DE102008035899A1 - Kolbenschieberventil - Google Patents

Kolbenschieberventil Download PDF

Info

Publication number
DE102008035899A1
DE102008035899A1 DE102008035899A DE102008035899A DE102008035899A1 DE 102008035899 A1 DE102008035899 A1 DE 102008035899A1 DE 102008035899 A DE102008035899 A DE 102008035899A DE 102008035899 A DE102008035899 A DE 102008035899A DE 102008035899 A1 DE102008035899 A1 DE 102008035899A1
Authority
DE
Germany
Prior art keywords
piston
valve
pressure
closed
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102008035899A
Other languages
English (en)
Other versions
DE102008035899B4 (de
Inventor
Bernd Dipl.-Ing. Kießling
Werner DÖHLA
Rainer Dietel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rapa Automotive GmbH and Co KG
Original Assignee
Rausch and Pausch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rausch and Pausch GmbH filed Critical Rausch and Pausch GmbH
Priority to DE200810035899 priority Critical patent/DE102008035899B4/de
Publication of DE102008035899A1 publication Critical patent/DE102008035899A1/de
Application granted granted Critical
Publication of DE102008035899B4 publication Critical patent/DE102008035899B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Ein elektromagnetisch betätigtes Kolbenschieberventil (1) umfasst ein Ventilgehäuse (2) mit einer Fluideintrittsseite (P1), einer Fluidaustrittsseite (P2) und mindestens einer die Fluideintrittsseite mit der Fluidaustrittsseite verbindenden radialen Fluiddurchtrittsöffnung (7). Ein axial verschieblicher Kolben (5) ist so angeordnet, dass durch axiales Verschieben des Kolbens die Fluiddurchtrittsöffnung (7) geöffnet und geschlossen werden kann. Mittels einer Vorspannfeder (8) ist der Kolben (5) in Öffnungsrichtung vorgespannt und mittels einer Erregerspule ist der Kolben (5) entgegen der Federkraft der Vorspannfeder (8) verschieblich. Die Erfindung sieht nun vor, in einem solchen Ventil einen zweiten Kolben (10) axial verschieblich zu lagern, gegen den sich der erste Kolben (5) im nicht bestromten Zustand der Erregerspule abstützt. Mittels einer zweiten Vorspannfeder (9) ist der zweite Kolben (10) in einer der Öffnungsrichtung entgegengesetzten Richtung vorgespannt. Der zweite Kolben wird durch Bestromung der Erregerspule (3) entgegen der Federkraft der zweiten Vorspannfeder (9) verschoben. Das System ist so ausgelegt, dass bei leichter Bestromung das Ventil aus der teilweise offenen Stellung zunächst in die vollständig geöffnete Stellung und bei weiterer Erhöhung des Erregerspuleund nach in die vollständig geschlossene Stellung verfährt.

Description

  • Die vorliegende Erfindung betrifft ein elektromagnetisch betätigtes Kolbenschieberventil, welches Anwendung in Regelventilen für Hydraulikmedien finden kann, insbesondere als Proportionaldrossel.
  • Ein solches Drosselventil kann beispielsweise als Bypass zu einem hydraulischen Stoßdämpfer eingesetzt werden, um die Dämpfercharakteristik ”hart” oder ”weich” einzustellen. Ein entsprechendes Durchflussschema eines solchen Hydraulikdämpfers ist in 5 schematisch skizziert. Darin wird davon ausgegangen, dass Druckstöße am Dämpfer eine Fluidverdrängung Q aus einer Dämpferkammer in eine andere Dämpferkammer verursachen. Dies geschieht über ein passives Ventil V1 im Dämpfer und ein dazu parallel geschaltetes, verstellbares Ventil V2. Das Verstellventil V2 kann durch ein erfindungsgemäßes elektromagnetisch betätigtes Kolbenschieberventil gebildet werden, welches je nach Bestromung der Erregerspule des Elektromagneten seinen Strömungswiderstand und dadurch die Dämpfwirkung des Gesamtsystems verändert.
  • Elektromagnetisch betätigte Proportionaldrosseln ermöglichen eine gezielte Veränderung des Durchflussquerschnitts unabhängig von Hilfsgrößen. Die Proportionalcharakteristik lässt sich durch geeignete Abstimmung und Dimensionierung der Bauteile des elektromagnetischen Antriebs erzielen. Dadurch wird erreicht, dass der Hub des Magnetankers zumindest über weite Strecken näherungsweise proportional zum Antriebsstrom ansteigt. Im Falle von Kolbenschieberventilen, bei denen ein oder mehrere radiale Fluiddurchtrittsöffnungen mittels eines axial verschieblichen Kolbens verschlossen und geöffnet werden, ermöglicht diese Proportionalcharakteristik eine gezielte Veränderung des freien Querschnitts der Fluiddurchtrittsöffnungen. Die Durchtrittsöffnungen können zum Beispiel derart angeordnet und di mensioniert sein, dass bei einer linearen Erhöhung des Antriebsstroms eine dazu möglichst proportionale, also ebenfalls lineare Veränderung des freien Querschnitts der Fluiddurchtrittsöffnungen erzielt wird.
  • Aus der DE 10 2006 007 157 A1 ist ein Ventil mit den Merkmalen des Oberbegriffs des anhängenden Anspruchs 1 bekannt. Bei diesem Ventil ist der Magnetanker bzw. ein mit diesem starr gekoppelter becherförmiger Schieberkolben elektrisch in zwei entgegengesetzte Richtungen beweglich. Der Schieberkolben verschließt den Durchlass des Ventils im elektrisch stromlosen Zustand nur teilweise. Der Eingangsdruck wird auf die gesamte Stirnfläche des Schieberkolbens geführt und wirkt entgegen einer Federkraft, um den Schieberkolben in Mittelstellung zu halten. Um den Schieberkolben aus dieser Mittelstellung in die ein oder andere Richtung zu bewegen, besitzt der Magnetantrieb zwei Magnetspulen, um gemeinsam oder unabhängig voneinander den mit dem Kolbenschieber gekoppelten Magnetanker in die eine oder die andere Richtung elektrisch anzusteuern.
  • Nachteilhaft an diesem Kolbenschieberventil ist die für die Ansteuerung der beiden Magnetspulen notwendige aufwändige Steuerungselektronik.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Kolbenschieberventil der eingangs genannten Art vorzuschlagen, welches einen geringeren Ansteuerungsaufwand erfordert.
  • Diese Aufgabe wird durch ein Kolbenschieberventil mit den Merkmalen des Anspruchs 1 gelöst. In davon abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung angegeben.
  • Bei dem erfindungsgemäßen Ventil ist zusätzlich zu dem bereits genannten axial verschieblichen Kolben, mit dem die Fluiddurchtrittsöffnung geöffnet und geschlossen werden kann, ein zweiter axial verschieblicher Kolben vorgesehen, gegen den sich der erste Kolben im nicht bestromten Zustand der Erregerspule des Magnetantriebs abstützt. Darüber hinaus ist zusätzlich zu der Vorspannfeder, mittels der der erste Kolben in eine erste Richtung, vorzugsweise in die Öffnungsrichtung, vorgespannt ist, eine zweite Vorspannfeder vorgesehen, mittels der der zweite Kolben in eine der ersten Richtung entgegengesetzte zweite Richtung vorgespannt ist. Das bedeutet, da sich der erste Kolben am zweiten Kolben abstützt, dass die zweite Vorspannfeder unter Zwischenwirkung des zweiten Kolbens den ersten Kolben entgegen der ersten Richtung drängt, also vorzugsweise entgegen der Öffnungsrichtung in die Schließrichtung. Erfindungsgemäß ist es nun vorgesehen, dass mit der Erregerspule, mittels der der erste Kolben entgegen der Federkraft der ersten Vorspannfeder betätigt wird, gleichzeitig der zweite Kolben betätigt wird, wobei die Anordnung jedoch so gestaltet ist, dass der zweite Kolben bei einer Bestromung der Erregerspule in die dazu entgegengerichtete Richtung gedrängt wird, also entgegen der Federkraft der zweiten Vorspannfeder, also vorzugsweise in die Öffnungsrichtung. Im Ergebnis führt eine Bestromung der Erregerspule zu einer Entlastung des ersten Kolbens dergestalt, dass sich der erste Kolben in die erste Richtung, also vorzugsweise in die Öffnungsrichtung, bewegt.
  • Dabei macht sich die Erfindung zunutze, dass sich der Magnetanker eines Elektromagneten bei Bestromung der Erregerspule immer zur Mitte der Erregerspule hin bewegt, und damit bewegt sich gleichzeitig der mit diesem Anker verbundene Kolben in eben diese Richtung. Wenn nun der erste und der zweite Kolben bzw. der oder die damit fest gekoppelten Magnetanker auf verschiedenen Seiten zur Erregerspulenmitte angeordnet sind, bewirkt eine Bestromung der Erregerspule eine Bewegung der beiden Kolben in entgegengesetzte Richtungen. Man benötigt also keine aufwändige Ansteuerungselektronik für zwei Erregerspulen.
  • Mit diesem grundsätzlichen Prinzip lassen sich zahlreiche Varianten von Kolbenschieberventilen realisieren. Auf eine besonders bevorzugte Variante wird nachfolgend detailliert eingegangen. Bei dieser bevorzugten Variante sind die mit dem Elektromagneten zusammenwirkenden Bauelemente des Kolbenschieberventils so gestaltet, dass bei einer Bestromung der Erregerspule die auf den ersten Kolben, mit dem die Fluiddurchtrittsöffnung geöffnet und verschlossen werden kann, in die erste Richtung (das heißt vorzugsweise in Öffnungsrichtung) wirkende Magnetkraft kleiner ist als die auf den zweiten Kolben, gegen den sich der erste Kolben abstützt, in die entgegengesetzte zweite Richtung wirkende Magnetkraft. Der zweite Kolben erfährt somit eine Entlastung durch die auf ihn wirkende Magnetkraft, welche größer ist als die Belastung, die wegen der entsprechend kleineren Magnetkraft auf den ersten Kolben wirkt. Aufgrund dieser Magnetkraftdifferenz verschiebt sich im Ergebnis der zweite Kolben in die erste Richtung, welche vorzugsweise mit der Öffnungsrichtung übereinstimmt, und der erste Kolben verschiebt sich wegen der auf ihn wirkenden Federvorspannkraft in dieselbe Richtung mit. Dies gilt jedenfalls solange, wie die auf den ersten Kolben wirkende Federkraft der ersten Vorspannfeder größer ist als die durch die Erregerspule auf den ersten Kolben wirkende Magnetkraft. Letztendlich führt die Bestromung der Erregerspule somit (in der bevorzugten Variante) zum Öffnen der Fluiddurchtrittsöffnung und damit zum Öffnen des Ventils.
  • Die Verschiebung des zweiten Kolbens und damit einhergehend auch die maximale Verschiebung des ersten Kolbens, die der Bewegung des zweiten Kolbens folgt, wird durch einen Anschlag begrenzt oder zumindest behin dert. Bei einer bestimmten Bestromungshöhe der Erregerspule erreicht der zweite Kolben somit diesen Anschlag. Eine weitere Erhöhung des Erregerstroms hat auf den zweiten Kolben keinen weiteren Einfluss. Zwar erhöhen sich dann die auf den ersten und den zweiten Kolben wirkenden (entgegengesetzten) Magnetkräfte, aber nur die auf den ersten Kolben wirkende Magnetkraft kann tatsächlich in eine Verschiebung des ersten Kolbens umgesetzt werden, weil der zweite Kolben bereits am Anschlag liegt. Die weitere Erhöhung des Erregerstroms führt dann letztendlich dazu, dass der erste Kolben entgegen der Federkraft der ersten Vorspannfeder zurückbewegt wird, das heißt vorzugsweise in die Schließrichtung, sobald die Magnetkraft höher ist als die Federvorspannkraft. Idealerweise ist das Gesamtsystem so ausgelegt, dass die auf den ersten Kolben wirkende Magnetkraft (in Schließrichtung) genau dann gleich der ihr entgegenwirkenden Vorspannkraft der ersten Vorspannfeder ist, wenn der zweite Kolben gegen den Anschlag fährt. Bei exakter Auslegung des Systems kann auf den Anschlag auch verzichtet werden.
  • Aus dem Vorstehenden ergibt sich bereits, dass die Erfindung vorzugsweise in einem System eingesetzt wird, in dem der erste Kolben die Fluiddurchtrittsöffnung im unbestromten Zustand der Erregerspule teilweise verschließt und im bestromten Zustand zunächst öffnet, weil er sich mit dem zweiten Kolben mitbewegt. Bei weiterer Erhöhung des Erregerstroms dreht sich die Bewegungsrichtung des ersten Kolbens um, sobald die auf den ersten Kolben wirkende Magnetkraft die Federkraft der auf den ersten Kolben wirkenden Vorspannfeder übersteigt, und führt zum Verschließen der Fluiddurchtrittsöffnungen. Ein solches System eignet sich für einen Einsatz, bei dem die Erregerspule grundsätzlich mit einem niedrigen Strom bestromt wird, um das Ventil in der Offenstellung zu halten. Eine Erhöhung des Erregerstroms führt zum Schließen des Ventils. Beim Einsatz in einem Hydrau likdämpfer lässt sich somit durch eine Erhöhung des Erregerstroms der Durchtrittsquerschnitt des Ventils reduzieren und eine Dämpfereinstellung ”hart” einstellen. Im Falle eines Stromausfalls fährt der erste Kolben in die Ausgangsstellung, in der die Fluiddurchtrittsöffnung lediglich teilweise verschlossen ist. Die Dämpferkennlinie ist dann weder ”hart” noch ”weich”, sondern liegt dazwischen.
  • Da das Dämpfersystem die überwiegende Zeit, beispielsweise etwa 80% der Zeit, in der geöffneten Stellung sein wird, ist es bevorzugt, wenn bereits eine niedrige Bestromung der Erregerspule dazu führt, dass das Ventil maximal geöffnet ist. Um einen möglichst genau steuerbaren Stellbereich zu erhalten, ist es vorteilhaft, wenn das Ventil erst bei einer Bestromung vollständig geschlossen ist, die die niedrige Bestromung (geöffnete Ventilstellung) um das Mehrfache übersteigt.
  • Nachfolgend wird die Erfindung beispielhaft anhand der begleitenden Zeichnungen beschrieben. Darin zeigen:
  • 1 ein elektromagnetisches Kolbenschieberventil gemäß einer bevorzugten Ausführungsform der Erfindung im unbestromten Zustand,
  • 2 das Ventil aus 1 im leicht bestromten Zustand,
  • 3 das Ventil aus 1 im stark bestromten Zustand,
  • 4 die im Ventil freigegebene Durchflussquerschnittsfläche A abhängig von der Bestromung I und
  • 5 schematisch die Strömungswege zwischen zwei Hydraulikkammern eines Hydraulikdämpfers.
  • In 1 ist ein elektromagnetisch betätigtes Kolbenschieberventil 1 gemäß einem bevorzugten Ausführungsbeispiel der Erfindung dargestellt. 1 zeigt den unbestromten Zustand des Ventils ist. In diesem Zustand ist die zur Verfügung stehende Durchflussquerschnittsfläche teilweise freigegeben, das heißt das Ventil ist ”normal offen”. Wie nachfolgend detaillierter erläutert wird, öffnet das Ventil bei Bestromung zunächst vollständig und schließt bei weiterer Erhöhung der Bestromung.
  • Das Ventil 1 umfasst ein Gehäuse 2, in dem eine Erregerspule 3 relativ zu einem axial verlagerbaren Magnetanker 4 aufgenommen ist. Der Magnetanker 4 ist fest mit einem Kolben 5 verbunden, dessen freies Ende 6 hier becherförmig ausgeführt ist. Eine Verlagerung des Magnetankers 4 in die eine oder andere axiale Richtung bewirkt somit gleichzeitig eine Verlagerung des Kolbens 5 mit seinem becherförmigen freien Ende 6. Mittels des becherförmigen Endes 6 des Kolbens 5 werden radiale Fluiddurchtrittsöffnungen 7 verschlossen. Eine Vorspannfeder 8, die über den Magnetanker 4 auf den Kolben 5 wirkt, drängt den Kolben 5 in eine Position, in der die radialen Fluiddurchtrittsöffnungen 7 vollständig geöffnet sind. Alternativ könnte die Vorspannfeder 8 auch so angeordnet sein, dass sie den Kolben 5 in seine Schließstellung drängt. Durch Bestromung der Erregerspule 3 lässt sich auf den Magnetanker 4 eine Magnetkraft aufbringen, mit der der Kolben 5 entgegen der Federvorspannkraft axial verlagert wird. Die Variierung der freien Querschnittsfläche der Fluiddurchtrittsöffnungen 7 ist dabei unabhängig von den auf der Fluideintrittsseite und der Fluidaustrittsseite herrschenden Drücken P1 bzw. P2.
  • Allerdings wirkt auf den Kolben 5 nicht nur die Federvorspannkraft der Vorspannfeder 8 in die eine Richtung, sondern es wirkt auf den Kolben 5 noch eine zweite Federvorspannkraft in die entgegengesetzte Richtung. Diese zweite Federvorspannkraft wird erzeugt durch eine zweite Vorspannfeder 9, die sich einerseits am Gehäuse 2 und andererseits an einem zweiten Kolben 10 abstützt, über den die Vorspannkraft der zweiten Vorspannfeder 9 auf den ersten Kolben 5 übertragen wird. In dem in 1 dargestellten unbestromten Zustand des Ventils ergibt sich die Stellung des Kolben 5 somit aus einem Kräftegleichgewicht zwischen den beiden Vorspanfedern 8 und 9. Eine dritte Vorspannfeder 11 wirkt auf das gegenüberliegende Ende 12 des Kolbens 5 und stützt sich dazu an einer Justageschraube 13 ab. Die Justageschraube 13 und die dritte Vorspannfeder 11 dienen zur Feinjustierung der Lage des ersten Kolbens 5 im unbestromten Zustand des Ventils und somit zur Feinjustierung der Durchflussquerschnittsfläche der Fluiddurchtrittsöffnungen 7 für den Fall eines Stromausfalls.
  • Der zweite Kolben 10 und der erste Kolben 5 bzw. dessen damit fest verbundener Magnetanker 4 liegen in dem mittels der Erregerspule 3 erzeugten Magnetfeld. Da jedoch der Magnetanker 4 und der zweite Kolben 10 auf unterschiedlichen Seiten zum Zentrum des Magnetfelds angeordnet sind, wirken auf den Magnetanker 4 und den zweiten Kolben 10 entgegengesetzt gerichtete Magnetkräfte. Im Falle der Bestromung der Erregerspule 3 hat somit der zweite Kolben 10 die Tendenz, sich im dargestellten Ausführungsbeispiel nach rechts zu bewegen, wohingegen der Kolben 5 mit dem Magnetanker 4 die Tendenz hat, sich nach links zu bewegen. Die Magnetkräfte wirken aber immer in Kombination mit den Vorspannkräften der Vorspannfedern 8 und 9. Das heißt, die auf den zweiten Kolben 10 wirkende Magnetkraft reduziert lediglich die Federvorspannkraft der Vorspannfeder 9, und die auf den Kolben 5 in entgegengesetzter Richtung wirkende Magnetkraft reduziert lediglich die Vorspannkraft der Vorspannfeder 8. Für den theoretischen Fall, dass bei Bestromung der Erregerspule 3 dieselben absoluten Magnetkräfte auf den zweiten Kolben 10 und den ersten Kolben 5 bzw. dessen Magnetanker 4 ausübt, würde sich an der Lage des Kolbens 5 im Ventil 1 letztlich nichts ändern. Daher ist es wesentlich, dass die in unterschiedlicher Richtung wirkenden Magnetkräfte unterschiedlich groß sind. Diese Kräfte hängen einerseits von der relativen Lage des Kolbens 5 und des Magnetankers 4 zum Zentrum des Magnetfelds ab. Entscheidenden Einfluss haben dabei aber anderseits auch der Abstand zu dem als Pol wirkenden Anschlag 14 sowie die dem Pol 14 gegenüberliegende Wirkfläche des Magnetankers 4 bzw. des zweiten Kolbens 10.
  • Bei dem vorliegend dargestellten Ausführungsbeispiel, bei dem das Ventil aus der normalen Öffnungsstellung zunächst in eine vollständige Öffnungsstellung gebracht werden soll, sind die mit dem Elektromagneten zusammenwirkenden Bauelemente so gestaltet, dass die auf den zweiten Kolben 10 wirkende Magnetkraft FM10 absolut betrachtet größer ist als die auf den Magnetanker 4 wirkende Magnetkraft FM4. Dies ist in 2 dargestellt. Die Kräftedifferenz verursacht somit ein Verschieben des zweiten Kolbens 10 nach rechts in Richtung zum Zentrum des durch die Erregerspule 3 erzeugten Magnetfelds. Der erste Kolben 5 folgt dieser Bewegung aufgrund der Federkraft der Vorspannfeder 8 solange, wie diese Vorspannkraft größer ist als die dazu entgegengerichtete Magnetkraft FM4. Die Verlagerung der beiden Kolben 5 und 10 wird begrenzt durch einen Anschlag 14 im Gehäuse 2. Eine weitere Erhöhung der Bestromung der Erregerspule 3 hat solange keine Auswirkung auf die Ventilstellung, wie die auf den Magnetanker 4 wirkende Magnetkraft FM4 die Federkraft der Vorspannfeder 8 nicht überschreitet. Idealerweise sind die im Magnetkreis wirkenden Bauelemente so aufeinander abgestimmt, dass die Magnetkraft FM4 der Federkraft der Vorspannfeder 8 genau dann entspricht, wenn der zweite Kolben 10 auf den Anschlag 14 trifft. Eine weitere Erhöhung der Bestromung der Erregerspule 3 führt dann einerseits zu einer stärkeren, auf den zweiten Kolben 10 wirkenden Magnetkraft FM10, die jedoch wirkungslos bleibt, weil der zweite Kolben 10 am Anschlag 14 anliegt, und andererseits zu einer Überwindung der Federkraft der Vorspannfeder 8 durch die erhöhte Magnetkraft FM4, so dass sich allein der Kolben 5 in die entgegengesetzte Richtung, im Ausführungsbeispiel nach links, zurückbewegt und dabei nach und nach die Fluiddurchtrittsöffnungen 7 verschließt. Die vollständig geschlossene Stellung ist in 3 dargestellt.
  • 4 zeigt dazu einen beispielhaften Verlauf der Fluiddurchtrittsöffnungsfläche A abhängig von dem die Erregerspule 3 durchfließenden Strom I. Im unbestromten Zustand ist die Fluiddurchtrittsöffnung etwa zur Hälfte geöffnet. Bei geringer Bestromung von beispielsweise 0,4 A ist das Ventil maximal geöffnet. Der Strömungswiderstand des Ventils ist entsprechend niedrig. Wird das Ventil als Bypass-Ventil in eine hydraulische Stoßdämpfung zum Beispiel eines Kraftfahrzeugs eingebaut, wie dies eingangs in Bezug auf 5 erläutert wurde, so entspräche die vollständig offene Stellung der normalen Stellung im Betrieb des Fahrzeugs. Der Strombedarf zur Aufrechterhaltung dieser Stellung ist gering. Soll die Dämpfungseigenschaft nun aktiv von der normalen ”weichen” auf eine härtere Charakteristik verändert werden, so wird der die Erregerspule durchfließende Strom erhöht bis auf einen maximalen Wert von beispielsweise 1,5 A, bei dem das Ventil vollständig geschlossen ist. Im Falle eines Stromausfalls würde der Stoßdämpfer dagegen eine Charakteristik zwischen weich und hart annehmen, weil in dieser Position die Fluiddurchtrittsöffnungen 7 weder vollständig geschlossen noch vollständig geöffnet sind.
  • Zusätzlich zu den bereits beschriebenen Bauelementen besitzt das Kolbenschieberventil 1 eine Druckfühlbohrung 15, welche die Fluideintrittsseite, an der der Druck P1 herrscht, mit der Fluidaustrittsseite, an der der Druck P2 herrscht, verbindet. In der Druckfühlbohrung 15 ist ein Druckfühlstift 16 axial verlagerbar angeordnet, der mit einem Ende an dem Kolben 5 anliegt. Mit dieser Konstruktion lässt sich ein typischerweise parabelförmiger Verlauf des Druckverlusts bei steigendem Durchfluss in einen weitgehend linearen bis degressiven Verlauf verändern. Dies ist gewünscht, weil der parabelförmige Verlauf des Druckverlustes bei Durchflussschwankungen zu einem starken Druckaufbau führen kann, der in vielen Anwendungen störend ist. Der demgegenüber lineare bis degressive Verlauf wird nun dadurch erreicht, dass der Druckfühlstift 16 aufgrund der Druckdifferenz ΔP (ΔP = P2 – P1) gegen den Kolben 5 gedrängt wird und auf diese Weise eine Druckkraft auf den Kolben 5 ausübt, die in dem hier dargestellten Ausführungsbeispiel die Federvorspannkraft der Vorspannfeder 8 unterstützt. Die freie Querschnittsfläche der Fluiddurchtrittsöffnungen 7 wird somit durch die Druckkraft des Druckfühlstifts 16 vergrößert, wodurch sich der Durchfluss Q erhöht und die Druckdifferenz ΔP entsprechend abnimmt. Durch geeignete Auslegung des Verhältnisses der durch den Magnetantrieb erzeugten Magnetkraft und der durch den Druckfühlstift 16 erzeugten druckabhängigen Kraft lässt sich eine gewünschte Hydraulikkennlinie abstimmen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 102006007157 A1 [0004]

Claims (6)

  1. Elektromagnetisches Kolbenschieberventil (1), umfassend – ein Ventilgehäuse (2) mit einer Fluideintrittsseite (P1), einer Fluidaustrittsseite (P2) und mindestens einer die Fluideintrittsseite mit der Fluidaustrittsseite verbindenden radialen Fluiddurchtrittsöffnung (7), – ein axial verschieblicher erster Kolben (5), der so angeordnet ist, dass durch axiales Verschieben des ersten Kolbens (5) die mindestens eine radiale Fluiddurchtrittsöffnung (7) geöffnet und geschlossen werden kann, – eine erste Vorspannfeder (8), mittels der der erste Kolben (5) in eine erste Richtung, insbesondere in Öffnungsrichtung, vorgespannt ist, und – eine Erregerspule (3), mittels der der erste Kolben (5) entgegen der Federkraft der ersten Vorspannfeder (8) verschieblich ist, gekennzeichnet durch einen axial verschieblichen zweiten Kolben (10), gegen den sich der erste Kolben (5) im nicht bestromten Zustand der Erregerspule (3) abstützt, und eine zweite Vorspannfeder (9), mittels der der zweite Kolben (10) in einer der ersten Richtung entgegengesetzten zweiten Richtung vorgespannt ist, wobei der zweite Kolben (10) mittels der Erregerspule (3) entgegen der zweiten Vorspannfeder (9) verschieblich ist.
  2. Kolbenschieberventil nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Fluiddurchtrittsöffnung (7) im unbestromten Zustand der Erregerspule (3) durch den ersten Kolben (5) lediglich teilweise verschlossen ist.
  3. Kolbenschieberventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei Bestromung der Erregerspule (3) die auf den ersten Kolben (5) in die erste Richtung wirkende Magnetkraft (FM4) kleiner ist als die auf den zweiten Kolben (10) in die entgegengesetzte zweite Richtung wirkende Magnetkraft (FM10), so dass sich der zweite Kolben (10) in die erste Richtung verschiebt.
  4. Kolbenschieberventil nach Anspruch 3, gekennzeichnet durch einen Anschlag (14), der ein weiteres Verschieben des zweiten Kolbens (10) ab einer bestimmten Bestromungshöhe behindert.
  5. Kolbenschieberventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mindestens eine Fluiddurchtrittsöffnung (7) bei niedriger Bestromung der Erregerspule (3) maximal geöffnet ist und ab einer die niedrige Bestromung um das Mehrfache übersteigenden hohen Bestromung vollständig geschlossen ist, oder umgekehrt bei der niedrigen Bestromung vollständig geschlossen und bei der hohen Bestromung maximal geöffnet ist.
  6. Kolbenschieberventil nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine die Fluideintrittsseite (P1) mit der Fluidaustrittsseite (P2) verbindende Druckfühlbohrung (15), in der ein Druckfühlstift (16) verlagerbar angeordnet ist, wobei der DruckfühlsStift (16) im Betrieb des Ventils (1) auf einer Seite mit dem auf der Fluideintrittsseite (P1) herrschenden Druck und auf der entsprechend gegenüberliegenden Seite mit dem auf der Fluidaustrittsseite (P2) herrschenden Druck beaufschlagt ist und aufgrund eines höheren Drucks auf der Fluideintrittsseite (P1) derart in der Druckfühlbohrung (9) verlagert wird, dass er eine in Öffnungsrichtung wirkende Kraft auf den Kolben (5) ausübt.
DE200810035899 2008-07-31 2008-07-31 Kolbenschieberventil Active DE102008035899B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200810035899 DE102008035899B4 (de) 2008-07-31 2008-07-31 Kolbenschieberventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810035899 DE102008035899B4 (de) 2008-07-31 2008-07-31 Kolbenschieberventil

Publications (2)

Publication Number Publication Date
DE102008035899A1 true DE102008035899A1 (de) 2010-02-04
DE102008035899B4 DE102008035899B4 (de) 2013-08-08

Family

ID=41461578

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200810035899 Active DE102008035899B4 (de) 2008-07-31 2008-07-31 Kolbenschieberventil

Country Status (1)

Country Link
DE (1) DE102008035899B4 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008558A1 (en) * 2012-07-09 2014-01-09 Svm Schultz Verwaltungs-Gmbh & Co. Kg Valve
EP2813737A1 (de) 2013-06-14 2014-12-17 Rausch & Pausch GmbH Kolbenschieberventil
EP2813728A1 (de) 2013-06-14 2014-12-17 Rausch & Pausch GmbH Kolbenschieberventil
DE102013113356A1 (de) * 2013-12-03 2015-06-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ventil
CN106015433A (zh) * 2016-07-07 2016-10-12 青岛浩釜铭车辆科技有限公司 一种高精度内置油压减振器用无级可调阻尼阀
CN106015432A (zh) * 2016-07-07 2016-10-12 青岛浩釜铭车辆科技有限公司 内置油压减振器用无级可调阻尼阀
CN107061595A (zh) * 2017-04-21 2017-08-18 辽宁工业大学 一种悬架减振器电控活塞机构
CN107299952A (zh) * 2017-08-29 2017-10-27 宣昌黎 机动变径减振器
DE102016119063A1 (de) * 2016-10-07 2018-04-12 Eto Magnetic Gmbh Elektromagnetische Ventilvorrichtung sowie Verwendung einer solchen
EP3409984A1 (de) 2017-05-30 2018-12-05 Rausch und Pausch GmbH Kolbenschieberventil
DE102018107763A1 (de) 2018-04-03 2019-10-10 Rausch & Pausch Gmbh Magnetventil
DE102013108940B4 (de) 2013-08-19 2019-12-05 VAG GmbH Eigenmedium gesteuertes Ringkolbenventil
DE102019117233A1 (de) * 2019-06-26 2020-12-31 Rapa Automotive Gmbh & Co. Kg Druckrückführkolben mit Ringschulter
WO2023117959A1 (de) * 2021-12-23 2023-06-29 Eto Magnetic Gmbh Regelventilvorrichtung zur regelung von dämpfungscharakteristiken und hydraulisches durchströmtes magnetventil
LU102988B1 (de) * 2022-07-27 2024-01-29 Thyssenkrupp Ag Dämpfungsventileinrichtung für einen Schwingungsdämpfer
WO2024022915A1 (de) * 2022-07-27 2024-02-01 Thyssenkrupp Bilstein Gmbh Dämpfungsventileinrichtung für einen schwingungsdämpfer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007157A1 (de) 2005-07-20 2007-01-25 Continental Teves Ag & Co. Ohg Elektrisch ansteuerbares Ventil
DE102007020944A1 (de) * 2007-02-24 2008-08-28 Continental Teves Ag & Co. Ohg Magnetantrieb

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007157A1 (de) 2005-07-20 2007-01-25 Continental Teves Ag & Co. Ohg Elektrisch ansteuerbares Ventil
DE102007020944A1 (de) * 2007-02-24 2008-08-28 Continental Teves Ag & Co. Ohg Magnetantrieb

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685145A3 (de) * 2012-07-09 2016-07-20 SVM Schultz Verwaltungs-GmbH & Co. KG Ventil
US20140008558A1 (en) * 2012-07-09 2014-01-09 Svm Schultz Verwaltungs-Gmbh & Co. Kg Valve
US9435456B2 (en) 2012-07-09 2016-09-06 Svm Schultz Verwaltungs-Gmbh & Co. Kg Valve
DE102013106215A1 (de) 2013-06-14 2014-12-18 Rausch & Pausch Gmbh Kolbenschieberventil
DE102013106214A1 (de) 2013-06-14 2014-12-18 Rausch & Pausch Gmbh Kolbenschieberventil
DE102013106215B4 (de) * 2013-06-14 2015-08-27 Rausch & Pausch Gmbh Kolbenschieberventil
DE102013106214B4 (de) * 2013-06-14 2015-08-27 Rausch & Pausch Gmbh Kolbenschieberventil
EP2813728A1 (de) 2013-06-14 2014-12-17 Rausch & Pausch GmbH Kolbenschieberventil
EP2813737A1 (de) 2013-06-14 2014-12-17 Rausch & Pausch GmbH Kolbenschieberventil
DE102013108940B4 (de) 2013-08-19 2019-12-05 VAG GmbH Eigenmedium gesteuertes Ringkolbenventil
DE102013113356A1 (de) * 2013-12-03 2015-06-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ventil
CN106015433A (zh) * 2016-07-07 2016-10-12 青岛浩釜铭车辆科技有限公司 一种高精度内置油压减振器用无级可调阻尼阀
CN106015432A (zh) * 2016-07-07 2016-10-12 青岛浩釜铭车辆科技有限公司 内置油压减振器用无级可调阻尼阀
CN106015433B (zh) * 2016-07-07 2018-02-16 青岛浩釜铭车辆科技有限公司 一种高精度内置油压减振器用无级可调阻尼阀
DE102016119063A1 (de) * 2016-10-07 2018-04-12 Eto Magnetic Gmbh Elektromagnetische Ventilvorrichtung sowie Verwendung einer solchen
CN107061595A (zh) * 2017-04-21 2017-08-18 辽宁工业大学 一种悬架减振器电控活塞机构
EP3409984A1 (de) 2017-05-30 2018-12-05 Rausch und Pausch GmbH Kolbenschieberventil
DE102017111726A1 (de) 2017-05-30 2018-12-06 Rausch & Pausch Gmbh Kolbenschieberventil
US10527120B2 (en) 2017-05-30 2020-01-07 Rausch & Pausch Gmbh Piston slide valve
CN107299952A (zh) * 2017-08-29 2017-10-27 宣昌黎 机动变径减振器
DE102018107763A1 (de) 2018-04-03 2019-10-10 Rausch & Pausch Gmbh Magnetventil
US11215292B2 (en) 2018-04-03 2022-01-04 Rapa Automotive Gmbh & Co. Kg Magnetic valve
DE102019117233A1 (de) * 2019-06-26 2020-12-31 Rapa Automotive Gmbh & Co. Kg Druckrückführkolben mit Ringschulter
WO2023117959A1 (de) * 2021-12-23 2023-06-29 Eto Magnetic Gmbh Regelventilvorrichtung zur regelung von dämpfungscharakteristiken und hydraulisches durchströmtes magnetventil
LU102988B1 (de) * 2022-07-27 2024-01-29 Thyssenkrupp Ag Dämpfungsventileinrichtung für einen Schwingungsdämpfer
WO2024022915A1 (de) * 2022-07-27 2024-02-01 Thyssenkrupp Bilstein Gmbh Dämpfungsventileinrichtung für einen schwingungsdämpfer

Also Published As

Publication number Publication date
DE102008035899B4 (de) 2013-08-08

Similar Documents

Publication Publication Date Title
DE102008035899B4 (de) Kolbenschieberventil
EP0602121B1 (de) Steuerbare ventilanordnung für regelbare zweirohr-schwingungsdämpfer
DE102007058620B3 (de) Kolbenschieberventil
EP0400395B1 (de) Stossdämpfer
DE102007005288B4 (de) Hydraulischer Schwingungsdämpfer
EP2813737B1 (de) Kolbenschieberventil
DE102011075909B4 (de) Verstellbare Dämpfventileinrichtung für einen Schwingungsdämpfer
DE4208886A1 (de) Daempfkraftveraenderbarer schwingungsdaempfer mit notbetriebseinstellung
DE102005058846A1 (de) Ventilbaukastensystem mit elektromagnetisch betätigtem Ventil
DE102008039959A1 (de) Druckregelventil
DE102007005466A1 (de) Elektrisch ansteuerbares Ventil
WO2004036057A2 (de) Steuerbares magnetventil
EP2243979B1 (de) Verstellbarer Schwingungsdämpfer mit einem Notbetriebventil
EP1771675B1 (de) Elektrisch ansteuerbares ventil
WO2006077179A1 (de) Elektrisch ansteuerbares ventil
DE102012202485B4 (de) Verstellbare Dämpfventileinrichtung für einen Schwingungsdämpfer
DE102010025175A1 (de) Stufenlos regelbares Druckregelventil
DE102014215774B4 (de) Vorrichtung für eine Hochdruckpumpe für ein Kraftfahrzeug
DE102004057873B4 (de) Sitzventil
WO2006133797A1 (de) Hydraulisch betätigte klemmeinheit und damit ausgeführte hydraulische regelachse
DE102007005465A1 (de) Elektrisch ansteuerbares Ventil
EP2813728B1 (de) Kolbenschieberventil
DE102013002794A1 (de) Ventil
DE102007035542A1 (de) Elektromagnetventil
DE3708570C2 (de) Elektrohydraulische Einrichtung zum Betätigen eines in einer Gehäusebohrung verschiebbaren kolbenartigen Teils

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20131109

R082 Change of representative

Representative=s name: KLUNKER IP PATENTANWAELTE PARTG MBB, DE

R081 Change of applicant/patentee

Owner name: RAPA AUTOMOTIVE GMBH & CO. KG, DE

Free format text: FORMER OWNER: RAUSCH & PAUSCH GMBH, 95100 SELB, DE

R082 Change of representative

Representative=s name: KLUNKER IP PATENTANWAELTE PARTG MBB, DE