DE102009004559A1 - Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial - Google Patents

Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial Download PDF

Info

Publication number
DE102009004559A1
DE102009004559A1 DE102009004559A DE102009004559A DE102009004559A1 DE 102009004559 A1 DE102009004559 A1 DE 102009004559A1 DE 102009004559 A DE102009004559 A DE 102009004559A DE 102009004559 A DE102009004559 A DE 102009004559A DE 102009004559 A1 DE102009004559 A1 DE 102009004559A1
Authority
DE
Germany
Prior art keywords
semiconductor
semiconductor substrate
etching
porous layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009004559A
Other languages
English (en)
Inventor
Enrique Garralaga Rojas
Jan Hensen
Heiko Dr. Plagwitz
Carsten Dr. Hampe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Solarenergieforschung GmbH
Original Assignee
Institut fuer Solarenergieforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Solarenergieforschung GmbH filed Critical Institut fuer Solarenergieforschung GmbH
Priority to DE102009004559A priority Critical patent/DE102009004559A1/de
Priority to PCT/EP2010/050417 priority patent/WO2010081858A2/de
Publication of DE102009004559A1 publication Critical patent/DE102009004559A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/12Etching of semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/0203Making porous regions on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • H01L21/30635Electrolytic etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76259Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along a porous layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Es wird ein Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiter-Dünnschicht beschrieben. Das Verfahren weist dabei die folgenden Schritte auf: Bereitstellen eines Halbleitersubstrates (1), wobei das Halbleitersubstrat (1) ein Material mit einem direkten Halbleiter aufweist; Ausbilden einer porösen Schicht (3) an einer Oberfläche des Halbleitersubstrates (1) durch elektrochemisches Ätzen des Halbleitersubstrates (1) in einer Ätzlösung (7); Abscheiden einer Halbleiterdünnschicht (5) auf der porösen Schicht (3); und Abtrennen der Halbleiterdünnschicht (5) von dem Halbleitersubstrat (1), wobei die poröse Schicht (3) als Sollbruchstelle dient. Auf diese Weise lässt sich in einem Halbleitersubstrat eine poröse Schicht erzeugen, die ein anschließendes Abtrennen der darauf abgeschiedenen Halbleiterdünnschicht und ein Wiederverwenden des Halbleitersubstrates im Rahmen eines Schichttransferverfahrens ermöglicht.

Description

  • GEBIET DER ERFINDUNG
  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht-Dünnschicht, wobei die Halbleiterdünnschicht ein Material mit einem direkten Halbleiter wie z. B. Galliumarsenid (GaAs) aufweist. Insbesondere betrifft die Erfindung ein Herstellungsverfahren für eine Dünnschichtsolarzelle, bei dem eine dünne Halbleiter-Schicht von einem Halbleitersubstrat abgelöst werden kann.
  • HINTERGRUND DER ERFINDUNG
  • Spezielle, beispielsweise für den Einsatz im Weltraum konzipierte, hocheffiziente Solarzellen werden derzeit meist auf der Basis von Verbindungshalbleitern wie zum Beispiel Galliumarsenid (GaAs) gefertigt. Dabei wird in der Regel eine oder mehrere Verbindungshalbleiter-Dünnschichten auf einem Substrat abgeschieden. Beispielsweise wegen der hohen Lichtabsorption kann es hierbei bevorzugt sein, die Dünnschicht(en) mit einem direkten Halbleitermaterial auszubilden. Beispielsweise aufgrund einer guten Übereinstimmung hinsichtlich der Gitterkonstanten kann hierbei als Substrat ein Wafer aus dem gleichen oder einem ähnlichen Material wie dem der abzuscheidenden Verbindungshalbleiterdünnschicht, z. B. ein Galliumarsenid-Wafer, verwendet werden.
  • Zur Reduzierung der Kosten einer Weltraummission sollten die hierbei verwendeten Solarzellen möglichst leicht sein. Deshalb wird bisher der Wafer, der als Trägersubstrat für die Weltraum-Solarzelle dient und auf dem die einzelnen Schichten einer Multi- oder Single-Junction-Solarzelle aufgebracht sind, nach dem Ausbilden der eigentlichen Dünnschicht-Solarzelle weitestgehend entfernt. Dies kann chemisch, beispielsweise durch Wegätzen des Substrats, oder mechanisch, beispielsweise durch Wegschleifen oder Wegpolieren des Substrats, erfolgen. Hierbei wird der ursprünglich als Trägersubstrat dienende Wafer also geopfert.
  • Einerseits ist für das Entfernen des Wafers zusätzlicher Arbeitsaufwand zum Ätzen bzw. Schleifen notwendig. Andererseits bedeutet das nachträgliche Opfern des Wafers einen für die spätere Funktion der Solarzelle nutzlosen Kostenaufwand. Der Wafer wird lediglich während der Fertigung der Solarzelle benötigt. Anschließend wird der beispielsweise ca. 300 μm dicke Wafer jedoch aufwändig entfernt. Es entstehen somit Kosten sowohl für den Wafer wie auch für das anschließende Entfernen des Wafers.
  • Im Stand der Technik sind Verfahren bekannt, mit Hilfe derer dünne Halbleiterschichten, die ein Halbleiterbauelement bilden können, von einem Substrat abgelöst werden können, siehe z. B. US 4,846, 931 . Z. B. kann vor dem Abscheiden der das Halbleiterbauelement bildenden Halbleiterschichten eine leicht ätzbare Zwischenschicht abgeschieden werden. Nachdem die das Halbleiterbauelement bildenden Halbleiterschichten abgeschieden wurden, kann diese Zwischenschicht in einem Ätzschritt aufgelöst werden und so das Bauelement von dem Substrat getrennt werden. Durch Verwenden einer Zwischenschicht aus Aluminiumarsenid (AlAs) konnten auf diese Weise Heterojunction-Solarzellen von einem GaAs-Trägersubstrat getrennt werden.
  • Im Stand der Technik sind ferner Verfahren zum Herstellen von Solarzellen auf Basis von kristallinem Silizium bekannt, bei denen auf einem Siliziumsubstrat zunächst eine poröse Siliziumschicht erzeugt wird und anschließend über der porösen Siliziumschicht eine weitere Schicht aus Silizium abgeschieden wird, beispielsweise epitaktisch. Diese weitere Schicht kann anschließend von dem Siliziumsubstrat abgetrennt werden, wobei die zuvor erzeugte poröse Schicht als Sollbruchstelle dient.
  • Die abgetrennte weitere Schicht kann beispielsweise mit einer Dicke von wenigen Mikrometern ausgebildet werden und anschließend als Dünnschichtsubstrat für eine Solarzelle dienen, wobei in den nachfolgenden Schritten wesentliche Komponenten der Solarzelle, wie zum Beispiel deren Emitter und/oder deren Kontaktmetallisierung, ausgebildet werden können.
  • Ein solches sogenanntes Schichttransferverfahren ist beispielsweise in einem Artikel von R. Brendel in Solar Energy, 77, 2004, 969–982 sowie in DE 197 30 975 A1 bzw. US 6 645 833 beschrieben. Es nutzt die Tatsache, dass die auf die poröse Schicht aufgebrachte Silizium-Dünnschicht vorzugsweise mit der gleichen Kristallstruktur aufwachst, wie das darunter angrenzende Siliziumsubstrat. Wenn als Siliziumsubstrat beispielsweise ein qualitativ hochwertiger einkristalliner Wafer verwendet wird, können auf diese Weise qualitativ hochwertige Silizium-Dünnschichten erzeugt werden, die dann als Substrate für Solarzellen mit hohem Wirkungsgradpotential verwendet werden können. Das Siliziumsubstrat wird dabei abgesehen von geringfügigen Verlusten durch das Erzeugen der porösen Schicht kaum verbraucht und kann mehrfach wiederverwendet werden.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Es kann ein Bedarf an einem Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, bestehen, bei dem die oben genannten Probleme zumindest teilweise überwunden werden. Insbesondere kann ein Bedarf an einem Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, bestehen, bei dem sich eine dünne Schicht aus einem direkten Halbleitermaterial von einem Substrat ablösen lässt und anschließend als Substrat für das Halbleiterbauelement auf Basis einer Halbleiterdünnschicht dienen kann.
  • Gemäß einem Aspekt der vorliegenden Erfindung wird ein Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiter-Dünnschicht vorgeschlagen. Das Verfahren weist dabei die nachfolgenden Prozessschritte auf:
    Bereitstellen eines Halbleitersubstrates, wobei das Halbleitersubstrat ein Material mit einem direkten Halbleiter aufweist; Ausbilden einer porösen Schicht an einer Oberfläche des Halbleitersubstrates durch elektrochemisches Ätzen des Halbleitersubstrates in einer Ätzlösung; Abscheiden einer Halbleiterdünnschicht auf der porösen Schicht; und Abtrennen der Halbleiterdünnschicht von dem Halbleitersubstrat, wobei die poröse Schicht als Sollbruchstelle dient.
  • Die vorliegende Erfindung kann als auf der folgenden Erkenntnis beruhend angesehen werden:
    Das oben beschriebene Schichttransferverfahren wurde bisher nur mit Siliziumwafern als Trägersubstrat erfolgreich realisiert, wobei es sich bei Silizium um einen indirekten Halbleiter handelt. Trägersubstrate auf Basis von direkten Halbleitern wurden bisher aufgrund bestehender Vorurteile und angesichts existierender Alternativen wie dem oben beschriebenen Verfahren mit nachträglich wegzuätzenden Zwischenschichten als nicht erfolgversprechend für die Verwendung bei Schichttransferverfahren gehalten. Solche Vorurteile wurden von den Erfindern des nachfolgend beschriebenen Herstellungsverfahrens überwunden.
  • Mit dem hier vorgestellten Herstellungsverfahren lassen sich unter anderem einerseits in einfacher Weise Dünnschichtsolarzellen z. B. für den Einsatz als Weltraumsolarzellen oder Konzentratorsolarzellen herstellen, andererseits kann das bei der Herstellung verwendete Halbleitersubstrat nach dem Ablösen der darauf abgeschiedenen Dünnschicht in vorteilhafter Weise wiederverwenden, wodurch eine erhebliche Materialeinsparung möglich wird.
  • Mögliche Merkmale und Vorteile von Ausführungsformen des erfindungsgemäßen Herstellungsverfahrens werden im Anschluss detaillierter beschrieben.
  • Das im Rahmen des erfindungsgemäßen Herstellungsverfahrens bereitgestellte Halbleitersubstrat kann eine beliebige Struktur und Geometrie aufweisen. Vorzugsweise wird als Halbleitersubstrat ein Galliumarsenid-Wafer hoher Qualität, beispielsweise aus einkristallinem Galliumarsenid, verwendet. Das Halbleitersubstrat kann plane oder texturierte Oberflächen aufweisen. Insbesondere bei der Herstellung von Solarzellen kann es vorteilhaft sein, wenn die Substratoberfläche, die später die zur Sonneneinstrahlung gerichtete Seite der Solarzelle bildet, eine Oberflächentexturierung aufweist.
  • Die poröse Schicht kann an der Oberfläche des Halbleitersubstrates durch elektrochemisches Ätzen erzeugt werden, indem die Oberfläche des Halbleitersubstrates mit einer Ätzlösung in Kontakt gebracht wird und gleichzeitig eine elektrische Spannung zwischen der Substratoberfläche und der Ätzlösung angelegt wird. Mit anderen Worten liegen die Oberfläche des Halbleitersubstrates und die Ätzlösung auf unterschiedlichen elektrischen Potentialen. Bei geeigneter Polung der angelegten Spannung kann es zu einer elektrochemischen Reaktion kommen, die zu einem Ätzen der Substratoberfläche insbesondere lokal an Nukleationszentren führen kann.
  • Die anschließend auf der porösen Schicht des Halbleitersubstrates abgeschiedene Halbleiterdünnschicht kann mittels verschiedener Epitaxieverfahren erzeugt werden. Es kann lediglich eine homogene Schicht oder alternativ eine Mehrzahl an übereinander gestapelten Schichten abgeschieden werden. Der Begriff „Dünnschicht” kann hierbei derart verstanden werden, dass die abgeschiedenen Schicht aus einer oder mehreren Teilschichten besteht, wobei jede Teilschicht alleine eine im Vergleich zu Halbleiterwafern geringe Dicke aufweist, beispielsweise weniger als 50 μm, vorzugsweise weniger als 10 μm. Beispielsweise kann die Schicht durch chemische Gasphasenabscheidung (CVD – Chemical Vapour Deposition), physikalische Gasphasenabscheidung (PVD – Physical Vapour Deposition) und Flüssigphasenepitaxie (LPE – Liquid Phase Epitaxy) abgeschieden werden. Die Halbleiterdünnschicht kann direkt an der Oberfläche der porösen Schicht des Halbleitersubstrates und in mechanischem Kontakt mit dieser abgeschieden werden. Alternativ können zwischen der porösen Schicht und der Halbleiterdünnschicht auch elektrisch leitende Zwischenschichten z. B. aus TCO (transparent conductive oxide) oder Pufferschichten ausgebildet sein. Die Halbleiterdünnschicht kann aus einem beliebigen Halbleiter gebildet sein. Insbesondere können Halbleitermaterialien bevorzugt sein, die eine ähnliche Gitterkonstante wie das Material des Halbleitersubstrates aufweisen. Direkte Halbleitermaterialien können für die Halbleiterdünnschicht bevorzugt sein. Neben Galliumarsenid (GaAs) können dies auch andere direkte Verbindungshalbleiter wie zum Beispiel Galliumindiumarsenid (GaInAs), Galliumindiumphosphid (GaInP), etc. sein. Die Halbleiterdünnschicht kann mit einer Dicke von wenigen 100 nm bis zu über 100 μm, beispielsweise zwischen 500 nm und 100 μm, vorzugsweise zwischen 10 μm und 30 μm, abgeschieden werden.
  • Um die Halbleiterdünnschicht von dem Halbleitersubstrat abzutrennen, kann beispielsweise eine mechanische Kraft auf die Halbleiterdünnschicht ausgeübt werden. Beispielsweise kann die Halbleiterdünnschicht an ein Trägersubstrat, beispielsweise aus Glas, angehaftet/gebondet werden. Zu diesem Zweck kann ein Verfahren, wie es beispielsweise bei der Modulverkapselung eingesetzt wird, oder ein Sol-Gel-Verfahren verwendet werden. Mit Hilfe des Trägersubstrates kann dann die Halbleiterdünnschicht von dem Halbleitersubstrat abgehoben werden, wobei die zuvor erzeugte poröse Schicht insbesondere in den Bereichen mit der höchsten Porosität als Sollbruchstelle dienen kann, entlang der sich der Abtrennvorgang vollzieht.
  • Bereits vor dem Abtrennen der Halbleiterdünnschicht oder alternativ nach dem Abtrennen können an der Halbleiterdünnschicht weitere Prozessschritte durchgeführt werden, um Komponenten, die für die Funktion als Halbleiterbauelement, insbesondere als Solarzelle, notwendig oder hilfreich sein können, auszubilden. Beispielsweise können in der Halbleiterdünnschicht dotierte Bereiche erzeugt werden, die einen Emitter oder ein BSF (Back Surface Field) bilden. Die dotierten Bereiche können beispielsweise durch Eindiffundieren von Dotanden erzeugt werden. Alternativ können dotierte Bereiche durch epitaktisches Aufbringen dotierter Halbleiterschichten erzeugt werden, so dass sich Heterostrukturen ausbilden lassen, bei denen zum Beispiel der Emitter durch eine Schicht aus einem ersten Halbleitermaterial und die Basis durch eine Schicht aus einem zweiten, anderen Halbleitermaterial gebildet sein kann. Ferner können elektrische Kontakte beispielsweise in Form von Metallisierungen oder durch transparente leitfähige Oxide (TCO – Transparent Conductive Oxides) an den Oberflächen der Halbleiterdünnschicht gebildet werden. Außerdem können Dielektrikumschichten an der Oberfläche gebildet werden, die als Oberflächenpassivierung, Antireflexschicht oder Rückseitenspiegel dienen können.
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird während des elektrochemischen Ätzens des Halbleitersubstrates eine zwischen dem Halbleitersubstrat und einer externen Elektrode angelegte Spannung mehrfach umgepolt, um zeitweise eine anodische Vorspannung zum eigentlichen Ätzen und zeitweise eine kathodische Vorspannung zum Passivieren der freiliegenden Halbleitersubstratoberfläche anliegen zu haben. Die Spannung kann abrupt oder kontinuierlich umgepolt werden, zum Beispiel von einer anodischen Vorspannung eines ersten Spannungswertes auf eine kathodische Vorspannung eines zweiten Spannungswertes mit entgegengesetztem Vorzeichen zum ersten Spannungswert. Die Spannungswerte können dabei abhängig von der Größe des Substrates im Bereich von unter 1 V, beispielsweise 0,001 V, bis hin zu vielen Volt, beispielsweise 1000 V, liegen. Der erste und der zweite Spannungswert können sich betragsmäßig unterscheiden, das heißt zum Beispiel kann der Betrag der negativen anodischen Vorspannung größer sein als der Betrag der positiven kathodischen Vorspannung. Die Zeitdauern zwischen den Spannungsumpolungen können im Bereich weniger Sekunden oder sogar weniger als einer Sekunde bis hin zu wenigen Minuten liegen. Zum Beispiel kann eine Phase, in der eine gewisse Vorspannung anliegt, kürzer als 10 Minuten sein. Ferner können sich die Zeitdauern der Phasen anodischer Vorspannung von denjenigen kathodischer Vorspannung unterscheiden.
  • Es wurde von den Erfindern der vorliegenden Erfindung erkannt, dass die Verfahren zur Erzeugung einer porösen Schicht durch elektrochemisches Ätzen, wie sie bei der Erzeugung einer porösen Schicht in Silizium bekannt und bei der Realisierung von Schichttransferprozessen erfolgreich sind, bei der Verwendung von Halbleitersubstraten aus direkten Halbleitermaterialien eventuell nicht zu zufriedenstellenden Ergebnissen führen.
  • Beim elektrochemischen Ätzen wird die Oberfläche eines zu ätzenden Substrates mit einer Ätzlösung in Kontakt gebracht. Zwischen einer mit dem Substrat in Kontakt stehenden Elektrode und einer mit der Ätzlösung in Kontakt stehenden, externen Elektrode wird dann eine elektrische Spannung angelegt, die einen sogenannten Ätzstrom fließen lässt. Aufgrund elektrochemischer Reaktionen kann es zu einem Aufoxidieren der Substratoberfläche und zu einem anschließenden Wegätzen der aufoxidierten Substratoberfläche durch die benetzende Ätzlösung kommen. Da dieser Vorgang generell nicht homogen abläuft, sondern sich auf Nukleationskeime konzentriert, kommt es zu einem inhomogenen Ätzen der Substratoberfläche, wodurch eine poröse Oberflächenschicht entstehen kann.
  • Bei Siliziumsubstraten wurde beobachtet, dass durch entsprechendes Einstellen der Spannung zwischen dem Siliziumsubstrat und der externen Elektrode der entstehende Ätzstrom derart eingestellt werden kann, dass eine gewünschte Porosität der erzeugten porösen Schicht beeinflusst werden kann. Die Porosität ergibt sich hier unter anderem durch die Anzahl bzw. Dichte sowie die Größe der erzeugten Poren. Durch sukzessives Ändern der verwendeten Ätzspannung bzw. des verwendeten Ätzstromes kann dabei eine sogenannte poröse Doppelschichtstruktur erzeugt werden, bei der direkt an der Oberfläche des zu ätzenden Substrates eine geringere Porosität erzeugt wird als tiefer im Inneren des Substrates. Der Bereich der tiefer liegenden, höheren Porosität kann später beim Abtrennen der darüber liegenden Schicht mit geringer Porosität als Sollbruchstelle dienen.
  • Die Erzeugung einer solchen vorteilhaften Doppelschichtstruktur mit entsprechend angeordneten Bereichen unterschiedlicherer Porosität war bisher bei anderen Halbleitersubstraten häufig problembehaftet. Als mögliche Erklärung hierfür haben die Erfinder der vorliegenden Erfindung erkannt, dass beim elektrochemischen Ätzen von Silizium der Ätzvorgang vornehmlich zu einer Vertiefung der Poren führt, die Oberflächenbereiche neben den Poren jedoch beim Ätzen anscheinend kaum angegriffen werden. Durch entsprechendes Variieren des Ätzstromes kann die Porengröße dort im Inneren des Substrates, wo gerade geätzt wird, eingestellt werden.
  • Dies scheint bei anderen Halbleitersubstraten nicht ohne Weiteres möglich zu sein. Es wurde von den Erfindern der vorliegenden Erfindung beobachtet, dass beim elektrochemischen Ätzen anderer Halbleitersubstrate sich zwar auch die Tiefe der Poren sukzessive vergrößert, gleichzeitig anscheinend jedoch auch die angrenzenden Bereiche an der Oberfläche des Halbleitersubstrates weggeätzt werden. Die Ätzrate, mit der die Tiefe der Poren zunimmt, scheint dabei bei manchen Halbleitermaterialien allenfalls geringfügig höher zu sein als die Ätzrate an der Substratoberfläche. Hierdurch lässt sich erklären, dass das Substrat, wenn eine poröse Schicht ausreichender Dicke erzeugt werden soll, gleichzeitig auch stark zurückgeätzt wird, das heißt, dass seine Gesamtdicke abnimmt. Die vermutete Tatsache, dass manche Halbleitermaterialien während des elektrochemischen Ätzens nicht nur in der Tiefe der Poren geätzt werden, sondern auch an der Oberfläche, führt somit dazu, dass zum Ausbilden einer ausreichend dicken porösen Schicht ein erheblicher Gesamtverlust an Halbleitersubstratmaterial akzeptiert werden muss. Außerdem kann aufgrund der vermuteten Tatsache, dass die Oberfläche beim Vertiefen der Poren stets mitgeätzt wird, keine geeignete Doppelschichtstruktur mit großen Poren in der Tiefe und kleinen Poren an der Oberfläche erzeugt werden.
  • Außerdem wurde beobachtet, dass es unter bestimmten Ätzbedingungen zu einem unkontrolierten, selbständigen Ablösen eine Halbleitersubstratoberflächenschicht kommen kann, die dann aufgrund ihrer mangelnden mechanischen Stabilität nicht mehr als Substrat für die epitaktische Ausbildung eine Dünnschichtsolarzelle dienen kann.
  • Die Erfinder der vorliegenden Erfindung haben nun erkannt, dass das beim elektrochemischen Ätzen der Poren gleichzeitig auftretende Anätzen der Substratoberfläche zumindest zeitweilig unterbunden bzw. gehemmt werden kann dadurch, dass während des elektrochemischen Ätzens eine zwischen dem Halbleitersubstrat und einer externen Elektrode angelegte Spannung wiederholt kurzzeitig umgepolt wird. Es wurde beobachtet, dass durch ein solches zeitweises, mehrfaches Umpolen der angelegten Spannung während des elektrochemischen Ätzens eine vorteilhafte Ausgestaltung der erzeugten porösen Schicht erreicht werden kann.
  • Eine von den Erfordern der vorliegenden Erfindung entwickelte mögliche Erklärung dieses beobachteten Effekts lautet wie folgt: Während einer Ätzphase, bei der eine sogenannte anodische Vorspannung zwischen dem Halbleitersubstrat und der externen Elektrode herrscht, so dass ein Ätzstrom fließt, wird das Halbleitersubstratmaterial aufgrund von elektrochemischen Prozessen angeätzt. Dies entspricht dem herkömmlichen elektrochemischen Ätzen. Bei Umpolung der angelegten Spannung, das heißt unter kathodischer Vorspannung, bei der die angelegte Spannung derart gewählt ist, dass kein substantieller Ätzstrom fließt, kommt es zu keinem wesentlichen Ätzen des Halbleitersubstratmaterials. Dementsprechend wird ein Wachsen der Poren gestoppt. Gleichzeitig scheint es aber auch zu einer Passivierung der Halbleitersubstrat-Oberfläche mit Wasserstoffionen (H+) zu kommen. Diese Passivierung der Halbleitersubstrat-Oberfläche scheint in einem nachfolgenden Ätzschritt, bei dem wieder eine anodische Vorspannung eingestellt wird, das Anätzen der Oberfläche temporär zu hemmen. Eine mögliche Ursache hierfür könnten Leckageströme sein. Indem die angelegte Spannung mehrfach umgepolt wird, kann während der Phasen der anodischen Vorspannung einerseits die Größe und Tiefe der erzeugten Poren durch entsprechende Wahl der anodischen Vorspannung beeinflusst werden, andererseits kann während der Phasen der kathodischen Vorspannung eine Passivierung der Substratoberfläche erreicht werden, die ein gleichzeitiges Anätzen der Substratoberfläche während einer nachfolgenden Phase anodischer Vorspannung hemmt. Auf diese Weise können poröse Schichten geeigneter Porengröße und Geometrie erzeugt werden, die für eine Anwendung in einem Schichttransferverfahren zur Herstellung eines Halbleiterbauelementes geeignet sind.
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird die Spannung, die während des elektrochemischen Ätzens des Halbleitersubstrates zwischen dem Halbleitersubstrat und der externen Elektrode angelegt ist, periodisch umgepolt. Mit anderen Worten kann innerhalb einer sich zyklisch wiederholenden Periodendauer die Spannung während eines ersten Zeitraums als anodische Vorspannung angelegt sein und dann während eines zweiten Zeitraums als kathodische Vorspannung, wobei die jeweiligen Umpolungen sich periodisch wiederholen. Ein solches sich periodisch wiederholendes Spannungsschema kann technologisch einfach generiert werden. Die Spannung kann dabei abrupt oder auch kontinuierlich von einer anodischen Vorspannung hin zu einer kathodischen Vorspannung umgepolt werden.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird während des elektrochemischen Ätzens eine erste Zeitdauer, bei der eine anodische Vorspannung herrscht, das heißt, während der die zwischen dem Halbleitersubstrat und der externen Elektrode angelegte Spannung derart gewählt ist, dass ein Ätzstrom fließt, länger gewählt sein als eine nachfolgende zweite Zeitdauer, bei der eine kathodische Vorspannung herrscht, das heißt, während der die angelegte Spannung derart gewählt ist, dass im Wesentlichen kein Ätzstrom fließt. Beobachtungen haben gezeigt, dass es genügt, eine kathodische Vorspannung lediglich für kurze Zeit anzulegen, um die gewünschte Passivierung der Halbleitersubstratoberfläche zu erreichen. Damit kann die zur Passivierung notwendige kathodische Vorspannung zeitlich kürzer angelegt werden als die zum eigentlichen Ätzen benutzte anodische Vorspannung, so dass die Gesamtätzdauer möglichst kurz gehalten werden kann.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung weist die Ätzlösung einen Anteil von mindestens 10 Vol-% Flusssäure (HF) auf. Beobachtungen haben gezeigt, dass sowohl die Ätzgeschwindigkeit als auch das gesamte Ätzergebnis stark von der Konzentration der Ätzlösung abhängen können. Dabei wurde beobachtet, dass mit sinkender Konzentration die Ätzgeschwindigkeit nicht nur entsprechend abnehmen kann, sondern dass unterhalb einer bestimmten Mindestkonzentration eventuell überhaupt kein signifikantes Ätzen mehr beobachtet werden kann. Eine Lösung aus Flusssäure (HF) in Wasser mit einer gewissen Mindestkonzentration von wenigstens 10 Vol-% HF, vorzugsweise einer Konzentration von mindestens 20 Vol-% und stärker bevorzugt einer Konzentration von zwischen 30 und 50 Vol-%, wurde als geeignete Ätzlösung erkannt.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung weist das bereitgestellte Halbleitersubstrat einen spezifischen Widerstand von weniger als 1 Ohm-cm (Ohm-Zentimeter) auf. Es wurde beobachtet, dass das Ergebnis des elektrochemischen Ätzens stark von der Ladungsträgerdichte in dem verwendeten Halbleitersubstrat abhängt und sich mit zunehmender Ladungsträgerdichte, das heißt mit abnehmendem spezifischem Widerstand des Substrates, verbessert. Insbesondere wurde beobachtet, dass bei Halbleitersubstraten mit einer zu geringen Ladungsträgerdichte, das heißt einem zu hohen spezifischen Widerstand, kein zufriedenstellendes Ätzergebnis erreicht werden konnte. Vorzugsweise sollte der spezifische Widerstand des Halbleitersubstrates kleiner als 100 mOhm-cm, stärker bevorzugt kleiner als 50 mOhm-cm und noch stärker bevorzugt zwischen 10 und 35 mOhm-cm betragen. Ferner kann eine bestimmte Kristallorientierung des Halbleitersubstrates zu einem vorteilhaften Ätzergebnis führen. Halbleiter-Wafer, mit einer 100-Orientierung wurden als vorteilhaft erkannt. Ferner kann eine Polierung der Oberfläche vorteilhaft wirken.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist das bereitgestellte Halbleitersubstrat vom p-Halbleitertyp. Es wurde beobachtet, dass sich bei p-Typ-Halbleitersubstraten bessere Ätzergebnisse erzielen lassen als bei n-Typ-Halbleitersubstraten. Um auch auf n-Typ-Halbleitersubstraten zufriedenstellende Ätzergebnisse erreichen zu können, können zusätzliche Maßnahmen vorteilhaft sein. Zum Beispiel können durch Beleuchten mit Licht zusätzliche Ladungsträger in dem Substrat erzeugt werden, wodurch der Ätzvorgang unterstützt werden kann.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung werden Einflussparameter während des elektrochemischen Ätzens derart gewählt, dass die poröse Schicht als mikroporöse oder mesoporöse Schicht ausgebildet wird. Unter einer mikroporösen Schicht wird dabei nach IUPAC (International Union of Pure and Applied Chemistry) eine Schicht mit einer durchschnittlichen Porengröße von weniger als 10 nm verstanden. Bei einer mesoporösen Schicht ist die Porengröße zwischen 10 und 50 nm. Solche im Vergleich zu makroporösen Schichten kleinporigen porösen Schichten können für den Einsatz bei Schichttransferprozessen vorteilhaft sein. Einflussparameter, die auf die Art und Geschwindigkeit des Ätzvorgangs und die dabei entstehenden Poren Einfluss haben können, sind unter anderem der durch die angelegte anodische Vorspannung bewirkte Ätzstrom, die Temperatur, die Konzentration der Ätzlösung sowie die Dotierungskonzentration des Halbleitersubstrates an der zu ätzenden Oberfläche. Ein weiterer Einflussparameter ist die Dauer der jeweiligen Phasen mit einer anodischen bzw. kathodischen Vorspannung, das heißt, die Phasendauern zwischen den Umschaltvorgängen der angelegten Ätzspannung.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung werden Einflussparameter während des elektrochemischen Ätzens derart gewählt, dass außerhalb einer ersten hochporösen Schicht eine zweite niederporöse Schicht ausgebildet wird. Der Begriff „außerhalb” kann dabei als „näher zur Oberfläche des Halbleitersubstrates gelegen” interpretiert werden. Mit anderen Worten sollen die Einflussparameter derart gewählt werden, dass sich durch das elektrochemische Ätzen eine Doppelschicht ergibt, bei der direkt an der Oberfläche des Halbleitersubstrates eine kleinere Porengröße bzw. Porendichte erzeugt wird als tiefer im Inneren des Halbleitersubstrates. Beispielsweise kann die poröse Schicht direkt an der Oberfläche des Substrates mikroporös sein, während sie darunter mesoporös sein kann. Ein wichtiger und einfach zu beeinflussender Einflussparameter ist hierbei die während des Ätzens angelegte Spannung sowie die Dauern der einzelnen Ätz- bzw. Passivierungsphasen.
  • Die hochporöse Schicht kann beispielsweise eine Porosität von zwischen 20% und 60%, vorzugsweise zwischen 30% und 50% aufweisen. Versuche haben ergeben, dass die poröse Schicht bei einer zu geringen Porosität schlecht als Sollbruchstelle beim anschließenden Abtrennvorgang dienen kann. Bei einer zu hohen Porosität können Probleme beim Ausbilden der Halbleiterdünnschicht auf der porösen Schicht auftreten, da sich das epitaktisch abgeschiedene Halbleitermaterial aufgrund eventuell zu großer Poren oder Krater innerhalb der porösen Schicht nicht mehr zu einer geschlossenen Halbleiterdünnschicht schließen kann.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung werden während des Ätzens in zeitlicher Reihenfolge verschiedene Ätzlösungen verwendet. Die Ätzlösungen können sich dabei sowohl hinsichtlich der in den Lösungen enthaltenen ätzenden Substanzen als auch hinsichtlich der Konzentration dieser ätzenden Substanzen unterscheiden. Beispielsweise können HF-Lösungen verschiedener Konzentrationen verwendet werden. Es wurde beobachtet, dass die Verwendung verschiedener Ätzlösungen zu unterschiedlichen Ätzergebnissen, insbesondere auch hinsichtlich der erzeugten Porosität, führen kann. Daher kann es vorteilhaft sein, den Ätzvorgang zunächst mit einer Ätzlösung zu beginnen, die an der Oberfläche des Halbleitersubstrates zu einer niederporösen Schicht führt, und den Ätzvorgang dann mit einer anderen Ätzlösung fortzusetzen, die tiefer im Inneren des Halbleitersubstrates zu einer stärkeren Ätzaktivität und damit zu einer höheren Porosität führt. Auf diese Weise kann eine gewünschte poröse Doppelschichtstruktur erreicht werden.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird der zum elektrochemischen Ätzen verwendeten Ätzlösung ein Benetzungsmittel beigefügt. Dieses Benetzungsmittel kann bewirken, dass die eigentlichen ätzenden Substanzen der Ätzlösung die Oberfläche des Halbleitersubstrates während des Ätzvorgangs gleichmäßig benetzen können. Außerdem können sich Gasbläschen aufgrund des Benetzungsmittels einfach von der Oberfläche des Halbleitersubstrates lösen. Als Benetzungsmittel kann beispielsweise Ethanol (C2H6O) oder Essigsäure (C2H4O2) verwendet werden.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird die poröse Schicht einem Tempern unterzogen. Unter „Tempern” kann dabei ein zusätzlicher Hochtemperaturschritt bei Temperaturen von beispielsweise oberhalb von 400°C, vorzugsweise oberhalb von 700°C, jedoch unterhalb der Schmelztemperatur des Materials des Halbleitersubstrates verstanden werden. Es wurde beobachtet, dass sich die poröse Oberfläche des Halbleitersubstrates aufgrund von Umformungsprozessen schließen kann, so dass das Halbleitersubstrat nach dem Tempern von außen her eine geschlossene, glatte, vorzugsweise kristalline Oberfläche aufweist und erst darunter sich eine poröse Schicht erstreckt. Eine solche geschlossene Oberflächenschicht kann als vorteilhafte Startschicht für ein anschließendes epitaktisches Abscheiden einer Halbleiterdünnschicht dienen. Je nach verwendeter Temperatur und Gasphase während des Temperns, zum Beispiel Stickstoff, Stickstoff-Wasserstoff-Gemische oder Argon, kann es neben der Umformung der porösen Halbleiter-Oberfläche zur Entstehung von Oxiden der verwendeten Halbleitermaterialien kommen. Das Tempern kann beispielsweise zusammen mit einem anderen nachfolgenden Prozessierungsvorgang wie z. B. dem epitaktischen Abscheiden einer weiteren Schicht durchgeführt werden.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird die poröse Schicht in einer reduzierenden Gasatmosphäre wie zum Beispiel einer 100%igen Wasserstoffatmosphäre getempert. Eine solche reduzierende Gasatmosphäre kann zuvor bereits entstandene Oxide der verwendeten Halbleitermaterialien auflösen und zur Bildung einer geschlossenen Halbleiter-Oberfläche beitragen.
  • Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird die poröse Schicht in einer Schutzgasatmosphäre, beispielsweise in einer Atmosphäre aus Argon (Ar) getempert. Das Tempern in einer Schutzgasatmosphäre erlaubt eine Umformung der porösen Halbleitersubstratoberfläche ohne eine störende Oxidbildung.
  • Falls zwischen der Bildung der porösen Halbleiterschicht und dem Abscheiden der Halbleiterdünnschicht ein längerer Zeitraum liegt, während dem sich Oxide an der porösen Halbleiterschicht bilden können, kann es vorteilhaft sein, unmittelbar vor dem Abscheiden der Halbleiterdünnschicht einen weiteren Ätzschritt, beispielsweise in Flusssäure, durchzuführen.
  • Die Erfindung sowie einige ihrer Ausführungsformen wurden vorrangehend am Beispiel der Herstellung von Dünnschichtsolarzellen beschrieben. Es wird angemerkt, dass die Prinzipien der Erfindung auch zur Herstellung anderer elektronischer, halbleiterbasierter Bauelemente wie z. B. Leuchtdioden (LEDs), Laserdioden, etc angewendet werden können.
  • Es wird angemerkt, dass die Ausführungsformen, Merkmale und Vorteile der Erfindung teilweise in Bezug auf das erfindungsgemäße Herstellungsverfahren für ein Halbleiterbauelement und teilweise in Bezug auf das mit Hilfe eines solchen Verfahrens herstellbare Halbleiterbauelement beschrieben wurden. Ein Fachmann wird jedoch erkennen, dass, sofern dies nicht anders angegeben ist, die Ausführungsformen und Merkmale der Erfindung auch jeweils analog auf das Halbleiterbauelement/das erfindungsgemäße Herstellungsverfahren übertragen werden können und umgekehrt. Insbesondere wird ein Fachmann erkennen, dass Merkmale der verschiedenen Ausführungsformen auch in beliebiger Weise untereinander kombiniert werden können.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung werden dem Fachmann aus der nachfolgenden Beschreibung von beispielhaften Ausführungsformen, die jedoch nicht als die Erfindung beschränkend auszulegen sind, und unter Bezugnahme auf die begleitenden Zeichnungen ersichtlich.
  • 1 zeigt eine Halbleiterdünnschicht, die auf einem Halbleitersubstrat abgeschieden wurde, gemäß einer Ausführungsform des erfindungsgemäßen Herstellungsverfahrens.
  • 2 zeigt eine Anordnung, mit der das Herstellungsverfahren gemäß einer Ausführungsform der Erfindung durchgeführt werden kann.
  • 3 zeigt eine alternative Anordnung, mit der das Herstellungsverfahren gemäß einer Ausführungsform der Erfindung durchgeführt werden kann.
  • 4a und 4b zeigen Graphen zur Veranschaulichung des zeitlichen Verlaufs eines Ätzpotentials bzw. eines Ätzstroms bei einem Verfahren gemäß einer Ausführungsform der vorliegenden Erfindung.
  • Die Zeichnungen sind lediglich schematisch und nicht maßstabsgetreu. Gleiche Bezugszeichen bezeichnen in den Figuren gleiche oder ähnliche Elemente.
  • DETAILLIERTE BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN
  • Nachfolgend wird anhand der in 1 dargestellten Halbleiterschichtstruktur und der in den 2 und 3 dargestellten Versuchsanordnung ein Grundprinzip sowie spezielle Ausführungsformen des erfindungsgemäßen Herstellungsverfahrens beschrieben.
  • Auf einem als Halbleitersubstrat 1 dienenden einkristallinen p-Typ-Galliumarsenidwafer mit einem spezifischen Widerstand von zwischen 10 und 35 Milliohm-Zentimeter wird durch elektrochemisches Ätzen eine poröse Schicht 3 erzeugt. Hierzu wird der Galliumarsenidwafer mit einer ersten Elektrode 9 kontaktiert und die zu ätzende Wafer-Oberfläche mit einer mindestens 30-Vol%igen HF-haltigen Ätzlösung 7 benetzt. Eine zweite Elektrode 11 steht in elektrischem Kontakt zu der Ätzlösung 7. Mit Hilfe einer externen Spannungsquelle 13 wird eine elektrische Spannung zwischen den beiden Elektroden 9, 11 angelegt, wobei die Spannung in kurzen Zeitabständen umgepolt wird. Die angelegten Spannungen sowie gegebenenfalls die verwendeten Ätzlösungen werden dabei so gewählt, dass sich eine poröse Doppelschicht bildet, bei der direkt an der Oberfläche des Halbleitersubstrat 1 nur eine geringe Porosität ausgebildet ist, wohingegen tiefer im Innern des Halbleitersubstrat 1, beispielsweise in einer Tiefe von etwa 1 μm, eine höhere Porosität erzeugt wird.
  • Nachdem während des Ätzvorgangs eine solche poröse Doppelschichtstruktur erzeugt wurde, wird das Halbleitersubstrat 1 von der Ätzlösung getrennt und mit de-ionisiertem Wasser gereinigt und anschließend trocken geblasen.
  • Anschließend wird das Halbleitersubstrat 1 mit der darauf befindlichen porösen Schicht 3 einem Hochtemperaturschritt bei ca. 700°C für einige Minuten in einer 100%igen Wasserstoffatmosphäre unterzogen. Dabei formt sich die poröse Schicht 3 teilweise um und bildet vorzugsweise an ihrer nach außen gerichteten Oberfläche eine geschlossene Schicht, die als Startschicht für eine anschließend abzuscheidende Halbleiterdünnschicht 5 dienen kann. Die Halbleiterdünnschicht 5 kann nachfolgend von dem Halbleitersubstrat abgetrennt werden und zu einem gewünschten Halbleiterbauelement wie z. B. einer Dünnschichtsolarzelle weiterprozessiert werden.
  • Bei der in 2 gezeigten Vorrichtung lagert ein Halbleitersubstrat 1 horizontal auf einer Elektrode 9. In einem nach oben und unten offenen Gefäß 15 ist eine 30%ige HF-Ätzlösung 7 eingefüllt. Durch einen abdichtenden O-Ring 17, der zwischen dem Boden des Gefäßes 15 und dem Halbleitersubstrat 1 angeordnet ist, wird ein Austreten der Ätzlösung 7 verhindert. In einen Teflonblock 19 ist ein sich verzweigender Platindraht 21 eingelegt, der als weitere Elektrode 11 dient. Durch Eintauchen des Teflonblockes 19 kommt die weitere Elektrode 11 mit der Ätzlösung 7 in Kontakt. Die beiden Elektroden 9, 11 sind an eine Spannungsquelle 13 angeschlossen, die dazu ausgelegt ist, die zwischen den beiden Elektroden 9, 11 anliegende Spannung in gewissen Zeitabständen umzupolen.
  • Bei der in 3 gezeigten Vorrichtung befindet sich in einem Gefäß 15' eine HF-haltige Ätzlösung 7. Ein Halbleitersubstrat 1 lagert vertikal an einer ersten Elektrode 9. Sowohl die erste Elektrode 9 wie auch eine weitere Platinelektrode 11 werden in die Ätzlösung eingetaucht. Beide Elektroden 9, 11 werden wiederum an eine Spannungsquelle 13 angeschlossen. Ein Tunnel 21 dient zur Homogenisierung des elektrischen Feldes.
  • In den 4a und 4b ist der von der Spannungsquelle 13 gesteuerte Verlauf des Ätzstromes bzw. der Ätzspannung in Abhängigkeit von der Zeit dargestellt.
  • Abschließend wird darauf hingewiesen, dass die Begriffe „umfassen”, „aufweisen” etc. das Vorhandensein weiterer Elemente nicht ausschließen. Der Begriff „ein” schließt auch das Vorhandensein einer Mehrzahl von Gegenständen nicht aus. Die Bezugszeichen in den Ansprüchen dienen lediglich der besseren Lesbarkeit und sollen den Schutzbereich der Ansprüche in keiner Weise einschränken.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 4846931 [0005]
    • - DE 19730975 A1 [0008]
    • - US 6645833 [0008]
  • Zitierte Nicht-Patentliteratur
    • - Artikel von R. Brendel in Solar Energy, 77, 2004, 969–982 [0008]

Claims (14)

  1. Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht, wobei das Verfahren aufweist: Bereitstellen eines Halbleitersubstrates (1), wobei das Halbleitersubstrat (1) ein Material mit einem direkten Halbleiter aufweist; Ausbilden einer porösen Schicht (3) an einer Oberfläche des Halbleitersubstrates (1) durch elektrochemisches Ätzen des Halbleitersubstrates (1) in einer Ätzlösung; Abscheiden einer Halbleiterdünnschicht (5) auf der porösen Schicht (3); und Abtrennen der Halbleiterdünnschicht (5) von dem Halbleitersubstrat (1), wobei die poröse Schicht (3) als Sollbruchstelle dient.
  2. Verfahren nach Anspruch 1, wobei während des elektrochemischen Ätzens des Halbleitersubstrates (1) eine zwischen dem Halbleitersubstrat (1) und einer externen Elektrode (11) angelegte Spannung mehrfach umgepolt wird.
  3. Verfahren nach Anspruch 2, wobei die während des elektrochemischen Ätzens des Halbleitersubstrates (1) angelegte Spannung periodisch umgepolt wird.
  4. Verfahren nach Anspruch 2 oder 3, wobei während des elektrochemischen Ätzens eine erste Zeitdauer, während der die zwischen dem Halbleitersubstrat (1) und der externen Elektrode (11) angelegte Spannung derart gewählt ist, dass ein Ätzstrom fließt, länger ist als eine nachfolgende zweite Zeitdauer, während der die angelegte Spannung derart gewählt ist, dass kein Ätzstrom fließt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Ätzlösung (7) einen Anteil von mindestens 10 vol-% HF aufweist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das bereitgestellte Halbleitersubstrat (1) einen spezifischen Widerstand von weniger als 1 Ohm-Zentimeter aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das bereitgestellte Halbleitersubstrat (1) vom p-Halbleitertyp ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei Einflußparameter während des elektrochemischen Ätzens derart gewählt werden, dass die poröse Schicht (3) als mikroporöse oder mesoporöse Schicht ausgebildet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei Einflußparameter während des elektrochemischen Ätzens derart gewählt werden, dass außerhalb einer ersten hochporösen Schicht eine zweite niederporöse Schicht ausgebildet wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei während des Ätzens in zeitlicher Reihenfolge verschiedene Ätzlösungen (7) verwendet werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Ätzlösung ein Benetzungsmittel beigefügt ist.
  12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die poröse Schicht getempert wird.
  13. Verfahren nach Anspruch 12, wobei die poröse Schicht in einer reduzierenden Gasatmosphäre getempert wird.
  14. Verfahren nach Anspruch 12, wobei die poröse Schicht in einer Schutzgasatmosphäre getempert wird.
DE102009004559A 2009-01-14 2009-01-14 Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial Withdrawn DE102009004559A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102009004559A DE102009004559A1 (de) 2009-01-14 2009-01-14 Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial
PCT/EP2010/050417 WO2010081858A2 (de) 2009-01-14 2010-01-14 Verfahren zum herstellen eines halbleiterbauelementes, insbesondere einer solarzelle, auf basis einer halbleiterdünnschicht mit einem direkten halbleitermaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009004559A DE102009004559A1 (de) 2009-01-14 2009-01-14 Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial

Publications (1)

Publication Number Publication Date
DE102009004559A1 true DE102009004559A1 (de) 2010-07-22

Family

ID=42262794

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009004559A Withdrawn DE102009004559A1 (de) 2009-01-14 2009-01-14 Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial

Country Status (2)

Country Link
DE (1) DE102009004559A1 (de)
WO (1) WO2010081858A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021880A2 (en) * 2010-08-13 2012-02-16 Solexel, Inc. Apparatus and method for repeatedly fabricating thin film semiconductor substrates using a template
DE102014103303A1 (de) 2014-03-12 2015-10-01 Universität Konstanz Verfahren zum Herstellen von Solarzellen mit simultan rückgeätzten dotierten Bereichen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846931A (en) 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
DE19730975A1 (de) 1997-06-30 1999-01-07 Max Planck Gesellschaft Verfahren zur Herstellung von schichtartigen Gebilden auf einem Substrat, Substrat sowie mittels des Verfahrens hergestellte Halbleiterbauelemente
EP1050901A2 (de) * 1999-04-30 2000-11-08 Canon Kabushiki Kaisha Trennverfahren für ein Verbundbauteil und Herstellungsverfahren für einen dünnen Film
EP1054458A2 (de) * 1999-05-21 2000-11-22 Canon Kabushiki Kaisha Herstellungsverfahren einer photoelektrischen Umwandlungsvorrichtung und so hergestellte photoelektrische Umwandlungsvorrichtung
US6645833B2 (en) 1997-06-30 2003-11-11 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E. V. Method for producing layered structures on a substrate, substrate and semiconductor components produced according to said method
US7176554B2 (en) * 2004-03-01 2007-02-13 S.O.I. Tec Silicon On Insulator Technologies S.A. Methods for producing a semiconductor entity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381443B2 (ja) * 1995-02-02 2003-02-24 ソニー株式会社 基体から半導体層を分離する方法、半導体素子の製造方法およびsoi基板の製造方法
EP0867919B1 (de) * 1997-03-26 2004-09-08 Canon Kabushiki Kaisha Halbleitersubstrat und Verfahren zu dessen Herstellung
EP1385200B1 (de) * 2002-07-24 2010-07-07 Imec Verfahren zur Herstellung von Dünnschichtbauelementen für Solarzellen oder SOI-Anwendungen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846931A (en) 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
DE19730975A1 (de) 1997-06-30 1999-01-07 Max Planck Gesellschaft Verfahren zur Herstellung von schichtartigen Gebilden auf einem Substrat, Substrat sowie mittels des Verfahrens hergestellte Halbleiterbauelemente
US6645833B2 (en) 1997-06-30 2003-11-11 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E. V. Method for producing layered structures on a substrate, substrate and semiconductor components produced according to said method
EP1050901A2 (de) * 1999-04-30 2000-11-08 Canon Kabushiki Kaisha Trennverfahren für ein Verbundbauteil und Herstellungsverfahren für einen dünnen Film
EP1054458A2 (de) * 1999-05-21 2000-11-22 Canon Kabushiki Kaisha Herstellungsverfahren einer photoelektrischen Umwandlungsvorrichtung und so hergestellte photoelektrische Umwandlungsvorrichtung
US7176554B2 (en) * 2004-03-01 2007-02-13 S.O.I. Tec Silicon On Insulator Technologies S.A. Methods for producing a semiconductor entity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Artikel von R. Brendel in Solar Energy, 77, 2004, 969-982

Also Published As

Publication number Publication date
WO2010081858A2 (de) 2010-07-22
WO2010081858A3 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
DE102012209887B4 (de) Abplatzverfahren zur Bildung einer Mehrfach-Photovoltaikstruktur
DE112014001192B4 (de) Verfahren zur Herstellung photoaktiver Bauelemente mit aktiven Schichten mit kleiner Bandlücke, gestaltet für verbesserten Wirkungsgrad
WO1999001893A2 (de) Verfahren zur herstellung von schichtartigen gebilden auf einem substrat, substrat sowie mittels des verfahrens hergestellte halbleiterbauelemente
DE112014004401T5 (de) Verbesserte Porosierung
DE112014004469T5 (de) Elektropolieren und Porosierung
DE102019108754A1 (de) Halbleitervorrichtung mit einem porösen bereich, waferverbundstruktur und verfahren zum herstellen einerhalbleitervorrichtung
DE102017120535B4 (de) Halbleitervorrichtung und Halbleitersubstrat, das eine poröse Schicht enthält, und Herstellungsverfahren
DE102016116192B3 (de) Photovoltaikmodul mit integriert serienverschalteten Stapel-Solarzellen und Verfahren zu seiner Herstellung
DE102009004560B3 (de) Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Germaniumdünnschicht
DE102009004559A1 (de) Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleitermaterial
DE112017004982B4 (de) Solarzellen mit differenziertem p-Typ- und n-Typ-Bereichsarchitekturen
WO2011141139A2 (de) Verfahren zur herstellung einer einseitig kontaktierbaren solarzelle aus einem silizium-halbleitersubstrat
DE102008048498A1 (de) Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Siliziumdünnschicht
WO2022117826A1 (de) Rückseitenkontaktierte solarzelle und herstellung einer solchen
DE102019122637B4 (de) Verfahren zur Herstellung einer metallischen Kontaktierungsstruktur einer photovoltaischen Solarzelle
EP0993029A2 (de) Verfahren zur Herstellung kristalliner Halbleiterschichten
WO2022218905A1 (de) Verfahren zur präparation eines germaniumsubstrats und germaniumsubstratstruktur für ein epitaktisches aufwachsen einer germaniumschicht
DE102009018773A1 (de) Verfahren zum Herstellen eines Halbleiterbauelementes, insbesondere einer Solarzelle, auf Basis einer Halbleiterdünnschicht mit einem direkten Halbleiter oder mit Germanium
WO2011141142A1 (de) Halbleiterbauteil mit defektreicher schicht zur optimalen kontaktierung von emittern sowie verfahren zu dessen herstellung
DE102009053262A1 (de) Verfahren zum Bilden von dünnen Halbleiterschichtsubstraten sowie Verfahren zum Herstellen eines Halbleiterbauelements, insbesondere einer Solarzelle, mit einem solchen Halbleiterschichtsubstrat
EP4147277B1 (de) Rückseitenkontaktierte solarzelle
DE10347401B4 (de) Photovoltaische Solarzelle mit metallischen Nanoemittern und Verfahren zur Herstellung
DE102009024613A1 (de) Verfahren zum Bilden von dünnen Halbleiterschichtsubstraten sowie Verfahren zum Herstellen eines Halbleiterbaulements, insbesondere einer Solarzelle, mit einem solchen Halbleiterschichtsubstrat
DE102011052916B4 (de) Solarzellen-Herstellungsverfahren und Wafersolarzelle
DE202022102803U1 (de) Verbundhalbleiter-Schichtstrukturen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130801

R082 Change of representative

Representative=s name: QIP PATENTANWAELTE, DR. KUEHN & PARTNER MBB, DE