DE102008021222A1 - Härtbare Zusammensetzungen auf Basis silylierter Polyurethane - Google Patents

Härtbare Zusammensetzungen auf Basis silylierter Polyurethane Download PDF

Info

Publication number
DE102008021222A1
DE102008021222A1 DE102008021222A DE102008021222A DE102008021222A1 DE 102008021222 A1 DE102008021222 A1 DE 102008021222A1 DE 102008021222 A DE102008021222 A DE 102008021222A DE 102008021222 A DE102008021222 A DE 102008021222A DE 102008021222 A1 DE102008021222 A1 DE 102008021222A1
Authority
DE
Germany
Prior art keywords
acid
polymers
catalyst
silane
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102008021222A
Other languages
English (en)
Inventor
Johann Dr. Klein
Sara Gonzalez
Lars Dr. Zander
Christiane Kunze
Martin Majolo
Andreas Dr. Bolte
Thomas Dr. Bachon
Thomas Tamcke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102008021222A priority Critical patent/DE102008021222A1/de
Priority to PCT/EP2009/055048 priority patent/WO2009133061A1/de
Publication of DE102008021222A1 publication Critical patent/DE102008021222A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1021Polyurethanes or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Es wird ein Verfahren zur Herstellung vernetzbarer Zubereitungen beschrieben, umfassend in einem ersten Schritt die Umsetzung eines oder mehrerer alpha,omega-difunktioneller organischer Polymerer der Formel (1) X-A-X mit organofunktionellen Silanen der Formel (2) Y-R-Si-(R1)m(-OR2)3-m in Anwesenheit von Katalysatoren (A), ausgewählt aus der Gruppe, bestehend aus Kalium-, Eisen-, Indium- und Kupferverbindungen, zu organyloxysilylterminierten Polymeren P1. Dabei ist R ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen, der mit Heteroatomen unterbrochen sein kann, R1 und R2 gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen, die mit Heteroatomen unterbrochen sein können, A ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest mit mindestens 6 Kohlenstoffatomen bedeutet, der mit Heteroatomen unterbrochen sein kann, m gleich 0,1 oder 2 ist und X ist eine Hydroxylgruppe und Y eine Isocyanatgruppe oder X ist eine Isocyanatgruppe und Y eine Hydroxylgruppe oder eine primäre oder sekundäre Aminogruppe. In einem zweiten Schritt werden die im ersten Schritt erhaltenen Polymere P1 mit einem Silan-Kondensationskatalysator (B) versetzt, der ausgewählt wird aus der Gruppe, bestehend aus ...

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von silanvernetzenden, härtbaren Zusammensetzungen und deren Verwendung in Kleb- und Dichtstoffen und Beschichtungsmitteln.
  • Polymersysteme, die über reaktive Alkoxysilylgruppen verfügen, sind bekannt. In Gegenwart von Luftfeuchtigkeit sind diese alkoxysilanterminierten Polymere bereits bei Raumtemperatur in der Lage, unter Abspaltung der Alkoxygruppen miteinander zu kondensieren. Je nach Gehalt an Alkoxysilylgruppen und deren Aufbau bilden sich dabei hauptsächlich langkettige Polymere (Thermoplaste), relativ weitmaschige dreidimensionale Netzwerke (Elastomere) oder hochvernetzte Systeme (Duroplaste).
  • Die Polymere weisen in der Regel ein organisches Grundgerüst auf, das an den Enden Alkoxysilylgruppen trägt. Bei dem organischen Grundgerüst kann es sich beispielsweise um Polyurethane, Polyester, Polyether etc. handeln.
  • Einkomponentige, feuchtigkeitshärtende Kleb- und Dichtstoffe spielen seit Jahren eine bedeutende Rolle bei zahlreichen technischen Anwendungen. Neben den Polyurethan-Kleb- und Dichtstoffen mit freien Isocyanatgruppen und den traditionellen Silikon-Kleb- und Dichtstoffen auf der Basis von Dimethylpolysiloxanen sind in letzter Zeit auch verstärkt die so genannten modifizierten Silan-Kleb- und Dichtstoffe eingesetzt worden. Bei der letztgenannten Gruppe ist der Hauptbestandteil des Polymerrückgrades ein Polyether und die reaktiven und vernetzungsfähigen Endgruppen sind Alkoxysilylgruppen. Gegenüber den Polyurethan-Kleb- und Dichtstoffen weisen die modifizierten Silan-Kleb- und Dichtstoffe den Vorteil der Freiheit von Isocyanatgruppen, insbesondere von monomeren Diisocyanaten auf, weiterhin zeichnen sie sich durch ein breites Haftspektrum auf einer Vielzahl von Substraten ohne Oberflächenvorbehandlung durch Primer aus.
  • US 4,222,925 A und US 3,979,344 A beschreiben bereits bei Raumtemperatur härtbare siloxanterminierte organische Dichtstoffzusammensetzungen auf der Basis von Umsetzungsprodukten von Isocyanat-terminierten Polyurethan-Prepolymeren mit 3- Aminopropyltrimethoxysilan beziehungsweise 2-Aminoethyl-, 3-Aminopropylmethoxysilan zu isocyanatfreien siloxanterminierten Prepolymeren. Kleb- und Dichtstoffe auf der Basis dieser Prepolymeren weisen jedoch unbefriedigende mechanische Eigenschaften, insbesondere in Bezug auf ihre Dehnung und Reißfestigkeit auf.
  • Für die Herstellung von silanterminierten Prepolymeren auf der Basis von Polyethern sind die nachfolgend aufgeführten Verfahren bereits beschrieben worden:
    • – Copolymerisation von ungesättigten Monomeren mit solchen die Alkoxysilylgruppen aufweisen, wie z. B. Vinyltrimethoxysilan.
    • – Aufpfropfung von ungesättigten Monomeren wie Vinyltrimethoxysilan auf Thermoplaste wie Polyethylen.
    • – Hydroxyfunktionelle Polyether werden mit ungesättigten Chlorverbindungen, z. B. Allylchlorid, in einer Ethersynthese in Polyether mit endständigen olefinischen Doppelbindungen umgesetzt, die ihrerseits mit Hydrosilanverbindungen, die hydrolysierbare Gruppen haben, wie z. B. HSi(OCH3)3 in einer Hydrosilylierungsreaktion unter dem katalytischen Einfluss von beispielsweise Übergangsmetallverbindungen der 8. Gruppe zu silanterminierten Polyethern umgesetzt werden.
    • – In einem anderen Verfahren werden die olefinisch ungesättigte Gruppen enthaltenden Polyether mit einem Mercaptosilan wie z. B. 3-Mercaptopropyltrialkoxysilan umgesetzt.
    • – Bei einem weiteren Verfahren werden zunächst Hydroxylgruppen-haltige Polyether mit Di- oder Polyisocyanaten umgesetzt, die dann ihrerseits mit aminofunktionellen Silanen oder mercaptofunktionellen Silanen zu silanterminierten Prepolymeren umgesetzt werden.
    • – Eine weitere Möglichkeit sieht die Umsetzung von hydroxyfunktionellen Polyethern mit isocyanatofunktionellen Silanen wie z. B. 3-Isocyanatopropyltrimethoxysilan vor.
  • Diese Herstellverfahren und die Verwendung der oben genannten silanterminierten Prepolymeren in Kleb-/Dichtstoffanwendungen sind beispielsweise in den folgenden Patentschriften genannt: US-A-3971751 , EP-A-70475 , DE-A-19849817 , US-A-6124387 , US-A-5990257 , US-A-4960844 , US-A-3979344 , US-A-3971751 , US-A-3632557 , DE-A-4029504 , EP-A-601021 oder EP-A-370464 .
  • Nach der Lehre der EP-A-397 036 wird ein Polyether erst mit olefinischen Endgruppen, z. B. Allylendgruppen, versehen und dann bevorzugt mit Alkoxyhydridosilanen umgesetzt. Für die Aushärtungsreaktion kann ggf. ein Katalysator verwendet werden, genannt werden beispielsweise Metallsalze von Carbonsäuren wie Alkyltitanate, Zinnoctoate, Dibutylzinndilaurat, Aminsalze oder andere saure oder basische Katalysatoren.
  • EP-A-0931800 beschreibt die Herstellung von silylierten Polyurethanen durch Umsetzung einer Polyolkomponente mit einer endständigen Ungesättigtheit von weniger als 0,02 meq/g mit einem Diisocyanat zu einem Hydroxyl-terminierten Prepolymer, das anschließend mit einem Isocyanatosilan der Formel OCN-R-Si-(X)m(-OR1)3-m wobei m 0,1 oder 2 ist und jeder R1-Rest eine Alkylgruppe mit 1 bis 4 C-Atomen und R eine difunktionelle organische Gruppe ist. Gemäß der Lehre dieser Schrift soll die Herstellung der silylierten Polyurethane unter wasserfreien Bedingungen, vorzugsweise unter Stickstoffdecker erfolgen, wobei typischerweise Dilalkyzinndicarboxylate als Katalysator verwendet werden.
  • Die EP-A-1535940 beschreibt ein Verfahren zur Herstellung von organyloxysilylterminierten Polymeren, die gegenüber Luftfeuchtigkeit erhöhte Stabilität aufweisen, durch Umsetzung von α,ω-dihydroxyterminierten organischen Polymeren mit Isocyanatofunktionellen Silanen in Anwesenheit von mindestens einem Katalysator, ausgewählt aus der Gruppe bestehend aus Bismuth- und Zinkverbindungen, und solche Polymere enthaltenden vernetzbaren Massen, die zur Aushärtung Silan-Kondensationskatalysatoren enthalten, genannte werden Dibutylzinndilaurat, Dibutylzinndiacetat, Tetrabutyldimethoxydistannoxan, Lösungen von Dibutylzinnoxid in Methyltrimethoxysilan oder Tetrethoxysilan, Dioctylzinndilaurat, Dioctylzinndiacetat, Tetraoctyldimethoxydistannoxan, Lösungen von Dioctylzinnoxid in Methyltrimethoxysilan oder Tetraethoxysilan, Dibutylzinn-bis(2,4-pentandionat), Dibutylzinnmaleat, Aminopropyltrimethoxysilan und Aminoethylaminopropyltrimethoxysilan sowie saure Katalysatoren, wie organische Carbonsäuren, Phosphorsäuren bzw. Phosphorsäuerester, Säurechloride oder Hydrochloride.
  • Es besteht weiterhin das Bedürfnis nach isocyanatfreien Zusammensetzungen zur Herstellung von 1 K- oder 2 K- Kleb- und Dichtstoffen oder Beschichtungsmitteln, die eine akzeptable Härtungszeit und nach Aushärtung eine besonders gute Elastizität und Dehnbarkeit aufweisen und die frei von organischen Zinnverbindungen, insbesondere frei von den niedermolekularen organischen Zinnverbindungen wie Zinn(II)octoat oder Dibutylzinndilaurat (DBTL) sind.
  • Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen.
  • Sie besteht im wesentlichen in der Bereitstellung eines Verfahrens zur Herstellung vernetzbarer Zubereitungen, umfassend:
    in einem ersten Schritt die Umsetzung eines oder mehrerer α,ω-difunktioneller organischer Polymerer der Formel (1) X-A-X (1)mit organofunktionellen Silanen der Formel (2) Y-R-Si-(R1)m(-OR2)3-m (2)in Anwesenheit von Katalysatoren (A), ausgewählt aus der Gruppe bestehend aus Kalium-, Eisen-, Indium- und Kupferverbindungen, zu organyloxysilylterminierten Polymeren P1.
  • Dabei ist R ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen, der mit Heteroatomen unterbrochen sein kann,
    R1 und R2 gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen, die mit Heteroatomen unterbrochen sein können,
    A ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest mit mindestens 6 Kohlenstoffatomen bedeutet, der mit Heteroatomen unterbrochen sein kann,
    m gleich 0,1 oder 2 ist, und
    X ist eine Hydroxylgruppe und Y eine Isocyanatgruppe oder X ist eine Isocyanatgruppe und Y eine Hydroxylgruppe oder eine primäre oder sekundäre Aminogruppe.
  • In einem zweiten Schritt werden die im ersten Schritt erhaltenen Polymere P1 mit einem Silan-Kondensationskatalysator (B) versetzt, der ausgewählt wird aus der Gruppe bestehend aus Aminopropyltrimethoxysilan, Aminoethylaminopropyltrimethoxysilan, Aminopropyltriethoxysilan und Aminoethylaminopropyltriethoxysilan sowie sauren Katalysatoren ausgewählt aus organischen Carbonsäuren, Phosphorsäuren bzw. Phosphorsäuerestern, Säurechloriden oder Hydrochloriden. Gegebenenfalls wird diese Mischung mit weiteren Stoffen (C) vermischt, wobei die Zubereitungen frei von organischen Zinnverbindungen sind.
  • Als α,ω-difunktionelle organische Polymere der Formel X-A-X können dabei für X gleich -OH prinzipiell eine Vielzahl von mindestens zwei Hydroxylgruppen-tragenden Polymeren eingesetzt werden. Beispielhaft genannt seien Polyester, Polyole, Hydroxylgruppen-haltige Polycaprolactone, Hydroxylgruppen-haltige Polybutadiene, Polyisoprene, Dimerdiole oder OH- terminierte Polydimethylsiloxane sowie deren Hydrierungsprodukte oder auch Hydroxylgruppenhaltige Polyacrylate oder Polymethacrylate.
  • Ganz besonders bevorzugt werden jedoch als Polyole Polyoxyalkylenglycole, insbesondere Polyethylenoxide und/oder Polypropylenoxide.
  • Polyole, die Polyether als Polymergerüst enthalten, besitzen nicht nur an den Endgruppen, sondern auch im Polymerrückgrat eine flexible und elastische Struktur. Damit kann man Zusammensetzungen herstellen, die nochmals verbesserte elastische Eigenschaften aufweisen. Dabei sind Polyether nicht nur in ihrem Grundgerüst flexibel, sondern gleichzeitig beständig. So werden Polyether beispielsweise von Wasser und Bakterien, im Gegensatz zu beispielsweise Polyestern, nicht angegriffen oder zersetzt.
  • Besonders bevorzugt werden daher Polyethylenoxide und/oder Polypropylenoxide eingesetzt.
  • Nach einer weiteren bevorzugten Ausführungsform der erfindungsgemäß zu verwendenden Polyolverbindungen X-A-X beträgt das Molekulargewicht Mn zwischen 500 und 20 000 g/mol (Dalton), wobei die terminale Ungesättigtheit kleiner als 0,02 meq/g ist..
  • Diese Molekulargewichte sind besonders vorteilhaft, da diese Polyole kommerziell leicht verfügbar sind. Besonders bevorzugt sind Molekulargewichte von 4 000–10000 g/mol (Dalton).
  • Ganz besonders bevorzugt werden Polyoxyalkylene, insbesondere Polyethylenoxide oder Polypropylenoxide, eingesetzt, die eine Polydispersität PD von weniger als 2, bevorzugt weniger als 1,5 aufweisen.
  • Unter dem Molekulargewicht Mn wird das zahlenmittlere Molekulargewicht des Polymeren verstanden. Dieses kann, ebenso wie das gewichtsmittlere Molekulargewicht Mw, durch Gelpermeationschromatographie (GPC, auch: SEC) bestimmt werden. Dieses Verfahren ist dem Fachmann bekannt. Die Polydispersität leitet sich aus den mittleren Molekulargewichten Mw und Mn ab. Sie wird berechnet als PD = Mw/Mn.
  • Besonders vorteilhafte viskoelastische Eigenschaften lassen sich erreichen, wenn man als polymere Grundgerüste Polyoxyalkylenpolymere A, welche eine enge Molmassenverteilung und damit niedrige Polydispersität besitzen, einsetzt. Diese sind beispielsweise durch die so genannte Double-Metal-Cyanide-Katalyse (DMC-Katalyse) herstellbar. Diese Polyoxyalkylenpolymere zeichnen sich durch eine besonders enge Molmassenverteilung, durch eine hohe mittlere Molmasse und durch eine sehr niedrige Zahl an Doppelbindungen an den Enden der Polymerketten aus.
  • Solche Polyoxyalkylenpolymere haben eine Polydispersität PD (Mw/Mn) von höchstens 1,7. Besonders bevorzugte organische Grundgerüste sind beispielsweise Polyether mit einer Polydispersität von etwa 1,01 bis etwa 1,3, insbesondere etwa 1,05 bis etwa 1,18, beispielsweise etwa 1,08 bis etwa 1,11 oder etwa 1,12 bis etwa 1,14.
  • Gegebenenfalls kann die obengenannte Polyolverbindung in einer mit einem Diisocyanat bei einem stöchiometrischen Überschuss der Polyolverbindungen gegenüber der Diisocyanatverbindung zu einem Polyurethan-Prepolymer umgesetzt werden, das Hydroxylterminiert ist. Die Gruppierung A in Formel (1) enthält in diesem Fall neben den Polyethergruppen Urethangruppierungen in der Polymerkette. Hierdurch stehen für die Folgereaktion besonders hochmolekulare α,ω-difunktionelle Polyole zur Verfügung.
  • Als α,ω-difunktionelle organische Polymere der Formel X-A-X können dabei für X gleich -NCO α,ω-difunktionelle Polyole der oben genannten Art mit einem Diisocyanat bei einem stöchiometrischen Überschuss der Diisocyanatverbindung gegenüber der Polyolverbindungen zu einem Polyurethan-Prepolymer umgesetzt werden, das Isocyanat-terminiert ist. Die Gruppierung A in Formel (1) enthält in diesem Fall in der Regel neben den Polyethergruppen noch Urethangruppierungen in der Polymerkette. Durch die Wahl des stöchiometrischen Überschusses der Diisocyanatverbindung kann das Molekulargewicht des α,ω-diisocyanatotermimierten Polymers X-A-X in weiten Grenzen variiert werden und den Erfordernissen der geplanten Anwendung angepasst werden.
  • Wie bereits oben ausgeführt, werden die Polyolverbindungen X-A-X mit organofunktionellen Silanen vom Typ Y-R-Si-(R1)m(-OR2)3-m umgesetzt, wobei Y in diesem Fall eine Isocyanatgruppe ist.
  • Beispiele für den zweiwertigen Rest R sind Alkylenreste, Methylen-, Ethylen-, n-Propylen-, iso-Propylen-, n-Butylen-, iso-Butylen-, tert.-Butylen-, n-Pentylen-, iso-Pentylen-, neo-Pentylen-, tert.-Pentylenrest, n-Hexylenrest, n-Heptylenrest, n-Octylenrest, iso-Octylenreste, 2,2,4-Trimethylpentylenrest, n-Nonylenrest, n-Decylenrest, n-Dodecylenrest; Alkenylenreste, wie der Vinylen- und der Allylenrest; Cycloalkylenreste, wie Cyclopentylen-, Cyclohexylen-, Cycloheptylenreste und Methylcyclohexylenreste; Arylenreste, wie der Phenylen- und der Naphthylenrest; Alkarylenreste, wie o-, m-, p-Tolylenreste, Xylylenreste und Ethylphenylenreste; Aralkylenreste, wie der Benzylenrest, der α- und der β-Phenylethylenrest.
  • Besonders bevorzugt sind für R zweiwertige Kohlenwasserstoffreste mit 1 bis 3 Kohlenstoffatomen.
  • Bei den Resten R1 und R2 handelt es sich vorzugsweise jeweils unabhängig voneinander um einen Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen, besonders bevorzugt um einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, insbesondere um den Methylrest oder Ethylrest. Es können jedoch auch Kohlenwasserstoffreste ausgewählt aus n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pentylrest, Hexylreste, Heptylreste, Octylreste, wie der n-Octylrest und iso-Octylreste, wie der 2,2,4-Trimethylpentylrest, Nonylreste, Decylreste, Dodecylreste, Alkenylreste, wie der Vinyl- und der Allylrest; Cycloalkylreste, wie Cyclopentyl-, Cyclohexyl-, Cycloheptylreste und Methylcyclohexylreste; Arylreste, wie der Phenyl- und der Naphthylrest; Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste; Aralkylreste, wie der Benzylrest, der α- und der β-Phenylethylrest Verwendung finden.
  • Besonders geeignet sind die nachfolgend aufgeführten Isocyanatosilane:
    Methyldimethoxysilylmethylisocyanat, Ethyldimethoxysilylmethylisocyanat, Methyldiethoxysilylmethylisocyanat, Ethyldiethoxysilylmethylisocyanat, Methyldimethoxysilylethylisocyanat, Ethyldimethoxysilylethylisocyanat, Methyldiethoxysilylethylisocyanat, Ethyldiethoxysilylethylisocyanat, Methyldimethoxysilylpropylisocyanat, Ethyldimethoxysilylpropylisocyanat, Methyldiethoxysilylpropylisocyanat, Ethyldiethoxysilylpropylisocyanat, Methyldimethoxysilylbutylisocyanat, Ethyldimethoxysilylbutylisocyanat, Methyldiethoxysilylbutylisocyanat, Diethylethoxysilylbutylisocyanat, Ethyldiethoxysilylbutylisocyanat, Methyldimethoxysilylpentylisocyanat, Ethyldimethoxysilylpentylisocyanat, Methyldiethoxysilylpentylisocyanat, Ethyldiethoxysilylpentylisocyanat, Methyldimethoxysilylhexylisocyanat, Ethyldimethoxysilylhexylisocyanat, Methyldiethoxysilylhexylisocyanat, Ethyldiethoxysilylhexylisocyanat, Trimethoxysilylmethylisocyanat, Triethoxysilylmethylisocyanat, Trimethoxysilylethylisocyanat, Triethoxysilylethylisocyanat, Trimethoxysilylpropylisocyanat (z. B. GF 40, Fa. Wacker), Triethoxysilylpropylisocyanat, Trimethoxysilylbutylisocyanat, Triethoxysilylbutylisocyanat, Trimethoxysilylpentylisocyanat, Triethoxysilylpentylisocyanat, Trimethoxysilylhexylisocyanat, Triethoxysilylhexylisocyanat.
  • Besonders bevorzugt werden Methyldimethoxysilylmethylisocyanat, Methyldiethoxysilylmethylisocyanat, Methyldimethoxysilylpropylisocyanat und Ethyldimethoxysilylpropylisocyanat oder deren Trialkoxyanaloga.
  • Das oder die Isocyanatosilan(e) werden dabei in mindestens stöchiometrischer Menge zu den Hydroxylgruppen des Polyols eingesetzt, bevorzugt wird jedoch ein geringer stöchiometrischer Überschuss der Isocyanatosilane gegenüber den Hydroxylgruppen des Polyols. Dieser stöchiometrische Überschuss beträgt zwischen 0,5 und 10, vorzugsweise zwischen 1,2 und 2 Equivalente Isocyanatgruppen bezogen auf die Hydroxylgruppen.
  • Zur erfindungsgemäß alternativen Herstellung des organyloxysilylterminierten Polymeren P1 aus einem α,ω-diisocyanatotermimierten Polymers X-A-X mit X gleich -NCO kommen organofunktionelle Silane der Formel Y-R-Si-(R1)m(-OR2)3-m mit Y gleich -OH oder -NR1 zum Einsatz.
  • Beispiele für aminofunktionelle Silane sind 3-Aminopropyltrimethoxysilan, 3-Aminopropyltriethoxysilan, N-2-Aminoethyl-3-aminopropyltrimethoxysilan, N-2-Aminoethyl-3-aminopropyltriethoxysilan, N-(β-aminoethyl)aminopropylmethyldiethoxysilan und N-(β-aminoethyl)aminopropylmethyldimethoxysilan. Beispiele für Hydroxyfunktionelle Silane sind Umsetzungsprodukte der vorgenannten aminofunktionellen Silane mit cyclischen Carbonaten wie sie in der WO96/38453 beschrieben sind oder analoge Umsetzungsprodukte von aminofunktionellen Silanen mit Lactonen.
  • Die für den ersten Schritt zur Herstellung des organyloxysilylterminierten Polymeren P1 eingesetzten Kalium-, Eisen-, Indium- und Kupferverbindungen als Katalysatoren (A), werden vorzugsweise ausgewählt aus der Gruppe bestehend aus Carboxylaten oder Acetylacetonaten des Kaliums, Eisens, Indiums oder Kupfers.
  • Als aliphatische Carbonsäuren können insbesondere C4 bis C36 gesättigte, einfach oder mehfach ungesättigte Monocarbonsäuren Verwendung finden. Beispiele hierfür sind: Arachinsäure (n-Eicosansäure), Arachidonsäure (all-cis-5,8,11,14-Eicosatetraensäure), Behensäure (Docosansäure), Buttersäure (Butansäure), Caproleinsäure (9-Decensäure), Caprinsäure (n-Decansäure), Capronsäure (n-Hexansäure), Caprylsäure (n-Octansäure), Cerotinsäure (Hexacosansäure), Cetoleinsäure (cis-11-Docosensäure), Clupanodonsäure (all-cis-7,10,13,16,19-Dokosapentaensäure), Eleostearinsäure (trans-9-trans-11-cis-13-octadeca-9,11,13-triensäure), Enanthsäure (1-Hexancarbonsäure), Erucasäure (cis-13-Docosensäure), Gadoleinsäure (9-Eicosensäure), Gondölsäure (cis-11-Eicosensäure), Hiragonsäure (6,10,14- Hexadecatriensäure), Laurinsäure (Dodecansäure), Lignozerinsäure (Tetracosansäure), Linderasäure (cis-4-Dodecensäure), Linolsäure ((cis,cis)-Octadeca-9,12-diensäure), Linolensäure ((all-cis)-Octadeca-9,12,15-triensäure), Melissinsäure (Triacontansäure), Montansäure (Octacosansäure), Stearidonsäure (cis-6-cis-9-cis-12-cis-15-Octadecatetraensäure), Myristinsäure (Tetradecansäure), Myristoleinsäure (cis-9-Tetradecensäure), Naphtensäure, Neodecansäure, Obtusilinsäure (cis-4-Decensäure), Caprylsäure (n-Octansäure), Neooctansäure, Olsäure (cis-9-Octadecensäure), Palmitinsäure (n-Hexadecansäure), Palmitölsäure (cis-9-Hexadecensäure), Parinarsäure (9,11,13,15-Octadecatetraensäure), Petroselinsäure (cis-6-Octadecensäure), Physetsäure (5-Tetradecensäure), Punicasäure (cis-9-traps-11-cis-13-Octadeca-9,11,13-triensäure), Scoliodonsäure (cis-5-cis-l1-cis-14-Eicosatriensäure), Selacholeinsäure (15-Tetracosensäre), Stearinsäure (n-Octadecansäure), Tricosansäure, Tsuzuinsäure (cis-4-Tetradecensäure), trans-Vaccensäure (trans-11-Octadecensäure), Palmitoleinsäure (9-Hexadecensäure).
  • Außer den Acetylacetonaten können auch noch Chelate anderer β-Dicarbonylverbindungen des Kaliums, Eisens, Indiums oder Kupfers eingesetzt werden. Konkret genannt seien Acetessigsäuralkylester, Dialkylmalonate, Benzoylessigester, Dibenzoylmethan, Benzoylaceton, Dehydroacetessigsäure.
  • Die Katalysatoren (A), werden in Mengen von 0,01 bis 3,0 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polymer P1, eingesetzt. Die Umsetzung erfolgt dabei vorzugsweise bei Temperaturen von 0 bis 150°C, besonders bevorzugt bei 25 bis 100°C und einem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa.
  • Die so hergestellten organyloxysilylterminierten Polymeren P1 sind stabil gegen Luftfeuchtigkeit und können besonders vorteilhaft zur Herstellung und Verwendung von einkomponentigen, feuchtigkeitshärtenden Klebstoffen, Dichtstoffen oder Beschichtungsmitteln verwendet werden.
  • Hierzu werden den organyloxysilylterminierten Polymeren P1 in einem zweiten Schritt Silan-Kondensationskatalysatoren (B) zugesetzt. Diese können vorzuggsweise ausgewählt werden aus der Gruppe bestehend aus Aminopropyltrimethoxysilan, Aminoethylaminopropyltrimethoxysilan, Aminopropyltriethoxysilan und Aminoethylaminopropyltriethoxysilan sowie sauren Katalysatoren ausgewählt aus organischen Carbonsäuren, Phosphorsäuren bzw. Phosphorsäuerestern, Säurechloriden oder Hydrochloriden.
  • Die erfindungsgemäßen Kleb- und Dichtstoff-Zubereitungen können neben den vorgenannten organyloxysilylterminierten Polymeren P1 noch weitere Hilfs- und Zusatzstoffe enthalten, die diesen Zubereitungen verbesserte elastische Eigenschaften, verbesserte Rückstellfähigkeit, ausreichend lange Verarbeitungszeit, schnelle Durchhärtungsgeschwindigkeit und geringe Restklebrigkeit verleihen. Zu diesen Hilfs- und Zusatzstoffen gehören beispielsweise Weichmacher, Stabilisatoren, Antioxidantien, Füllstoffe, Reaktivverdünner, Trockenmittel, Haftvermittler und UV-Stabilisatoren, rheologische Hilfsmittel, Farbpigmente oder Farbpasten und/oder gegebenenfalls auch im geringen Umfang Lösungsmittel.
  • Als Weichmacher geeignet sind beispielsweise Adipinsäureester, Azelainsäureester, Benzoesäureester, Buttersäureester, Essigsäureester, Ester höherer Fettsäuren mit etwa 8 bis etwa 44 C-Atomen, Ester OH-Gruppen tragender oder epoxidierter Fettsäuren, Fettsäureester und Fette, Glykolsäureester, Phosphorsäureester, Phthalsäureester, von 1 bis 12 C-Atomen enthaltenden linearen oder verzweigten Alkoholen, Propionsäureester, Sebacinsäureester, Sulfonsäureester (z. B. „Mesamoll”, Alkylsulfonsäurephenylester, Fa. Bayer), Thiobuttersäureester, Trimellithsäureester, Zitronensäureester sowie Ester auf Nitrocellulose- und Polyvinylacetat-Basis, sowie Gemische aus zwei oder mehr davon. Besonders geeignet sind die asymmetrischen Ester von Adipinsäuremonooctylester mit 2-Ethylhexanol (Edenol DOA, Fa. Cognis Deutschland GmbH, Düsseldorf) oder auch Ester der Abietinsäure.
  • Beispielsweise eignen sich von den Phthalsäureestern Dioctylphthalat (DOP), Dibutylphthalat, Diisoundecylphthalat (DIUP) oder Butylbenzylphthalat (BBP) oder deren abgeleitete hydrierte Derivate, von den Adipaten Dioctyladipat (DOA), Diisodecyladipat, Diisodecylsuccinat, Dibutylsebacat oder Butyloleat.
  • Ebenfalls als Weichmacher geeignet sind die reinen oder gemischten Ether monofunktioneller, linearer oder verzweigter C4-16-Alkohole oder Gemische aus zwei oder mehr verschiedenen Ethern solcher Alkohole, beispielsweise Dioctylether (erhältlich als Cetiol OE, Fa. Cognis Deutschland GmbH, Düsseldorf).
  • Ferner eignen sich als Weichmacher endgruppenverschlossene Polyethylenglykole. Beispielsweise Polyethylen- oder Polypropylenglykoldi-C1-4-alkylether, insbesondere die Dimethyl- oder Diethylether von Diethylenglykol oder Dipropylenglykol, sowie Gemische aus zwei oder mehr davon.
  • ”Stabilisatoren” im Sinne dieser Erfindung sind Antioxidantien, UV-Stabilisatoren oder Hydrolyse-Stabilisatoren zu verstehen. Beispiele hierfür sind die handelsüblichen sterisch gehinderten Phenole und/oder Thioether und/oder substituierten Benzotriazole wie z. B. Tinuvin 327 (Fa. Ciba Specialty Chemicals) und/oder Amine vom ”HALS”-Typ (Hindered Amine Light Stabilizer), wie z. B. Tinuvin 770 (Fa. Ciba Specialty Chemicals). Es ist im Rahmen der vorliegenden Erfindung bevorzugt, wenn ein UV-Stabilisator eingesetzt wird, der eine Silylgruppe trägt und beim Vernetzen bzw. Aushärten in das Endprodukt eingebaut wird. Hierzu besonders geeignet sind die Produkte Lowilite 75, Lowilite 77 (Fa. Great Lakes, USA). Ferner können auch Benzotriazole, Benzophenone, Benzoate, Cyanacrylate, Acrylate, sterisch gehinderte Phenole, Phosphor und/oder Schwefel zugegeben werden. Der erfindungsgemäße Zubereitung kann bis zu etwa 2 Gew.-%, vorzugsweise etwa 1 Gew.-% an Stabilisatoren enthalten. Ferner kann die erfindungsgemäße Zubereitung weiterhin bis zu etwa 7 Gew.-%, insbesondere bis zu etwa 5 Gew.-% Antioxidantien enthalten.
  • Die erfindungsgemäße Zubereitung kann zusätzlich Füllstoffe enthalten. Hier eignen sich beispielsweise Kreide, Kalkmehl, gefällte und/oder pyrogene Kieselsäure, Zeolithe, Bentonite, Magnesiumcarbonat, Kieselgur, Tonerde, Ton, Talkum, Titanoxid, Eisenoxid, Zinkoxid, Sand, Quarz, Flint, Glimmer, Glaspulver und andere gemahlene Mineralstoffe. Weiterhin können auch organische Füllstoffe eingesetzt werden, insbesondere Ruß, Graphit, Holzfasern, Holzmehl, Sägespäne, Zellstoff, Baumwolle, Pulpe, Baumwolle, Hackschnitzel, Häcksel, Spreu, gemahlene Walnussschalen und andere Faserkurzschnitte. Ferner können auch Kurzfasern wie Glasfaser, Glasfilament, Polyacrylnitril, Kohlefaser, Kevlarfaser oder auch Polyethylenfasern zugesetzt werden. Aluminiumpulver ist ebenfalls als Füllstoff geeignet.
  • Die pyrogenen und/oder gefällten Kieselsäuren weisen vorteilhaft eine BET-Oberfläche von 10 bis 90 m2/g auf. Bei Ihrer Verwendung bewirken sie keine zusätzliche Erhöhung der Viskosität der erfindungsgemäßen Zubereitung, tragen aber zu einer Verstärkung der gehärteten Zubereitung bei.
  • Es ist ebenso denkbar, pyrogene und/oder gefällte Kieselsäuren mit einer höheren BET-Oberfläche, vorteilhafterweise mit 100–250 m2/g, insbesondere 110–170 m2/g, als Füllstoff einzusetzen. Aufgrund der höheren BET-Oberfläche, kann man den gleichen Effekt, z. B. Verstärkung der gehärteten Zubereitung, bei einem geringeren Gewichtsanteil Kieselsäure erzielen. Somit kann man weitere Stoffe einsetzen, um die erfindungsgemäße Zubereitung hinsichtlich anderer Anforderungen zu verbessern.
  • Ferner eignen sich als Füllstoffe Hohlkugeln mit einer mineralischen Hülle oder einer Kunststoffhülle. Dies können beispielsweise Glashohlkugeln sein, die unter den Handelsbezeichnungen Glass Bubbles® kommerziell erhältlich sind. Hohlkugeln auf Kunststoffbasis, z. B. Expancel® oder Dualite®, werden beispielsweise in der EP 0 520 426 B1 beschrieben. Diese sind aus anorganischen oder organischen Stoffen zusammengesetzt, jede mit einem Durchmesser von 1 mm oder weniger, bevorzugt von 500 μm oder weniger.
  • Für manche Anwendungen sind Füllstoffe bevorzugt, die den Zubereitungen Thixotropie verleihen. Solche Füllstoffe werden auch als rheologische Hilfsmittel beschrieben, z. B. hydriertes Rizinusöl, Fettsäureamide oder quellbare Kunststoffe wie PVC. Um gut aus einer geeigneten Dosiervorrichtung (z. B. Tube) auspressbar zu sein, besitzen solche Zubereitungen eine Viskosität von 3.000 bis 15.000, vorzugsweise 40.000 bis 80.000 mPas oder auch 50.000 bis 60.000 mPas.
  • Die Füllstoffe werden vorzugsweise in einer Menge von 1 bis 80 Gew.-%, vorzugsweise von 5 bis 60 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung eingesetzt.
  • Beispiele für geeignete Pigmente sind Titandioxid, Eisenoxide oder Ruß.
  • Häufig ist es sinnvoll, die erfindungsgemäßen Zubereitungen durch Trockenmittel weiter gegenüber eindringender Feuchtigkeit zu stabilisieren, um die Lagerbarkeit (shelf-life) noch weiter zu erhöhen. Es besteht gelegentlich auch Bedarf, die Viskosität des erfindungsgemäßen Kleb- oder Dichtstoffs für bestimmte Anwendungen durch Verwendung eines Reaktivverdünners zu erniedrigen. Als Reaktivverdünner kann man alle Verbindungen, die mit dem Kleb- oder Dichtstoff unter Verringerung der Viskosität mischbar sind und über mindestens eine mit dem Bindemittel reaktive Gruppe verfügen, einsetzen.
  • Als Reaktivverdünner kann man z. B. folgende Stoffe einsetzen: mit Isocyanatosilanen umgesetzte Polyalkylenglykole (z. B. Synalox 100-50B, DOW), Carbamatopropyltrimethoxysilan, Alkyltrimethoxysilan, Alkyltriethoxysilan, Methyltrimethoxysilan, Methyltriethoxysilan sowie Vinyltrimethoxysilan (Dynasylan VTMO, Fa. Evonik oder Geniosil XL 10, Fa. Wacker), Vinyltriethoxysilan, Phenyltrimethoxysilan, Phenyltriethoxysilan, Octyltrimethoxysilan, Tetraethoxysilan, Vinyldimethoxymethylsilan (XL12, Wacker), Vinyltriethoxysilan (GF56, Wacker), Vinyltriacetoxysilan (GF62, Wacker), Isooctyltrimethoxysilan (IO Trimethoxy), Isooctyltriethoxysilan (IO Triethoxy, Wacker), N-Trimethoxysilylmethyl-O-methylcarbamat (XL63, Wacker), N-Dimethoxy(methyl)silylmethyl-O-methyl-carbamat (XL65, Wacker), Hexadecyltrimethoxysilan, 3-Octanoylthio-1-propyltriethoxysilan, Aminosilane wie z. B. 3-Aminopropyltrimethoxysilan (Dynasylan AMMO, Fa. Evonik oder Geniosil GF96, Fa. Wacker) und Teilhydrolysate der vorgenannten Verbindungen.
  • Eine Vielzahl der vorgenannten silanfunktionellen Reaktivverdünner haben gleichzeitig eine trocknende und/oder haftvermittelnde Wirkung in der Zubereitung. Diese Reaktivverdünner werden in Mengen zwischen 0,1 und 15 Gew.-%, vorzugsweise zwischen 1 und 5 Gew.-%, bezogen auf die Gesamtzusammensetzung der Zubereitung eingesetzt.
  • Als Haftvermittler eignen sich aber auch so genannte Klebrigmacher wie Kohlenwasserstoffharze, Phenolharze, Terpen-Phenolharze, Resorcinharze oder deren Derivate, modifizierte oder unmodifizierte Harzsäuren bzw. -ester (Abietinsäurederivate), Polyamine, Polyaminoamide, Anhydride und Anhydrid-enthaltende Copolymere. Auch der Zusatz von Polyepoxidharzen in geringen Mengen kann bei manchen Substraten die Haftung verbessern. Hierfür werden dann vorzugsweise die festen Epoxidharze mit einem Molekulargewicht von über 700 in fein gemahlener Form eingesetzt. Falls Klebrigmacher als Haftvermittler eingesetzt werden, hängt deren Art und Menge von der Kleb-/Dichtstoffzusammensetzung ab sowie von dem Substrat, auf welches dieser appliziert wird. Typische klebrigmachende Harze (Tackifier) wie z. B. Terpenphenolharze oder Harzsäurederivate werden in Konzentrationen zwischen 5 und 20 Gew.-% verwendet, typische Haftvermittler wie Polyamine, Polyaminoamide oder Phenolharze oder Resorcinderivate werden im Bereich zwischen 0,1 und 10 Gew.-%, bezogen auf die Gesamtzusammensetzung der Zubereitung verwendet.
  • Die Herstellung der erfindungsgemäßen Zubereitung erfolgt nach bekannten Verfahren durch inniges Vermischen der Bestandteile in geeigneten Dispergieraggregaten, z. B. Schnellmischer, Kneter, Planetenmischer, Planetendissolver, Innenmischer, so genannte „Banburymischer”, Doppelschneckenextruder und ähnliche dem Fachmann bekannte Mischaggregate.
  • Eine bevorzugte Ausführungsform der erfindungsgemäßen Zubereitung kann enthalten:
    • – 5 bis 50 Gew.-%, bevorzugt 10 bis 40 Gew.-% einer oder mehrerer Verbindungen der erfindungsgemäßen organyloxysilylterminierten Polymeren P1,
    • – 0 bis 30 Gew.-%, weniger als 20 Gew.-%, besonders bevorzugt weniger als 10 Gew.-% Weichmacher,
    • – 0 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, besonders bevorzugt 30 bis 55 Gew.-% Füllstoffe
  • Ferner kann die Ausführungsform weitere Hilfsstoffe enthalten.
  • Die Gesamtheit aller Bestandteile summiert sich zu 100 Gew.-%, wobei sich die Summe der oben aufgeführten Hauptbestandteile allein nicht zu 100 Gew.-% addieren muss.
  • Die erfindungsgemäßen Zubereitungen härten mit der umgebenden Luftfeuchtigkeit zu niedermoduligen polymeren Massen aus, so dass sich diese als niedermodulige, feuchtigkeitshärtende Kleb- und Dichtstoffzubereitungen und Beschichtungsmittel eignen, die frei von organischen Zinnverbindungen sind.
  • In dem nachfolgenden Ausführungsbeispiel soll die Erfindung näher erläutert werden, wobei die Auswahl des Beispiels keine Beschränkung des Umfangs des Erfindungsgegenstandes darstellen soll.
  • Allgemeine Herstellvorschrift Prepolymere
  • 282 g (15 mmol) Polypropylenglykol 18000 (OHZ = 6,0) wurden in einem 500 ml Dreihalskolben bei 100°C im Vakuum getrocknet. Unter Stickstoffatmosphäre wurde bei 80°C 0,1 g Katalysator hinzugegeben und anschließend mit 7,2 g (32 mmol) 3-Isocyanatopropyltrimethoxysilan (NCO-Gehalt = 18,4%) versetzt. Nach einstündigem Rühren bei 80°C wurde das entstandene Polymer abgekühlt und anschließend mit 6 g Vinyltrimethoxysilan versetzt.
  • Die Viskositäten der so hergestellten Prepolymeren sind in Tabelle 1 aufgeführt: Tabelle 1
    Beispiel 1 (Vergleich) 2 (Vergleich) 3 (erfindungsgemäß) 4 (erfindungsgemäß) 5 (erfindungsgemäß) 6 (erfindungsgemäß)
    Katalysator der Urethanreaktion (erster Schritt) DBTL Dioctylzinndilaurat Kaliumneodecanoat Indiumneooctoat Kupfernaphtenat Eisennaphtenat (6% Fe)
    Viskosität des Prepolymers (ohne VTMO) mPa·s bei 23°C 37.800 49.600 46.000 45.600 42.000 35.520
  • Herstellung von Montagekleberzubereitung aus den Prepolymeren:
  • 27,40 Gewichtsteile der in den Beispielen 1 bis 6 hergestellten Polymermischungen wurden in einem Rührkessel mit 15 Gewichtsteilen Messmoll mittels eines Speedmixers 30 s innig vermengt.
  • In die so erhaltene Mischung wurden nacheinander 55,05 Gewichtsteile Calciumcarbonat (Omya 302, „ultrafine ground calcium carbonate”), 1,5 Teile Vinyltrimethoxysilan („VTMO”, Wacker Geniosil XL10), 1,0 Gewichtsteile 3-Aminopropyltrimethoxisilan („AMMO”, Wacker Geniosil GF96) eingebracht und das so entstandene Gemenge für 30 s in einem Speedmixer innig vermischt. Die Mischungen enthaltend die Polymeren aus Beispiel 1 und 2 wurden zusätzlich mit 0,05 Teilen DBTL bzw. Dioctylzinndilaurat versetzt.
  • Prüfbedingungen
  • Von diesen Mischungen wurden Zugscherfestigkeiten an Holz/Holz-, Holz/Aluminium- und Holz/PMMA-Verklebungen ermittelt. Die verklebten Prüfkörper wurden vor dem Zugversuch 7 Tage im Normklima (23°C, 50% relative Luftfeuchtigkeit) gelagert.
  • Weiterhin wurden die oben genannten Mischungen mit einer Schichtstärke von 2 mm auf mit Polyetherfolie bespannte Glasplatten aufgetragen. Es wurden Hautbildungszeit (Skin over time/SOT) sowie und die Zeit zur Ausbildung einer klebfreien Schicht (Tack free time/TFT)(jeweils bei 23°C, 50% relative Luftfeuchtigkeit) ermittelt. Aus diesen Filmen wurden außerdem nach 7 Tagen Lagerung (23°C, 50% relative Luftfeuchtigkeit) Probenkörper (S2-Prüfkörper) ausgestanzt und die mechanischen Daten (E-Module bei 50 und 100% Dehnung, Bruchdehnung, Zugfestigkeit und Rückstellvermögen) in Anlehnung an DIN EN 27389 und DIN EN 28339 bestimmt.
  • Die Ergebnisse der erfindungsgemäß hergestellten härtbaren Kleb-/Dichtstoffzubereitungen sind in der nachfolgenden Tabelle 2 denen von härtbaren Kleb-/Dichtstoffzubereitungen gemäß Stand der Technik gegenübergestellt. Tabelle 2
    Polymer aus Beispiel 1 2 3 4 5 6
    SOT in min 24 85 145 145 145 145
    TFT in h < 24 < 24 < 24 < 24 < 24 < 24
    Bruch in N/mm2 3,10 2,95 2,42 2,31 2,29 2,49
    Dehnung in % 138 170 178 155 140 229
    E- 50 N/mm2 1,72 1,49 0,92 1,09 1,05 1,0
    E- 100 N/mm2 2,75 2,39 1,74 1,88 1,89 1,78
    Festigkeit Holz-Holz 5,04 4,42 4,12 3,76 3,58 3,76
    Festigkeit Holz-Aluminium 2,49 4,76 3,96 3,87 3,33 4,23
    Festigkeit Holz-PMMA 0,5 1,3 0,64 0,99 0,73 0,65
  • Die erfindungsgemäßen Zusammensetzungen weisen zwar gegenüber DBTL-haltigen Zubereitungen eine verlängerte SOT auf, in Bezug auf die wichtigen Eigenschaften TFT, Dehnung sowie Zugscherfestigkeiten bei Verklebungen weisen sie mindestens ebenbürtige, z. T. verbesserte mechanische Eigenschaften auf. Wesentlicher Vorteil gegenüber den Zubereitungen nach Stand der Technik (Beispilele 1 und 2) ist die Abwesenheit von organischen Zinnverbindungen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 4222925 A [0005]
    • - US 3979344 A [0005, 0007]
    • - US 3971751 A [0007, 0007]
    • - EP 70475 A [0007]
    • - DE 19849817 A [0007]
    • - US 6124387 A [0007]
    • - US 5990257 A [0007]
    • - US 4960844 A [0007]
    • - US 3632557 A [0007]
    • - DE 4029504 A [0007]
    • - EP 601021 A [0007]
    • - EP 370464 A [0007]
    • - EP 397036 A [0008]
    • - EP 0931800 A [0009]
    • - EP 1535940 A [0010]
    • - WO 96/38453 [0036]
    • - EP 0520426 B1 [0052]
  • Zitierte Nicht-Patentliteratur
    • - DIN EN 27389 [0071]
    • - DIN EN 28339 [0071]

Claims (8)

  1. Verfahren zur Herstellung vernetzbarer Zubereitungen, dadurch gekennzeichnet, dass in einem ersten Schritt α,ω-difunktionelle organische Polymere der Formel (1) X-A-X (1)mit organofunktionellen Silanen der Formel (2) Y-R-Si-(R1)m(-OR2)3-m (2)in Anwesenheit von Katalysatoren (A), ausgewählt aus der Gruppe bestehend aus Kalium-, Eisen-, Indium- und Kupferverbindungen, zu organyloxysilylterminierten Polymeren P1 umgesetzt werden, wobei R ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, der mit Heteroatomen unterbrochen sein kann, R1 und R2 gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen, die mit Heteroatomen unterbrochen sein können, bedeutet, A einen zweiwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest mit mindestens 6 Kohlenstoffatomen bedeutet, der mit Heteroatomen unterbrochen sein kann, m gleich 0,1 oder 2 ist, und X eine Hydroxylgruppe und Y eine Isocyanatgruppe oder X eine Isocyanatgruppe und Y eine Hydroxylgruppe oder eine primäre oder sekundäre Aminogruppe ist, und in einem zweiten Schritt die im ersten Schritt erhaltenen Polymere P1 mit einem Silan-Kondensationskatalysator (B) ausgewählt aus der Gruppe bestehend aus Aminopropyltrimethoxysilan, Aminoethylaminopropyltrimethoxysilan, Aminopropyltriethoxysilan und Aminoethylaminopropyltriethoxysilan sowie sauren Katalysatoren ausgewählt aus organischen Carbonsäuren, Phosphorsäuren bzw. Phosphorsäuerestern, Säurechloriden oder Hydrochloriden, sowie gegebenenfalls weiteren Stoffen (C) vermischt werden, wobei die Zubereitungen frei von organischen Zinnverbindungen sind.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den organischen Polymeren der Formel (1) um Polymerverbindungen auf der Basis von Polyethern oder Polyestern handelt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass m in der Formel (2) den Wert 2 oder 3 hat.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem eingesetzten Katalysator (A) um Carboxylate oder Acetylacetonate des Kaliums, Eisens, Indiums oder Kupfers handelt.
  5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Silan-Kondensationskatalysator (B) in Mengen von 0,01 bis 3,0 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polymer P1, eingesetzt wird.
  6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die gegebenenfalls weiteren eingesetzten Stoffe (C) ausgewählt werden aus Füllstoffen, Vernetzern, Weichmachern sowie weiteren Hilfs- und Zusatzstoffen oder deren Mischungen.
  7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der zweite Schritt bei Temperaturen von 10 bis 100°C und einem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa, durchgeführt wird.
  8. Verwendung einer Zubereitung enthaltend ein oder mehrere silanfunktionelle Polymere P1 herstellbar nach mindestens einem der Ansprüche 1 bis 7 als Klebstoff, Dichtstoff oder Beschichtungsmittel.
DE102008021222A 2008-04-28 2008-04-28 Härtbare Zusammensetzungen auf Basis silylierter Polyurethane Withdrawn DE102008021222A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102008021222A DE102008021222A1 (de) 2008-04-28 2008-04-28 Härtbare Zusammensetzungen auf Basis silylierter Polyurethane
PCT/EP2009/055048 WO2009133061A1 (de) 2008-04-28 2009-04-27 Härtbare zusammensetzungen auf basis silylierter polyurethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008021222A DE102008021222A1 (de) 2008-04-28 2008-04-28 Härtbare Zusammensetzungen auf Basis silylierter Polyurethane

Publications (1)

Publication Number Publication Date
DE102008021222A1 true DE102008021222A1 (de) 2009-12-24

Family

ID=41334667

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008021222A Withdrawn DE102008021222A1 (de) 2008-04-28 2008-04-28 Härtbare Zusammensetzungen auf Basis silylierter Polyurethane

Country Status (1)

Country Link
DE (1) DE102008021222A1 (de)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3971751A (en) 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
US3979344A (en) 1974-11-19 1976-09-07 Inmont Corporation Vulcanizable silicon terminated polyurethane polymer composition having improved cure speed
US4222925A (en) 1978-08-02 1980-09-16 Inmont Corporation Vulcanizable silicon terminated polyurethane polymer compositions having improved cure speed
EP0070475A2 (de) 1981-07-17 1983-01-26 Essex Chemical Corporation Verfahren zur Herstellung von beim Aussetzen der Feuchtigkeit härtenden, endständige Silylgruppen enthaltenden, Polymeren
EP0370464A2 (de) 1988-11-21 1990-05-30 Kanegafuchi Chemical Industry Co., Ltd. Härtbare Harzzusammensetzung
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
EP0397036A2 (de) 1989-05-09 1990-11-14 Asahi Glass Company Ltd. Verfahren zur Herstellung von Polyoxyalkylenderivaten
DE4029504A1 (de) 1990-09-18 1992-03-19 Henkel Kgaa Dichtungs- und klebemassen mit speziellen weichmachern
EP0601021A1 (de) 1991-08-29 1994-06-15 Adco Products, Inc. Silan enthaltende polyurethan-polymere und klebstoffzusammensetzung
EP0520426B1 (de) 1991-06-25 1996-04-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Härtbare Zusammensetzung
WO1996038453A1 (en) 1995-06-02 1996-12-05 Minnesota Mining And Manufacturing Company Hydroxy functional alkoxysilane and alkoxysilane functional polyurethane made therefrom
EP0931800A1 (de) 1998-01-22 1999-07-28 Witco Corporation Verfahren zur Herstellung von Präpolymeren, die zu verbesserten Dichtungsmassen aushärten und daraus hergestellte Produkte
DE19849817A1 (de) 1998-10-29 2000-05-04 Bayer Ag Alkoxysilan-Endgruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
US6124387A (en) 1998-12-22 2000-09-26 Adco Products, Inc. Fast-cure silylated polymer adhesive
WO2005042610A2 (de) * 2003-10-20 2005-05-12 Henkel Kommanditgesellschaft Auf Aktien Lagerstabiles, silylgruppen tragendes polyurethan
EP1535940A1 (de) 2003-11-27 2005-06-01 Wacker-Chemie GmbH Verfahren zur Herstellung von organyloxysilylterminierten Polymeren
US6998364B2 (en) * 2000-10-13 2006-02-14 Rhodia Chimie Process for the formation of urethane via transcarbamation

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3979344A (en) 1974-11-19 1976-09-07 Inmont Corporation Vulcanizable silicon terminated polyurethane polymer composition having improved cure speed
US3971751A (en) 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
US4222925A (en) 1978-08-02 1980-09-16 Inmont Corporation Vulcanizable silicon terminated polyurethane polymer compositions having improved cure speed
EP0070475A2 (de) 1981-07-17 1983-01-26 Essex Chemical Corporation Verfahren zur Herstellung von beim Aussetzen der Feuchtigkeit härtenden, endständige Silylgruppen enthaltenden, Polymeren
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
EP0370464A2 (de) 1988-11-21 1990-05-30 Kanegafuchi Chemical Industry Co., Ltd. Härtbare Harzzusammensetzung
EP0397036A2 (de) 1989-05-09 1990-11-14 Asahi Glass Company Ltd. Verfahren zur Herstellung von Polyoxyalkylenderivaten
DE4029504A1 (de) 1990-09-18 1992-03-19 Henkel Kgaa Dichtungs- und klebemassen mit speziellen weichmachern
EP0520426B1 (de) 1991-06-25 1996-04-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Härtbare Zusammensetzung
EP0601021A1 (de) 1991-08-29 1994-06-15 Adco Products, Inc. Silan enthaltende polyurethan-polymere und klebstoffzusammensetzung
WO1996038453A1 (en) 1995-06-02 1996-12-05 Minnesota Mining And Manufacturing Company Hydroxy functional alkoxysilane and alkoxysilane functional polyurethane made therefrom
EP0931800A1 (de) 1998-01-22 1999-07-28 Witco Corporation Verfahren zur Herstellung von Präpolymeren, die zu verbesserten Dichtungsmassen aushärten und daraus hergestellte Produkte
US5990257A (en) 1998-01-22 1999-11-23 Witco Corporation Process for producing prepolymers which cure to improved sealants, and products formed thereby
DE19849817A1 (de) 1998-10-29 2000-05-04 Bayer Ag Alkoxysilan-Endgruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
US6124387A (en) 1998-12-22 2000-09-26 Adco Products, Inc. Fast-cure silylated polymer adhesive
US6998364B2 (en) * 2000-10-13 2006-02-14 Rhodia Chimie Process for the formation of urethane via transcarbamation
WO2005042610A2 (de) * 2003-10-20 2005-05-12 Henkel Kommanditgesellschaft Auf Aktien Lagerstabiles, silylgruppen tragendes polyurethan
EP1535940A1 (de) 2003-11-27 2005-06-01 Wacker-Chemie GmbH Verfahren zur Herstellung von organyloxysilylterminierten Polymeren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIN EN 27389
DIN EN 28339

Similar Documents

Publication Publication Date Title
EP2271687B1 (de) Härtbare zusammensetzungen auf basis silylierter polyurethane
EP2493957B1 (de) Harnstoffgebundende alkoxysilane zum einsatz in dicht- und klebstoffen
EP2268650B1 (de) Härtbare zusammensetzungen enthaltend silylierte polyurethane
EP2271691B1 (de) Härtbare zusammensetzungen enthaltend silylierte polyurethane auf basis von polyetherblockpolymeren
EP2582738B1 (de) Silanvernetzende zusammensetzungen
EP2217633B1 (de) Härtbare zusammensetzungen enthaltend silylierte polyurethane
EP2076568B1 (de) Zusammensetzungen aus teilweise silylterminierten polymeren
EP2473545B1 (de) Isocyanatfreie silanvernetzende zusammensetzungen
DE102009027357A1 (de) Alkoxysilanterminierte Polymere enthaltende Kleb- oder Dichtstoffmassen
DE102009001771A1 (de) Erstarrende Klebstoffe mit Silanvernetzung
KR20170128418A (ko) 실릴화 폴리우레탄, 이의 제조 및 용도
EP2274354B1 (de) Härtbare zusammensetzungen enthaltend weichelastische silylierte polyurethane
DE102007058344A1 (de) Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
WO2009133061A1 (de) Härtbare zusammensetzungen auf basis silylierter polyurethane
EP1576031B1 (de) 3-(n-silylalkyl)-amino-propenoat-gruppen enthaltendes polymer und dessen verwendung
WO2010020678A1 (de) Feuchtigkeitshärtende wasserfeste beschichtungszusammensetzung, enthaltend ein polymer mit reaktiven silylgruppen
DE102008038399A1 (de) Härtbare Zusammensetzungen auf Basis silylierter Polyurethane
EP2108669B1 (de) Feuchtigkeitshärtende Dichtstoffzusammensetzung mit guter Lagerstabilität und geringer Oberflächenklebrigkeit
DE102008021222A1 (de) Härtbare Zusammensetzungen auf Basis silylierter Polyurethane

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R002 Refusal decision in examination/registration proceedings
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20111101