau von zusätzlichen Feinabscheidern erlaubt eine weitere Reduzierung der schweren Komponente. Die Anströmung der Heizelemente, die zur Erhitzung bzw. Überhitzung der leichten Phase des Fluidstroms ausgelegt sind, kann durch die Verwendung von Leitblechen, Leitschaufeln bzw. Lochblenden weiter verbessert werden.
  • Eine Dampfturbinenanlage, bei der eine derartige Separationsvorrichtung zwischen eine Hochdruckturbine und Niederdruckturbine geschaltet ist, kann in besonders kompakter und Material schonender Bauweise realisiert werden. Dabei kann die Vorrichtung im Wesentlichen in einem vertikal aufgestellten Gehäuse direkt unter der Hochdruckturbine angebracht werden, so dass das Gas aus dem Dampfauslass der Hochdruckturbine am oberen Ende des Gehäuses in die Vorrichtung einströmen kann. Durch Abfuhrleitungen am unteren Ende des Gehäuses kann dann der überhitzte Dampf der Niederdruckturbine zugeführt werden.
  • Verschiedene Ausführungsbeispiele der Erfindung werden nachfolgend anhand einer Zeichnung erläutert. Darin zeigen in stark schematisierter Darstellung:
  • 1 vier verschiedene, aneinandergesetzte viertelkreisförmige Teilquerschnitte von vier verschiedenen möglichen Ausgestaltungen einer Vorrichtung zur Phasenseparation eines Mehrphasen-Fuidstroms mit einem im Wesentlichen um eine Mittelachse rotationssymmetrisch ausgestalteten Gehäuse, wobei die jeweilige Querschnittsebene senkrecht zur Mittelachse gewählt ist,
  • 2 einen Längsschnitt durch die linksseitige Hälfte einer Ausführungsform der Vorrichtung gemäß 1,
  • 3 eine weitere Ausführungsform der Vorrichtung gemäß 1 im rechtsseitigen Längsschnitt,
  • 4 eine Mehrzahl von Heizelementen der Vorrichtung gemäß 1 bis 3 und von den Heizelementen zugeordneten Leitschaufeln, hier im Querschnitt mit Blickrichtung in Richtung der Mittelachse dargestellt,
  • 5 einen Längsschnitt durch die linksseitige Hälfte einer weiteren bevorzugten Ausführungsform der Vorrichtung gemäß 1, und
  • 6 ein schematisiertes Blockschaltbild einer Dampfturbinenanlage mit einer Hochdruckturbine, einer Niederdruckturbine, einem Frischdampferzeuger sowie mit einer Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms gemäß einer Ausführungsform nach 1 bis 5.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Die in 1 gezeigte Vorrichtung 1 zur Phasenseparation eines Mehrphasen-Fluidstroms umfasst ein im Wesentlichen um eine Mittelachse M rotationssymmetrisch und hohlzylindrisch ausgestaltetes Gehäuse 2, das einen Hohlraum 3 umschließt und in das vier Zufuhrleitungen 6 eingelassen sind. Dabei entspricht jeder Quadrant der 1 einer möglichen Ausgestaltung der Vorrichtung, wobei in Wirklichkeit jeweils alle vier Quadranten in einer der hier gezeigten vier Weisen realisiert sind. Das Gehäuse 2 hat in einer bevorzugten Ausgestaltung einen Durchmesser von ca. 6 Metern.
  • Der Mehrphasen-Fluidstrom (nicht eingezeichnet) strömt dabei in Einströmrichtung 10 im Wesentlichen tangential zur Gehäuseinnenseite 11 in den vom Gehäuse 2 umgegeben Hohlraum 3 ein. Bei dem Fluidstrom kann es sich beispielsweise um Dampf handeln, der aus dem Dampfauslass einer in einer Dampfturbinenanlage installierten Hochdruckturbine durch die Zufuhrleitungen 6 in das Gehäuse 2 der Vorrichtung 1 geleitet wird. Das Gehäuse 2 ist vorzugsweise aus Stahl bzw. Edelstahl angefertigt, wobei je nach Einsatzgebiet auch andere Materialien vorteilhaft sein können.
  • Der Fluidstrom wird dabei in Rotation versetzt, wobei die auf den Fluidstrom wirkende Zentrifugalkraft die schwere Komponente des Fluidstroms, in diesem Fall Wasser, nach außen an die Gehäuseinnenseite 11 zieht. Der gasförmige Anteil des Fluidstroms bewegt sich aufgrund der sich im Hohlraum 3 ausbildenden Strömungsverhältnisse von dem Einströmraum 12 in den Ringraum 14. Der ringförmige Ringraum 14 schließt den im Inneren des Gehäuses 2 liegenden zylindrischen Abströmraum 16 räumlich ein. In dem Ringraum 14 sind Heizelemente, die hinsichtlich ihrer Heizleistung zur Überhitzung des gasförmigen Anteils des Fluidstroms ausgelegt sind, angeordnet. Dabei können einzelne Heizrohre 18 Verwendung finden, die in ihrer Gesamtheit gewissermaßen Ringbündel bilden. Bei einer Länge der im Ringbündel verwendeten Rohre von ca. 13 m und einem Gehäusedurchmesser von 6 m stehen bei einem Außendurchmesser des Bündels von ca. 3,5 m und einem Rohrdurchmesser von jeweils ca. 2,3 cm bei einer Gesamtanzahl von ca. 5000 Rohren ca. 16.000 m2 Heizfläche zur Verfügung. Alternativ dazu oder in Kombination mit den Heizrohren 18 können Einzelbündel 20 eingesetzt werden. Die Heizrohre 18 bzw. Einzelbündel 20 werden in Strömungsrichtung 22 von dem gasförmigen Anteil des Fluidstroms angeströmt. Der gasförmige Anteil wird im Ringraum 14 überhitzt, worauf er in den Abströmraum 16 weiterströmt. Von dort wird er durch Abfuhrleitungen 24 (in 1 nicht eingezeichnet) in die Niederdruckturbine weitergeleitet.
  • Bei einer direkten Anströmung der Heizelemente durch den Fluidstrom kann aufgrund früherer Erfahrungen ein Abscheidewirkungsgrad des Wassers von bis zu ca. 80% erreicht werden. Dies bedeutet, dass der die Heizrohre 18 bzw. Einzelbündel 20 anströmende Dampf noch ca. 2,6% Wasseranteil hat. Um im Bedarfsfall den Wasseranteil noch weiter zu reduzieren, können im Einströmraum 12 Feinabscheider 28 angebracht sein. Als Feinabscheider 28 können beispielsweise unterschiedlich ausgestaltete Bleche Verwendung finden. Es können auch so genannte Rippenabscheider verwendet werden. Eine weitere Alternative besteht aus Paketen von gewellten Blechen. Gewöhnlich sind diese Abscheideelemente in einem Rahmen befestigt bzw. verankert. Unter Zuhilfenahme der Feinabscheider 28 kann der Wasseranteil auf ca. 0,5% bis 1% reduziert werden. Allerdings geht mit dem Einbringen der Feinabscheider 28 in den Einströmraum 12 ein Druckver lust einher und der Einströmraum 12 wird verkleinert. Im Ausführungsbeispiel sind die Feinabscheider 28 auf einem um die Mittelachse M gelegenen Außenkreis mit ca. 4 m Durchmesser angeordnet und stellen eine Anströmungsfläche von ca. 70 m2 bereit.
  • Unter Berücksichtigung der gesamten Energiebilanz der Vorrichtung 1 wird die zusätzlich gebrauchte Wärme, die durch den erhöhten Wasseranteil von ca. 2,6% (ohne Feinabscheider 28) im Vergleich zu 0,5 bis 1% (mit Feinabscheidern 28) am Eintritt des Rohrbündels verursacht würde, durch den Wegfall des durch die Feinabscheider 28 verursachten Druckverlustes wahrscheinlich vernachlässigbar sein. Die Energiebilanz ergibt sich dabei wie folgt: Um bei einem Wasseranteil von 2,6% auf denselben Austrittsdruck und dieselbe Austrittstemperatur des Dampfes an der Abfuhrleitung 24 zu kommen wie bei einem Wasseranteil von 0,5 bis 1%, muss ca. 20% mehr Frischdampf von der Frischdampfleitung bzw. von der Hochdruckturbine angezapft und in die Heizrohre eingeleitet werden. Wenn aber der rohrseitige Massenstrom durch die Heizrohre gleich bleibt, sinkt aufgrund des ca. 2% höheren Wasseranteils die Austrittstemperatur um ca. 20 K. Pro Kelvin Temperaturverlust sinkt die Generatorleistung in einer typischen Kraftwerksturbine um ca. 0,2 MWe (Megawatt elektrisch). Dagegen gewinnt man pro bar weniger Druckverlust 10 MWe an Generatorleistung. Ein Austrittstemperaturverlust des überhitzten Dampfes von ca. 20 K lässt sich somit durch eine Verringerung des Austrittsdruckverlustes von ca. 400 mbar kompensieren.
  • Um die Anströmung der Heizelemente zu verbessern bzw. um die tangentiale Komponente der Anströmungsgeschwindigkeit zu reduzieren bzw. komplett auszuschließen, können Leitbleche 32, Lochbleche 34 bzw. Leitschaufeln 36 im Einströmraum 12 angeordnet sein. Durch diese Umlenkvorrichtungen wird allerdings der Einströmraum 12 in seiner Größe reduziert. Leitbleche 32, Lochbleche 34 und Leitschaufeln 36 können in der Vorrichtung 1 jeweils alleine oder in unterschiedlichen Kombinationen miteinander verwendet werden.
  • Als Heizelemente können Rohrbündel Verwendung finden, wie sie u. a. in Wärmetauschern verwendet werden. Um eine möglichst große Heizoberfläche zur Verfügung zu stellen, können dabei Rippenrohre bzw. geschlitzte Rippenrohre eingesetzt werden. Es können auch – gegebenenfalls in Kombination mit diesen – Glattrohre Verwendung finden. Die Rohre werden dabei beispielsweise von Frischdampf bei ca. 70 bar und/oder – bei mehrstufiger Erhitzung – von Anzapfdampf der Hochdruckturbine bei ca. 30 bar durchströmt. Die Heizrohre 18 weisen vorzugsweise an der Außenseite ein rundes Querschnittsprofil auf, um dem zu erhitzenden Fluidstrom möglichst wenig Strömungswiderstand entgegenzusetzen.
  • Die Vorrichtung 1 ist in 2 in einem linksseitigen Längsschnitt in einer möglichen Ausführungsform dargestellt. In dieser Ausführungsform ist das Gehäuse 2 der Vorrichtung 1 im Wesentlichen senkrecht aufgestellt. Das Gehäuse 2 ist im Wesentlichen hohlzylindrisch ausgestaltet und rotationssymmetrisch um die Mittelachse M. In den Ringraum 14 sind Heizrohre 18 in Form eines Ringbündels montiert. Zur Überhitzung des gasförmigen Anteils wird den Heizrohren 18 Frischdampf durch die Frischdampfzuleitung 38 zugeführt. Auf etwa halber Höhe des Gehäuses 2 wird der Hohlraum 3 durch eine horizontal ausgerichtete, ringförmige Trennplatte 37 in einen oberen und einen unteren Teilraum aufgeteilt. Die Trennplatte 37 erstreckt sich in radialer Richtung vom Innendurchmesser des Ringraumes 14 bzw. Ringbündels bis fast zur Gehäuseinnenseite 11. Der obere und der untere Teilraum sind auf diese Weise strömungsmäßig nur über den innerhalb der Trennplatte 37 liegenden Verbindungsabschnitt des Abströmraums 16 verbunden. Diese Ausführung kann (jedenfalls im oberen Teilraum) mit allen vier in 1 dargestellten Varianten kombiniert werden.
  • Die Heizrohre 18 können durch die Trennplatte 37 durchgeführt werden und sich über beide Teilräume erstrecken. Alternativ dazu – insbesondere bei zweistufiger Erhitzung – können zwei Gruppen von Heizrohren 18, nämlich eine Gruppe im oberen und eine Gruppe im unteren Teilraum, verwendet werden. Dabei können die Heizrohre 18 der beiden Gruppen für jeweils unterschiedliche Heizleistungen ausgelegt sein.
  • Der aus der Hochdruckturbine austretende Dampf wird durch die Zufuhrleitungen 6 in das Gehäuse 2 in den oberen Teilraum geleitet und strömt die Gehäusein nenseite 11 in tangentialer Richtung an. Hierbei wird der Wasseranteil des Dampfes an der Gehäuseinnenseite 11 abgeschieden. Aufgrund der sich im Zyklon ausbildenden Strömungsverhältnisse und gegebenenfalls mit Hilfe von Leitblechen 32, Leitschaufeln 36 bzw. Lochblechen 34 strömt der gasförmige Anteil des Dampfes in den Abströmraum 16 und durchquert den im Innern der Trennplatte 37 gelegenen Übergang zum unteren Teilraum. Der gasförmige Anteil ändert nach Passieren des Übergangs seine Richtung und wird wieder nach außen durch den Ringraum 14 in Richtung der Gehäuseinnenseite 11 gelenkt, wobei eine erneute Erhitzung durch die im Ringraum 14 angeordneten Heizrohre 18 erfolgt. Anschließend strömt der erhitzte, gasförmige Anteil in die seitlich am Gehäuse 2 angebrachten Abfuhrleitungen 24 und weiter in die Niederdruckturbine.
  • Da die Trennplatte 37 nicht ganz bis an die Gehäuseinnenseite 11 heranreicht, sondern dort ein Ringspalt verbleibt, kann das an der Gehäuseinnenseite 11 herunter fließende Kondensat, hier Wasser, in den Kondensatablauf 42 im unteren Teilraum eintreten. Darüber hinaus ist ein zweiter Kondensatablauf 43 im vertieften Bodenbereich des Gehäuses 2 vorgesehen, über den das in unteren Teilraum sich sammelnde Kondensat durch eine Kondensatableitung 46 ablaufen kann.
  • Eine weitere Ausgestaltung der Vorrichtung 1, die mit den bislang gezeigten Ausführungen kombiniert werden kann, ist in 3 zu sehen. Auch hier ist die Mittelachse M des Gehäuses 2 im Wesentlichen senkrecht ausgerichtet. Die Zufuhrleitungen 6 münden in das Gehäuse 2 derart, dass der Fluidstrom mit einem Gefälle von ca. 15° die Innenseite des Gehäuses 2 anströmt. Dadurch wird der Wirbelströmung im Inneren des Hohlraumes eine – über die Schwerkraftwirkung hinaus gehende – nach unten gerichtete Geschwindigkeitskomponente überlagert, wodurch die gewünschte, im Wesentliche spiral- oder helixartige Strömungsführung unterstützt wird.
  • Darüber hinaus sind bei der in 3 dargestellten Variante im Einströmraum 12 zur verstärkten Abscheidung von Wasser Feinabscheider 28 angebracht. Das sich in den Feinabscheidern 28 sammelnde Kondensat wird durch eine Feinabscheiderkondensatableitung 50 in den Kondensatablauf 42 geleitet. Das Kondensat, in diesem Falle Wasser, wird durch die Kondensatableitungen 46 aus dem Gehäuse geleitet.
  • Eine mögliche Ausführungsform der optional vorgesehenen Leitschaufeln 36 ist in 4 in einem Querschnitt dargestellt. Die gewählte Querschnittsebene liegt senkrecht zur Mittelachse M der Vorrichtung 1. Dabei sind die Leitschaufeln 36 zwischen einer gedachten inneren Umrandung 54 und einer äußeren Umrandung 58 montiert. Die Umrandungen 54 und 58 sind in Wirklichkeit kreisförmig, was aber in der ganz und gar schematischen und nicht maßstabsgerechten 4 nicht erkennbar ist. Die Leitschaufeln 36 haben dabei ein gekrümmtes, sich in Richtung der Heizrohre 18 verjüngendes Profil (es sind nur die außen liegenden Heizrohre 18 des von den Leitschaufeln 36 umgebenen Ringbündels dargestellt). Die Leitschaufeln 36 beeinflussen die Strömungsrichtung 22 des Fluidstroms. Durch geeignete Form und Positionierung der Leitschaufeln 36 kann erreicht werden, dass die Heizrohre 18 im Wesentlichen frontal angeströmt werden. Eine tangentiale oder schräge Anströmung der Heizrohre 18 kann dadurch stark vermindert bzw. vermieden werden.
  • Die in 5 dargestellte Ausführungsform der Vorrichtung 1 mit im Wesentlichen vertikaler Ausrichtung der Mittelachse M ist für eine zweistufige Erhitzung bzw. Überhitzung des Fluidstroms ausgelegt. Dazu wird eine im äußeren Bereich des Ringraums 14 gelegene Gruppe von Heizrohren 18 über eine Anzapfdampfzuleitung 40 mit dem beispielsweise einer Hochdruckturbine entnommenen Anzapfdampf bei ca. 30 bar versorgt. Einer inneren Gruppe von Heizrohren 18 wird über die Frischdampfzuleitung 38 Frischdampf bei ca. 70 bar zugeleitet. Das sich im Ringraum 14 bildende Kondensat kann über die Kondensatableitungen 46 aus der Vorrichtung 1 abgeleitet werden. Zwischen den Eintrittssammlern für die mit unterschiedlichem Dampf versorgten Gruppen von Heizrohren 18 können zur Trennung der jeweiligen Dämpfe Trennbleche 82 vorgesehen sein. Dies gilt ebenso für die Austrittssammler.
  • Von dem durch die Zufuhrleitung 6 in das Gehäuse 2 einströmenden Fluidstrom wird an der Gehäuseinnenseite 11 und ggf. zusätzlich an im Einströmraum 12 an geordneten Feinabscheidern 28 der Wasseranteil abgeschieden, während der gasförmige Anteil in den Ringraum 14 strömt. Der gasförmige Anteil umströmt dabei erst die äußere, mit Anzapfdampf versorgte Gruppe von Heizrohren 18 und danach auf seinem Weg ins Innere des Abströmraums 16 die innere Gruppe von Heizrohren 18 an. Der gasförmige Anteil wird so auf seinem Weg ins Innere des Abströmraums 16 sukzessive erhitzt. Diese Art der zweistufigen Erhitzung kann auf eine mehrstufige Erhitzung mit Hilfe von zusätzlichen Dampfzuleitungen und Rohrgruppen in offensichtlicher Weise verallgemeinert werden. Ferner kann diese Form der zweistufigen oder mehrstufigen Erhitzung mit der Variante, in der in Richtung der Mittelachse M des Gehäuses 2 gesehen mehrere, auf unterschiedliche Heizleistung ausgelegte Gruppen von Heizrohren 18 hinter- bzw- übereinander angeordnet sind, kombiniert werden.
  • In der in 5 gezeigten Variante der Vorrichtung 1 führt die Abfuhrleitung 24 in vertikaler Richtung nach unten aus dem Abströmraum 16 heraus. Diese Ausgestaltung der Abfuhrleitung 24 und die damit verbundene, vertikal nach unten gerichtete Abführung des erhitzten Dampfes kann auch mit einer einstufigen Erhitzung kombiniert werden.
  • Eine vorteilhafte Ausführungsform einer Dampfturbinenanlage 62 ist in 6 gezeigt. Sie umfasst einen Frischdampferzeuger 66, eine Hochdruckturbine 70, sowie eine Niederdruckturbine 74. Die Vorrichtung 1 ist strömungsseitig zwischen die Hochdruckturbine 70 und die Niederdruckturbine 74 geschaltet. Der im Frischdampferzeuger 66 erzeugte Frischdampf wird zur Verrichtung von Arbeit in die Hochdruckturbine 70 geleitet. Unter Verrichtung von Arbeit entspannt sich der Dampf in der Hochdruckturbine 70, wodurch sich sein Wasseranteil erhöht. Damit der Dampf in der Niederdruckturbine 74 möglichst effizient zur Energieerzeugung verwendet werden kann, muss er in geeigneter Weise aufbereitet werden. Dazu muss sein Wasseranteil reduziert werden, bevor er anschließend in einen überhitzten Zustand überführt wird. Aus diesem Grunde wird der aus dem Dampfauslass der Hochdruckturbine 70 austretende Dampf über einen Verteiler durch Zufuhrleitungen 6 in das Gehäuse 2 der Vorrichtung 1 geleitet. Dort strömt der Dampf tangential zur Gehäuseinnenseite 11 ein und wird dadurch in Rotation ver setzt. Der gasförmige Anteil des Dampfes strömt in das Gehäuseinnere, wo er durch Heizelemente, insbesondere Heizrohre, in einen überhitzten Zustand versetzt wird. Von dort wird der überhitzte Dampf durch Abfuhrleitungen 24 in den Dampfeinlass der Niederdruckturbine 74 geleitet. Dort kann der auf diese Weise aufbereitete Dampf weiter zur Energiegewinnung verwendet werden. Die Heizrohre (hier nicht eingezeichnet) der Vorrichtung 1 werden in diesem Ausführungsbeispiel durch die Heizzuleitung 78 mit Frischdampf aus dem Frischdampferzeuger 66 versorgt. Alternativ oder zusätzlich könnte der Hochdruckturbine 70 zu diesem Zweck Anzapfdampf entnommen werden.
  • Die Vorrichtung 1 ist selbstverständlich nicht auf den Einsatz in Dampfturbinenanlagen beschränkt. Sie kann im Wesentlichen immer dort eingesetzt werden, wo aus einem Mehrphasen-Fluidstrom die schwerere Komponente oder Phase abgeschieden werden soll und der gasförmige Anteil erhitzt bzw. überhitzt werden soll. Die schwere Komponente des Fluidstroms kann dabei wie oben erläutert Wasser sein. Es sind aber auch Anwendungen denkbar, in denen die schwere Komponente aus festen Teilchen besteht. Dabei könnte es sich beispielsweise um Ruß oder Schmutzpartikel handeln.
  • 1
    Vorrichtung
    2
    Gehäuse
    3
    Hohlraum
    6
    Zufuhrleitung
    10
    Einströmrichtung
    11
    Gehäuseinnenseite
    12
    Einströmraum
    14
    Ringraum
    16
    Abströmraum
    18
    Heizrohr
    20
    Einzelbündel
    22
    Strömungsrichtung
    24
    Abfuhrleitung
    28
    Feinabscheider
    32
    Leitblech
    34
    Lochblech
    36
    Leitschaufel
    37
    Trennplatte
    38
    Frischdampfzuleitung
    40
    Anzapfdampfzuleitung
    42, 43
    Kondensatablauf
    46
    Kondensatableitung
    50
    Feinabscheiderkondensatableitung
    54
    innere Umrandung
    58
    äußere Umrandung
    62
    Dampfturbinenanlage
    66
    Frischdampferzeuger
    70
    Hochdruckturbine
    74
    Niederdruckturbine
    78
    Heizzuleitung
    82
    Trennblech
    M
    Mittelachse

Claims (19)

  1. Vorrichtung (1) zur Phasenseparation eines Mehrphasen-Fluidstroms mit einem im Wesentlichen um eine Mittelachse (M) rotationssymmetrisch ausgestalteten, einen Hohlraum (3) umschließenden Gehäuse (2), mit wenigstens einer Zufuhrleitung (6) für den Fluidstrom, die für eine im Wesentlichen tangential zur Gehäuseinnenseite (11) gerichtete Einströmung des Fluidstroms ausgelegt ist, und mit wenigstens einer Abfuhrleitung (24) für den separierten gasförmigen Anteil des Fluidstroms, wobei im Hohlraum (3) zur Erhitzung des gasförmigen Anteils ausgelegte Heizelemente in einem konzentrisch um die Mittelachse (M) gelegenen Ringraum (14) angeordnet sind.
  2. Vorrichtung (1) nach Anspruch 1, wobei der Ringraum (14) mit den Heizelementen für eine Durchströmung des gasförmigen Anteils des Fluidstroms ausgelegt ist und den Hohlraum (3) in einen zwischen Gehäuseinnenseite (11) und Ringraum (14) liegenden Einströmraum (12) und einen innerhalb des Ringraums (14) liegenden Abströmraum (16) aufteilt.
  3. Vorrichtung (1) nach Anspruch 1 oder 2, wobei das Gehäuse (2) im Wesentlichen hohlzylindrisch ausgestaltet ist.
  4. Vorrichtung (1) nach einem der Ansprüche 1 bis 3 mit im Wesentlichen vertikaler Ausrichtung der Mittelachse (M).
  5. Vorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei die Heizelemente hinsichtlich Ihrer Heizleistung zur Überhitzung des gasförmigen Anteils des Fluidstroms, insbesondere Wasserdampfes, ausgelegt sind.
  6. Vorrichtung (1) nach einem der Ansprüche 1 bis 5, wobei die oder jede Zufuhrleitung (6) derart ausgelegt ist, dass der Geschwindigkeitsvektor des in den Hohlraum (3) einströmenden Fluidstromes eine Komponente in Richtung der Mittelachse (M) des Gehäuses (2) aufweist.
  7. Vorrichtung (1) nach Anspruch 6, wobei die jeweilige Zufuhrleitung (6) derart ausgestaltet ist, dass der Geschwindigkeitsvektor des in den Hohlraum (3) einströmenden Fluidstromes um 10 bis 30 Grad, insbesondere 15 Grad, bezüglich einer senkrecht zur Mittelachse (M) stehenden Ebene geneigt ist.
  8. Vorrichtung (1) nach einem der Ansprüche 1 bis 7 mit vier Zufuhrleitungen (6), die gleichmäßig über den Umfang des Gehäuses (2) verteilt angeordnet sind.
  9. Vorrichtung (1) nach einem der Ansprüche 2 bis 8, wobei im Einströmraum (12) Leitbleche (32) und/oder Leitschaufeln (36) angeordnet sind, die den gasförmigen Anteil des Fluidstroms in den Ringraum (14) lenken.
  10. Vorrichtung (1) nach einem der Ansprüche 2 bis 9, wobei im Einströmraum (12) Feinabscheider (28) angeordnet sind, und wobei in den Einströmraum (12) eine Feinabscheiderkondensatableitung (50) eingesetzt ist, durch den das sich im Betriebszustand im Feinabscheider (28) bildende Kondensat aus dem Hohlraum (3) abgeführt wird.
  11. Vorrichtung (1) nach einem der Ansprüche 1 bis 10, wobei im Ringraum (14) in Richtung der Mittelachse (M) gesehen zwei oder mehr Gruppen von Heizelementen hintereinander angeordnet sind, deren Heizelemente für jeweils unterschiedliche Heizleistungen ausgelegt sind.
  12. Vorrichtung (1) nach einem der Ansprüche 1 bis 11, wobei die Heizelemente rohrförmig ausgestaltet sind und dazu ausgelegt sind, von einem fluiden Heizmedium, insbesondere Wasserdampf, durchströmt zu werden.
  13. Vorrichtung (1) nach Anspruch 12, wobei die Heizelemente jeweils als geradlinige Rohre ausgebildet sind, die parallel zur Mittelachse (M) ausgerichtet sind.
  14. Vorrichtung (1) nach Anspruch 12 oder 13, wobei jeweils mehrere zueinander benachbarte Heizelemente zu einem Bündel zusammengefasst sind.
  15. Vorrichtung (1) nach einem der Ansprüche 1 bis 14, wobei in das Gehäuse (2) eine ringförmige, senkrecht zur Mittelachse (M) ausgerichtete Trennplatte (37) eingesetzt ist, die den Hohlraum (3) in zwei Teilräume aufteilt, und deren Innenkreis im Wesentlichen mit dem Innenkreis des Ringraums (14) übereinstimmt, und deren Außenkreisradius geringer als der Radius der Gehäuseinnenseite (11) ist.
  16. Dampfturbinenanlage (62) mit einer Hochdruckturbine (70) und einer Niederdruckturbine (74) und einer Vorrichtung (1) nach einem der Ansprüche 1 bis 15, wobei die wenigstens eine Zufuhrleitung (6) mit dem Dampfauslass der Hochdruckturbine (70) verbunden ist, und wobei die wenigstens eine Abfuhrleitung (24) mit dem Dampfeinlass der Niederdruckturbine (74) verbunden ist.
  17. Verfahren zum Betreiben einer Dampfturbinenanlage (62) mit einer Hochdruckturbine (70) und einer Niederdruckturbine (74), wobei der dem Dampfauslass der Hochdruckturbine (70) entströmende Dampf in einen Hohlraum (3) geleitet wird, der von einem im Wesentlichen um eine Mittelachse (M) rotationssymmetrischen Gehäuse (2) umschlossen ist, wodurch der Dampf in Rotation versetzt wird und sein gasförmiger Anteil vom flüssigen Anteil separiert und in einem inneren Bereich des Gehäuses (2) gesammelt wird, und wobei der gasförmige Anteil bei seinem Übertritt in den inneren Bereich durch Heizelemente erhitzt wird und anschließend dem Dampfeinlass der Niederdruckturbine (74) zugeführt wird.
  18. Verfahren nach Anspruch 17, wobei zumindest einige der Heizelemente rohrförmig ausgestaltet sind und von in einem Dampferzeuger (66) erzeugten Frischdampf durchströmt werden.
  19. Verfahren nach Anspruch 17 oder 18, wobei zumindest einige der Heizelemente rohrförmig ausgestaltet sind, und wobei der Hochdruckturbine (70) Anzapfdampf entnommen und in diese Heizelemente geleitet wird.
DE102009015260A 2009-04-01 2009-04-01 Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren Expired - Fee Related DE102009015260B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102009015260A DE102009015260B4 (de) 2009-04-01 2009-04-01 Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren
PCT/EP2010/001436 WO2010112123A2 (de) 2009-04-01 2010-03-08 Vorrichtung zur phasenseparation eines mehrphasen-fluidstroms, dampfturbinenanlage mit einer derartigen vorrichtung und zugehöriges betriebsverfahren
US13/262,713 US20120023944A1 (en) 2009-04-01 2010-03-08 Device for phase separation of a multiphase fluid flow, steam turbine plant having such a device, and associated operating method
CN2010800149872A CN102378877B (zh) 2009-04-01 2010-03-08 用于多相流体流的相分离的装置、带有这种装置的蒸汽涡轮设备以及相关驱动方法
JP2012502480A JP5584281B2 (ja) 2009-04-01 2010-03-08 多相流体流を相分離する装置、このような装置を備える蒸気タービン設備、およびこれに対応する運転方法
EP10713120.3A EP2414730B1 (de) 2009-04-01 2010-03-08 Vorrichtung zur phasenseparation eines mehrphasen-fluidstroms, dampfturbinenanlage mit einer derartigen vorrichtung und zugehöriges betriebsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009015260A DE102009015260B4 (de) 2009-04-01 2009-04-01 Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren

Publications (2)

Publication Number Publication Date
DE102009015260A1 true DE102009015260A1 (de) 2010-12-30
DE102009015260B4 DE102009015260B4 (de) 2013-02-14

Family

ID=42828755

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009015260A Expired - Fee Related DE102009015260B4 (de) 2009-04-01 2009-04-01 Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren

Country Status (6)

Country Link
US (1) US20120023944A1 (de)
EP (1) EP2414730B1 (de)
JP (1) JP5584281B2 (de)
CN (1) CN102378877B (de)
DE (1) DE102009015260B4 (de)
WO (1) WO2010112123A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050087A1 (de) 2009-10-20 2011-07-07 AREVA NP GmbH, 91052 Zyklonabscheider zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einem Zyklonabscheider und zugehöriges Betriebsverfahren

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2612232T3 (es) * 2014-06-05 2017-05-12 Wabco Europe Bvba Bomba de vacío y sistema de una bomba de vacío y un motor
RU2764349C1 (ru) * 2021-04-02 2022-01-17 Акционерное общество "Машиностроительный завод "ЗиО-Подольск" (АО "ЗиО-Подольск") Горизонтальный сепаратор-пароперегреватель

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1196219B (de) * 1956-10-19 1965-07-08 Hoechst Ag Als Waermeaustauscher ausgebildeter Abscheider
DE2841631C2 (de) * 1978-08-31 1986-06-26 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Sperrdampfsystem für mit verunreinigtem Dampf betriebener Dampfturbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1791304A (en) * 1926-06-09 1931-02-03 Wurster & Sanger Inc Catch-all and entrainment separator
US2666499A (en) * 1951-04-11 1954-01-19 Cleaver Brooks Co Centrifugal separator
CH594811A5 (de) * 1975-10-15 1978-01-31 Bbc Brown Boveri & Cie
US4261298A (en) * 1978-06-07 1981-04-14 The Babcock & Wilcox Company Vapor generating technique
US4248181A (en) * 1978-10-11 1981-02-03 Stein Industrie Vertical steam separator-superheater
US4263025A (en) * 1979-04-20 1981-04-21 W-K-M Wellhead Systems, Inc. Baffle plate for cyclone steam separator
SE430716B (sv) * 1982-04-22 1983-12-05 Stal Laval Apparat Ab Mellanoverhettare
JPS58205524A (ja) * 1982-05-24 1983-11-30 Mitsubishi Heavy Ind Ltd 湿り蒸気中の湿分分離装置
US4648890A (en) * 1985-02-27 1987-03-10 The Babcock & Wilcox Company Combination downflow-upflow vapor-liquid separator
JP2651137B2 (ja) * 1985-04-18 1997-09-10 株式会社日立製作所 水位制御装置
US4940473A (en) * 1989-06-16 1990-07-10 Benham Roger A Cyclone solids separator and de-gasifier
US5526386A (en) * 1994-05-25 1996-06-11 Battelle Memorial Institute Method and apparatus for steam mixing a nuclear fueled electricity generation system
JP3761931B2 (ja) * 1995-08-09 2006-03-29 株式会社東芝 湿分分離加熱器の加熱器挿入装置
DE19837250C1 (de) * 1998-08-17 2000-03-30 Siemens Ag Abscheider für eine Wasser-Dampf-Trenneinrichtung
DE19916684C2 (de) * 1999-04-14 2001-05-17 Joachim Schwieger Verfahren zur Wärmetransformation mittels eines Wirbelaggregats
CN201179364Y (zh) * 2008-02-15 2009-01-14 天津瑞吉德科技有限公司 带有内置螺旋整流装置的立式气(汽)液旋流分离器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1196219B (de) * 1956-10-19 1965-07-08 Hoechst Ag Als Waermeaustauscher ausgebildeter Abscheider
DE2841631C2 (de) * 1978-08-31 1986-06-26 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Sperrdampfsystem für mit verunreinigtem Dampf betriebener Dampfturbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050087A1 (de) 2009-10-20 2011-07-07 AREVA NP GmbH, 91052 Zyklonabscheider zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einem Zyklonabscheider und zugehöriges Betriebsverfahren
US9127834B2 (en) 2009-10-20 2015-09-08 Areva Gmbh Cyclone separator for the phase separation of a multiphase fluid stream, steam turbine system having a cyclone separator and associated operating method

Also Published As

Publication number Publication date
DE102009015260B4 (de) 2013-02-14
US20120023944A1 (en) 2012-02-02
JP2012522956A (ja) 2012-09-27
WO2010112123A3 (de) 2011-12-08
CN102378877A (zh) 2012-03-14
EP2414730A2 (de) 2012-02-08
WO2010112123A2 (de) 2010-10-07
EP2414730B1 (de) 2013-05-08
JP5584281B2 (ja) 2014-09-03
CN102378877B (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
EP2491304B1 (de) Zyklonabscheider zur phasenseparation eines mehrphasen-fluidstroms, dampfturbinenanlage mit einem zyklonabscheider und zugehöriges betriebsverfahren
EP3102899B1 (de) Strömungsapparat zur führung eines fluidstroms
EP1848925B1 (de) Dampferzeuger in liegender bauweise
EP2324285B1 (de) Abhitzedampferzeuger
DE102011006066B4 (de) Wasserseparator und Verfahren zum Abtrennen von Wasser aus einer Nassdampfströmung
EP1219892B1 (de) Abhitzekessel zum Kühlen von heissem Systhesegas
WO2011060870A1 (de) Wärmetauscher zur dampferzeugung für solarkraftwerke
DE102009015260B4 (de) Vorrichtung zur Phasenseparation eines Mehrphasen-Fluidstroms, Dampfturbinenanlage mit einer derartigen Vorrichtung und zugehöriges Betriebsverfahren
EP0265908B1 (de) Würzekochvorrichtung
DE1927949A1 (de) Dampferzeugungs- und -ueberhitzungsvorrichtung,insbesondere fuer mit geschmolzenem Metall,geschmolzenem Metallsalz od.dgl. als Waermeuebertrager arbeitende Kernreaktoren
DE1551006B2 (de) Dampferzeuger
EP2174060B1 (de) Dampferzeuger
DE2256633C3 (de) Dampferzeuger
DE1913228A1 (de) Wasserabscheider-UEberhitzer
AT510624B1 (de) Windkraftanlage
DE1639239A1 (de) Kernkraftwerk
DE102016103719B4 (de) Vorrichtung zur Fluidführung
DE102019006567B4 (de) Dampferzeugerflüssigkeitsabscheider und Verfahren zu dessen Herstellung
DE713628C (de) Hochdruckzwischendampfueberhitzer
DE2854499A1 (de) Gasbeheizter geradrohr-dampferzeuger in elementbauweise fuer eine kernreaktoranlage
DE102011006065B4 (de) Dampfturbine mit Dampfsiebanordnungen
DE1551006C (de) Dampferzeuger
DE6750025U (de) Wasserabscheider-ueberhitzer
DE102010040216A1 (de) Solarthermischer Druchlaufdampferzeuger mit einem Dampfabscheider und nachgeschaltetem Sternverteiler für Solarturm-Kraftwerke mit direkter Verdampfung
DE102011108094A1 (de) Wärmetauscher

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R018 Grant decision by examination section/examining division
R082 Change of representative

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE - RECHTSAN, DE

R020 Patent grant now final

Effective date: 20130515

R081 Change of applicant/patentee

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20130729

R082 Change of representative

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE PARTGMBB, DE

Effective date: 20130729

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE - RECHTSAN, DE

Effective date: 20130729

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20141101