DE102006042874A1 - Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter - Google Patents

Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter Download PDF

Info

Publication number
DE102006042874A1
DE102006042874A1 DE102006042874A DE102006042874A DE102006042874A1 DE 102006042874 A1 DE102006042874 A1 DE 102006042874A1 DE 102006042874 A DE102006042874 A DE 102006042874A DE 102006042874 A DE102006042874 A DE 102006042874A DE 102006042874 A1 DE102006042874 A1 DE 102006042874A1
Authority
DE
Germany
Prior art keywords
temperature
intake manifold
internal combustion
combustion engine
kalman filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102006042874A
Other languages
German (de)
Inventor
Evangelos Karvounis
Thomas Plymouth Brewbaker
Daniel Röttger
Christian Vigild
Charles Tumelaire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to DE102006042874A priority Critical patent/DE102006042874A1/en
Publication of DE102006042874A1 publication Critical patent/DE102006042874A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • F02D2041/007Determining the EGR temperature by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1417Kalman filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • F02D2200/0416Estimation of air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/02Application of thermometers in motors, e.g. of a vehicle for measuring inlet gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

The method involves determining an estimated value for the temperature in the intake manifold of an internal combustion engine (2) by a kalman filter. A measured value is provided for the temperature in the intake manifold by a temperature sensor and during a stationary condition the estimated value for the temperature in the intake manifold is corrected on basis of this measured value. An independent claim is also included for a control device for a motor vehicle.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Schätzung der Temperatur im Ansaugkrümmer eines Verbrennungsmotors, sowie eine Steuervorrichtung für ein Kraftfahrzeug, welche einen zur Durchführung des Verfahrens eingerichteten Estimator enthält.The The present invention relates to a method for estimating the Temperature in the intake manifold an internal combustion engine, and a control device for a motor vehicle, which one for carrying out the Contained method estimator.

Eine Regelung der Temperatur im Ansaugkrümmer eines Verbrennungsmotors, insbesondere eine Kompensation unerwünschter Temperaturschwankungen, ist beispielsweise bei der Zündverzögerung von großer Bedeutung. Demzufolge besteht ein Bedarf nach einer möglichst zuverlässigen Bestimmung dieser Temperaturgröße.A Regulation of the temperature in the intake manifold of an internal combustion engine, in particular a compensation of unwanted temperature fluctuations, is of great importance for ignition delay, for example. Accordingly, there is a need for a most reliable determination this temperature size.

Aus US 6,748,313 B2 ist z.B. ein Verfahren zur Schätzung der Luftladung in einem Zylinder eines Verbrennungsmotors unter Verwendung eines Luftmassenstromsensors (MAF-Sensor) und eines Sensors zur Ermittlung des Absolutdruckes im Ansaugkrümmer (MAP-Sensor) bekannt, wobei zur Schätzung der Luftladung während eines transienten Zustandes primär das Signal des MAP-Sensors, in einer Übergangsperiode zwischen einem transienten Zustand und einem stationären Zustand primär eine Kombination der Signale von dem MAP-Sensor und dem MAF-Sensor unter Anwendung eines Glättungsalgorithmus und während eines stationären Zustandes nur das Signal des MAF-Sensors verwendet wird.Out US 6,748,313 B2 For example, a method of estimating air charge in a cylinder of an internal combustion engine using a mass air flow (MAF) sensor and an intake manifold absolute pressure (MAP) sensor is known, where primarily the signal is used to estimate the air charge during a transient condition of the MAP sensor, in a transition period between a transient state and a stationary state, primarily a combination of the signals from the MAP sensor and the MAF sensor using a smoothing algorithm and during a steady state only the signal from the MAF sensor is used.

Hingegen ist eine hinreichend genaue sensorgestützte Bestimmung der Temperatur im Ansaugkrümmer während transienter Phasen des Motors problematisch, und zwar insbesondere wegen der ausgeprägten Dynamik der Temperaturschwankungen, die mit der Dynamik der Variation der Gaszusammensetzung vergleichbar ist.On the other hand is a sufficiently accurate sensor-based determination of the temperature in the intake manifold while transient phases of the engine problematic, and in particular because of the pronounced dynamics the temperature fluctuations associated with the dynamics of variation of Gas composition is comparable.

Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren zur Bestimmung der Temperatur im Ansaugkrümmer eines Verbrennungsmotors sowie eine Steuervorrichtung für ein Kraftfahrzeug bereitzustellen, so dass insbesondere während transienter Phasen eine erhöhte Zuverlässigkeit der Schätzung erzielt werden kann.It is therefore an object of the present invention, a method for determining the temperature in the intake manifold of an internal combustion engine and a control device for to provide a motor vehicle, so that in particular during transient Phases an increased reliability the estimate can be achieved.

Diese Aufgabe wird durch ein Verfahren gemäß dem unabhängigen Patentanspruch 1 bzw. eine Vorrichtung gemäß dem unabhängigen Patentanspruch 4 gelöst.These The object is achieved by a method according to the independent claim 1 or a device according to the independent claim 4 solved.

Erfindungsgemäß wird ein Schätzwert für die Temperatur im Ansaugkrümmer mittels eines Kalman-Filters ermittelt. Dadurch wird insofern eine erhöhte Zuverlässigkeit auch während transienter Phasen des Verbrennungsmotors erreicht, als der ermittelte Schätzwert der ausgeprägten Gasdynamik im Ansaugkrümmer in transienten Phasen folgt. Der erfindungsgemäß mittels eines Temperatursensors ermittelte Messwert für die Temperatur im Ansaugkrümmer wird ferner während eines stationären Zustandes zur Korrektur des Schätzwertes für die Temperatur im Ansaugkrümmer verwendet. Das erfindungsgemäße Verfahren trägt somit zum einen der während transienter Phasen des Verbrennungsmotors vorhandenen, ausgeprägten Gasdynamik im Ansaugkrümmer Rechnung und minimiert zum anderen Abschätzungsfehler im stationären Zustand.According to the invention is a estimated value for the Temperature in the intake manifold determined by means of a Kalman filter. This is one way increased reliability even while transient phases of the internal combustion engine reaches than the determined estimated value the pronounced Gas dynamics in the intake manifold follows in transient phases. The invention according to a temperature sensor determined measured value for the temperature in the intake manifold is further during a stationary one Condition for correcting the estimated value for the Temperature in the intake manifold used. The inventive method thus contributes to one of the while transient phases of the internal combustion engine existing, pronounced gas dynamics in the intake manifold Invoice and minimizes the other estimation error in the steady state.

Weitere Ausgestaltungen der Erfindung sind der Beschreibung sowie den Unteransprüchen zu entnehmen.Further Embodiments of the invention are the description and the dependent claims to remove.

Die Erfindung wird nachstehend anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die beigefügten Abbildungen erläutert. Es zeigen:The Invention will be described below with reference to a preferred embodiment with reference to the attached Illustrations explained. Show it:

1 eine schematische Darstellung eines Abgasrückführungskreises für einen Verbrennungsmotor; und 1 a schematic representation of an exhaust gas recirculation circuit for an internal combustion engine; and

2 einen in dem erfindungsgemäßen Verfahren zur Schätzung der Temperatur im Ansaugkrümmer angewendeten Algorithmus eines diskreten Kalman-Filters. 2 a discrete Kalman filter algorithm used in the intake manifold temperature estimation method of the present invention.

Das dem erfindungsgemäßen Verfahren zur Schätzung der Temperatur im Ansaugkrümmer zugrunde liegende Modell wird nachfolgend unter Bezugnahme auf den in 1 schematisch dargestellten Aufbau eines Abgasrückführungskreises 1 für einen Verbrennungsmotor mit Abgasturbolader erläutert.The model underlying the method for estimating the temperature in the intake manifold according to the invention will be described below with reference to the in 1 schematically illustrated structure of an exhaust gas recirculation circuit 1 for an internal combustion engine with turbocharger explained.

Dargestellt ist ein Verbrennungsmotor 2, in dessen Abgasstrom eine Abgasturbine 3 angeordnet ist, welche einen Kompressor 4 antreibt. Die aus dem Kompressor 4 austretende, verdichtete Luft wird über einen Zwischenkühler 5 vor dem Eintritt in den Verbrennungsmotor 2 gekühlt. Außerdem wird ein Teil der aus dem Verbrennungsmotor 2 austretenden Abgase über einen Abgasrückführungskühler 6 der aus dem Zwischenkühler 5 kommenden Frischluft zugeführt.Shown is an internal combustion engine 2 , in the exhaust stream, an exhaust gas turbine 3 is arranged, which is a compressor 4 drives. The from the compressor 4 exiting, compressed air is via an intercooler 5 before entering the internal combustion engine 2 cooled. In addition, a part of the internal combustion engine 2 exiting exhaust gases via an exhaust gas recirculation cooler 6 the from the intercooler 5 supplied incoming fresh air.

Ebenfalls in 1 bezeichnet sind die an bestimmten Positionen innerhalb des Abgasrückführungskreises 1 vorliegenden Temperaturen, wobei die Abgastemperatur bei Austritt aus dem Verbrennungsmotor 2 mit Texh, die Temperatur der in den Kompressor 4 eintretenden Frischluft mit Tamb, die Lufttemperatur stromabwärts des Kompressors 4 mit Tcomp, die Temperatur stromabwärts des Zwischenkühlers 5 mit Tic, die Lufttemperatur stromabwärts des Abgasrückführungskühlers 6 mit Tegr und die Temperatur im Ansaugkrümmer des Verbrennungsmotors 2 mit Tman bezeichnet ist.Also in 1 are designated at certain positions within the exhaust gas recirculation loop 1 present temperatures, wherein the exhaust gas temperature at the exit from the internal combustion engine 2 with T exh , the temperature of the compressor 4 entering fresh air with T amb , the air temperature downstream of the compressor 4 with T comp , the temperature downstream of the intercooler 5 with T ic , the air temperature downstream of the exhaust gas recirculation cooler 6 with T egr and the temperature in the intake manifold of the internal combustion engine 2 with T man is designated.

Aus dem Gesetz der Massenerhaltung an der mit P bezeichneten Position stromabwärts des Zwischenkühlers 5 und des Abgasrückführungskühlers 6 folgt die Beziehung

Figure 00030001
From the law of mass conservation at the position designated P downstream of the intercooler 5 and the exhaust gas recirculation cooler 6 follows the relationship
Figure 00030001

Hierbei bezeichnen MAF den Frischluftmassenstrom, EGR den Abgasrückführungsmassenstrom, ASP den Massenstrom der vom Verbrennungsmotor angesaugten Gasstrom und

Figure 00040001
die zeitliche Änderung des Gas-Masse im Saugrohr des VerbrennungsmotorsIn this case, MAF denote the fresh air mass flow, EGR the exhaust gas recirculation mass flow, ASP the mass flow of the intake from the engine gas flow and
Figure 00040001
the temporal change of the gas mass in the intake manifold of the internal combustion engine

Aus dem Gesetz der Energieerhaltung ab der Position P bis zu den Einlaßventilen folgt die Beziehung

Figure 00040002
From the law of conservation of energy from position P to the intake valves, the relationship follows
Figure 00040002

Wobei die Variable Cν die Spezifische Wärmekapazität des Gases im Ansaugkrümmer dastellt, die Variable MMAN ist die Masse des Gases im Ansaugkrümmer. HAIR ist der einströmen Enthalpie von der Frischluft, HEGR ist der einströmen Enthalpie vom EGR-System, und HASP ist die von Ansaugkrümmer ausgesaugte Enthalpie.Where the variable Cν represents the specific heat capacity of the gas in the intake manifold, the variable M MAN is the mass of the gas in the intake manifold. H AIR is the incoming enthalpy of the fresh air, H EGR is the inflow enthalpy of the EGR system, and H ASP is the enthalpy sucked from the intake manifold.

Auf Basis dieser Gesetzmäßigkeiten wird ein Schätzwert für die Temperatur im Ansaugkrümmer mittels eines Kalman-Filters ermittelt. Das Gesamtkonzept wird als Temperatur-Beobachter benannt. Erfindungsgemäß wird hierzu ein dreikomponentiger Zustandsvektor

Figure 00040003
mit den Komponenten

  • – Messwert der Ansaugkrümmertemperatur TMAN_MEAS(k)
  • – Temperatur des in den Ansaugkrümmer eintretenden, rückgeführten Abgases ("EGR-Gas") unter Berücksichtigung der Massentransport-Zeitverzögerung TEGR_DLY(k) und
  • – Korrigierte Ansaugkrümmertemperatur TMAN_COR(k) gewählt.
On the basis of these laws, an estimated value for the temperature in the intake manifold is determined by means of a Kalman filter. The overall concept is named as a temperature observer. According to the invention, this is a three-component state vector
Figure 00040003
with the components
  • - Measurement of intake manifold temperature T MAN_MEAS (k)
  • The temperature of the recirculated exhaust gas entering the intake manifold ("EGR gas") taking into account the mass transport time delay T EGR_DLY (k) and
  • - Corrected intake manifold temperature T MAN_COR (k) selected.

Der Übergang des Systems vom Zeitpunkt (k – 1) zum Zeitpunkt k wird modellmäßig beschrieben durch xk = Φk-1·xk-1 + Λk-1uk-1 + wk-1 zk = Hkxk + Vk (3) The transition of the system from time (k-1) to time k is modeled by x k = Φ k-1 .x k-1 + Λ k-1 u k-1 + w k-1 z k = H k x k + V k (3)

Wobei die Variable Λk-1 die einwirkung der Eingangsgrößen uk-1 auf dem Systemzustand xk beschriebt. Die Eingangsgrößen sind hier indirekt die Enthalpien HAIR und HEGR, aber unter berücksigtigung daß das Punkt P (siehe 1) geringfügigem Volumen hat, kann die im Ansaugkrümmen angesaugte Gastemperatur wie folgt bestimmt werden:

Figure 00050001
The variable Λ k-1 describes the effect of the input quantities u k-1 on the system state x k . The input quantities here are indirectly the enthalpies H AIR and H EGR , but taking into account that the point P (see 1 ) has a small volume, can sucked in Ansaugkrümmen gas temperature be determined follows:
Figure 00050001

Falls die Temperatur hinter der Ladeluftkühler nicht gemessen wird, kann die von der Kompressor-Austrittstemperatur TCOMP bestimmt werden. TIC = TCOMP – εIC(TCOMP – TAMB) If the temperature behind the intercooler is not measured, the compressor outlet temperature T COMP can be determined. T IC = T COMP - ε IC (T COMP - T AMB )

Wobei die Variable εIC die Kühlungseffektivität des Ladeluftkühlers dastellt.Wherein the variable ε IC dastellt the cooling efficiency of the intercooler.

Die Kompressor-Austrittstemperatur TCOMP kann durch meßung und/oder modellierung bestimmt werden.The compressor exit temperature T COMP can be determined by measurement and / or modeling.

Figure 00050002
Figure 00050002

Wobei die PCOMP und PAMB den absolute Luftdruck hinter und vor Kompressor. Die Variable ηc stellt die Kompressoreffektivität da.The P COMP and P AMB are the absolute air pressure behind and in front of the compressor. The variable η c represents the compressor efficiency.

Die Abgasrückfurungstemperatur TEGR wird schätzungsweise wie folgt bestimmt TEGR = TEXH – εEGR(TEXH – TCOOL) The exhaust gas recirculation temperature T EGR is estimated to be determined as follows T EGR = T EXH - ε EGR (T EXH - T COOL )

Wobei die Variable εEGR die Wärmetauscheffektivität der EGR-Kühlkreis dastellt (siehe 1, Position 6), TEXH ist die Abgastemperatur vor Turbine (siehe 1, Position 3), und TCOOL ist die Temperatur des zur EGR-gas verwendete Kühlmittel (normalerweise wird Motorkühlwasser als Kühlmittel benutzt, und TCOOL wird schätzungsweise mit Motorkühlwassertemperatur gleichgezogen). Falls die Abgastemperatur TEXH nicht gemessen wird, oder der Meßsensor zu langsam ist um die dynamische Abgastemperatur mit genügen Genauigkeit dazustellen, kann folgende Schätzwert verwendet werden:

Figure 00060001
Where the variable ε EGR represents the heat exchange efficiency of the EGR cooling circuit (see 1 , Position 6 ), T EXH is the exhaust temperature before turbine (see 1 , Position 3 ), and T COOL is the temperature of the coolant used for the EGR gas (normally, engine cooling water is used as the coolant, and T COOL is estimated to be equal to engine coolant temperature). If the exhaust gas temperature T EXH is not measured, or the measuring sensor is too slow to provide the dynamic exhaust gas temperature with sufficient accuracy, the following estimate can be used:
Figure 00060001

Wobei ζEXH der Bruchteil des durch Verbrennung freigesetzte Kraftstoffenergie für eine Erwärmung des Abgasmassenstroms sorgt. FUEL ist der eingespritzte Kraftstoffmassenstrom, EHV ist der Heißwert des Kraftstoff, c man / p ist der durchschnittliche Wärmekapazität des Gases im Ansaugkrümmer, und endlich ist c exh / p durchschnittliche Wärmekapazität des Gases im AbgaskrümmerWhere ζ EXH provides the fraction of the fuel energy released by combustion for heating the exhaust gas mass flow. FUEL is the injected fuel mass flow, E HV is the hot value of the fuel, c man / p is the average heat capacity of the gas in the intake manifold, and finally c exh / p is the average heat capacity of the gas in the exhaust manifold

Die Zustandsübertragungsfunktion, Φ, gibt den folgenden Satz von Zustandsgleichungen zur physikalischen Beschreibung des Systems an:

Figure 00060002
Figure 00070001
The state transfer function, Φ, specifies the following set of state equations for the physical description of the system:
Figure 00060002
Figure 00070001

Durch Einstellung die Kalibrierparameter c1 und c2 kann der Schätzwert für die Temperatur im Ansaugkrümmer auf Basis des sensorgestützt ermittelten Messwertes für die Temperatur im Ansaugkrümmer während eines stationären Zustandes korrigiert werden.By adjusting the calibration parameters c 1 and c 2 , the estimated value for the temperature in the intake manifold can be corrected on the basis of the sensor-supported, measured value for the temperature in the intake manifold during a stationary state.

Die Variable wk gibt das Rauschen innerhalb des Systems (z.B. aufgrund von Modellfehlern) an, welches als weiß und normalverteilt mit Erwartungswert Null mit der Kovarianzmatrix Qk angenommen wird, d. h. es gilt wk ∊ N(0, Qk), mit

Figure 00070002
wobei die Kovarianzmatrix Qk im Falle des Temperaturbeobachters die folgende Struktur hat:
Figure 00070003
The variable w k indicates the noise within the system (eg due to model errors), which is assumed to be white and normally distributed with expected value zero with the covariance matrix Q k , ie w k ∈ N (0, Q k ), with
Figure 00070002
wherein the covariance matrix Q k in the case of the temperature observer has the following structure:
Figure 00070003

Die Variable νk gibt das Rauschen wegen Meßgeräusch an, welches als weiß und normalverteilt mit Erwartungswert Null mit der Kovarianzmatrix Rk angenommen wird, d. h. es gilt νk ∊ N(0, Rk), mit

Figure 00080001
wobei die Kovarianzmatrix Rk im Falle des Temperaturbeobachters die folgende Struktur hat: Rk = r2SENSOR The variable ν k indicates the noise due to measurement noise, which is assumed to be white and normally distributed with expected value zero with the covariance matrix R k , ie, ν k ∈ N (0, R k ), with
Figure 00080001
wherein the covariance matrix R k in the case of the temperature observer has the following structure: R k = r 2 SENSOR

Die Variable r 2 / SENSOR ist die Temperatur-Meßfehlerkovarianz die während der Ansaugkrümmergas-Temperaturmeßung mittels der Temperaturfühler vorfallen.The Variable r 2 / SENSOR is the temperature measurement error covariance during the Intake manifold gas temperature measurement by means of the temperature sensor prolapse.

Der Algorithmus des diskreten Kalman-Filters wird nachfolgend unter Bezugnahme auf 2 erläutert:
Das System wird in festen Zeitintervallen oder zu festen Ereignissen aufgefrischt (upgedated), etwa in festen Kurbelwinkelintervallen von z.B. 120°. Dieses wird als Hauptschritt bezeichnet.
The algorithm of the discrete Kalman filter will be described below with reference to FIG 2 explains:
The system is refreshed at fixed time intervals or at fixed events, for example at fixed crank angle intervals of eg 120 °. This is called the main step.

N_sub_samples ist eine Konstante, welche die gewünschte Anzahl der zwischen aufeinander folgenden Hauptschritte durchgeführten Zwischenschritte angibt.N_sub_samples is a constant representing the desired number of between indicates intermediate steps performed on successive main steps.

Gemäß 2 wird zu Beginn des Algorithmus im Schritt S10 zunächst der Wert des aktuelle Sub-Sampleschritt, l, mit Null bedatet. Im Schritt S20 erfolgt eine Propagierung des Zustandsvektors gemäß x ^k-1(l + 1) = Φk-1(l)·x ^k-1(l) + Λk-1(l)uk-1 für l∊[0; N_sub_samples – 1] (9)und eine Propagierung der Fehlerkovarianzmatrix gemäß Pk-1(l + 1) = Φk-1(l)·Pk-1(l)·ΦTk-1 (l) + Qk-1 für l∊[0; N_sub_samples – 1]. (10) According to 2 At the beginning of the algorithm, the value of the current sub-sampling step, I, is first zeroed in step S10. In step S20, a propagation of the state vector according to FIG x ^ k-1 (l + 1) = Φ k-1 (l) · x ^ k-1 (l) + Λ k-1 (L) u k-1 for lε [0; N_sub_samples - 1] (9) and a propagation of the error covariance matrix according to P k-1 (l + 1) = Φ k-1 (L) · P k-1 (L) · Φ T k-1 (l) + Q k-1 for lε [0; N_sub_samples - 1]. (10)

Der Wert des aktuelle Sub-Sampleschritt, l, wird im S30 um Eins inkrementiert, und es wird im Schritt S40 abgefragt, ob dieser Wert bereits den Wert von N_sub_samples erreicht hat. Falls die Antwort "Nein" lautet geht der Algorithmus zu Schritt S20 zurück, d. h. der Wert des aktuelle Sub-Sampleschritt, l, wird um Eins inkrementiert, und es wird im Schritt S40 erneut abgefragt, ob dieser Wert bereits den Wert von N_sub_samples erreicht hat usw.Of the Value of the current sub-sampling step, l, is incremented by one in S30, and it is in step S40 queried whether this value already the Has reached the value of N_sub_samples. If the answer is "No", it goes Algorithm returns to step S20, d. H. the value of the current sub-sample step, l, is incremented by one, and it is again in step S40 queried whether this value already has reached the value of N_sub_samples etc.

Sobald die Antwort im Schritt S40 "Ja" lautet, erfolgt eine Aktualisierung der Schätzung mit den Ergebnissen der Messung zk, in diesem Fall die Meßung der Ansaugkrümmer-Gastemperatur, gemäß x ^k(0) = x ^k-1(N_sub_samples) + Kk·[zk – Hk·x ^k-1(N_sub_samples)] (11) As soon as the answer in step S40 is "yes", the estimate is updated with the results of the measurement z k , in this case the intake manifold gas temperature measurement, in accordance with FIG x ^ k (0) = x ^ k-1 (N_sub_samples) + K k · [Z k - H k · X ^ k-1 (N_sub_samples)] (11)

Die Aktualisierung der Fehlerkovarianzmatrix mit den Ergebnissen einer Messung erfolgt gemäß Pk(0) = [I – KkHk]·Pk-1(N_sub_samples) (12)wobei Pk-1(N_sub_samples) die Prädiktionsfehlerkovarianzmatrix bezeichnet, wobei Hk beschreibt, wie die aktuelle Messung in den Systemzustand eingeht, und wobei Kk die Kalman-Gain-Matrix bezeichnet, welche die Gewichtung der Messung gegenüber der Prädiktion bestimmt und gegeben ist durch Kk = Pk-1(N_sub_samples)·HTk ·[Hk·Pk-1(N_sub_samples)·HTk + Rk]–1 (13) The update of the error covariance matrix with the results of a measurement is carried out according to P k (0) = [I - K k H k ] · P k-1 (N_sub_samples) (12) where Pk-1 (N_sub_samples) denotes the Prädiktionsfehlerkovarianzmatrix, where H k describes how the current measurement is received in the system state, and where K k is the Kalman gain matrix is determined, the weighting of the measurement to the prediction and given by K k = P k-1 (N_sub_samples) · H T k ·[H k · P k-1 (N_sub_samples) · H T k + R k ] -1 (13)

Diese beiden Aktualisierungen bilden die Grundlage für den erneuten Durchlauf zur Schätzung des nächsten Systemzustandes, d. h. der Algorithmus kehrt zurück zu Schritt S10 und ein neuer Hauptschritt kann anfangen.These Both updates form the basis for the re - run to estimate the next System condition, d. H. the algorithm returns to step S10 and a new one Main step can begin.

Claims (4)

Verfahren zur Schätzung der Temperatur im Ansaugkrümmer eines Verbrennungsmotors, dadurch gekennzeichnet, dass ein Schätzwert für die Temperatur im Ansaugkrümmer mittels eines Kalman-Filters ermittelt wird.Method for estimating the temperature in the intake manifold of an internal combustion engine, characterized in that an estimated value for the temperature in the intake manifold is determined by means of a Kalman filter. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Messwert für die Temperatur im Ansaugkrümmer mittels eines Temperatursensors bestimmt wird und während eines stationären Zustandes der Schätzwert für die Temperatur im Ansaugkrümmer auf Basis dieses Messwertes korrigiert wird.Method according to claim 1, characterized in that that a reading for the temperature in the intake manifold is determined by a temperature sensor and during a stationary State of the estimate for the Temperature in the intake manifold is corrected on the basis of this measured value. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein mittels des Kalman-Filters abgeschätzter Zustandsvektor mindestens eine der folgenden Größen enthält: Messwert der Ansaugkrümmertemperatur (TMAN_MEAS(k)), Temperatur eines in den Ansaugkrümmer eintretenden, rückgeführten Abgases unter Berücksichtigung der Massentransport-Zeitverzögerung (TEGR_DLY(k)) und Ansaugkrümmertemperatur (TMAN_COR(k)).A method according to claim 1 or 2, characterized in that a state vector estimated by means of the Kalman filter includes at least one of the following values: intake manifold temperature reading (T MAN_MEAS (k)), temperature of recirculated exhaust gas entering the intake manifold taking into account the mass transport Time delay (T EGR_DLY (k)) and intake manifold temperature (T MAN_COR (k)). Steuerungsvorrichtung für ein Kraftfahrzeug, dadurch gekennzeichnet, dass diese wenigstens einen Estimator aufweist, der geeignet ist, ein Verfahren nach einem der vorhergehenden Ansprüche durchzuführen.Control device for a motor vehicle, characterized characterized in that it comprises at least one estimator, which is suitable for carrying out a method according to one of the preceding claims.
DE102006042874A 2006-09-13 2006-09-13 Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter Ceased DE102006042874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102006042874A DE102006042874A1 (en) 2006-09-13 2006-09-13 Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006042874A DE102006042874A1 (en) 2006-09-13 2006-09-13 Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter

Publications (1)

Publication Number Publication Date
DE102006042874A1 true DE102006042874A1 (en) 2008-03-27

Family

ID=39104667

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006042874A Ceased DE102006042874A1 (en) 2006-09-13 2006-09-13 Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter

Country Status (1)

Country Link
DE (1) DE102006042874A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003779A1 (en) * 2007-07-03 2009-01-08 Continental Automotive Gmbh Internal combustion engine and method and device for operating an internal combustion engine
DE102008027763A1 (en) * 2008-06-11 2009-12-17 Continental Automotive Gmbh Method for determining model temperature of temperature, involves predominating model temperature at respective predetermined position in intake system of internal combustion engine
FR2939509A1 (en) * 2008-12-09 2010-06-11 Snecma METHOD AND SYSTEM FOR ESTIMATING A VEIN TEMPERATURE IN A TURBOKIN.
FR2953887A1 (en) * 2009-12-14 2011-06-17 Peugeot Citroen Automobiles Sa Exhaust gas temperature determining method for petrol internal combustion engine of automobile, involves determining temperature rise of exhaust gas due to heat input by combustion reaction between excess air mass and unburnt fuel mass
RU2509991C2 (en) * 2008-12-09 2014-03-20 Снекма Method and system to correct signal of temperature measurement
CN106840458A (en) * 2017-03-03 2017-06-13 镇江海姆霍兹传热传动系统有限公司 Multi-temperature sensor fusion method based on EKF
DE102017125119A1 (en) 2017-10-26 2019-05-02 Volkswagen Aktiengesellschaft Method and device for calculating an exhaust gas temperature in the exhaust passage of an internal combustion engine upstream of a turbine of an exhaust gas turbocharger
CN109899167A (en) * 2019-01-31 2019-06-18 一汽解放汽车有限公司 A kind of manifold temperature dynamic control method
FR3085432A1 (en) * 2018-08-29 2020-03-06 Psa Automobiles Sa METHOD FOR ESTIMATING A TEMPERATURE OF A RECIRCULATED AIR-GAS EXHAUST MIXTURE OF A HEAT ENGINE
CN111865267A (en) * 2020-07-03 2020-10-30 武汉依迅电子信息技术有限公司 Temperature measurement data prediction method and device
US20200386179A1 (en) * 2019-06-04 2020-12-10 GM Global Technology Operations LLC Method and system for determing thermal state
CN112504491A (en) * 2020-12-11 2021-03-16 无锡博智芯科技有限公司 Body temperature measuring method based on wearable equipment
CN112912606A (en) * 2018-09-24 2021-06-04 纬湃科技有限责任公司 Method for controlling an air-cooled internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770148A (en) * 1986-01-10 1988-09-13 Honda Giken Kogyo Kabushiki Kaisha Method of controlling operation of internal combustion engines in dependence upon intake air temperature
WO1999013208A1 (en) * 1997-09-11 1999-03-18 Robert Bosch Gmbh Method and device for controlling an internal combustion engine in accordance with operating parameters
DE10129035A1 (en) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Inlet temperature measurement system for car engines, estimates effect of exhaust gas addition
DE10201933A1 (en) * 2002-01-19 2003-07-31 Daimler Chrysler Ag Method for determining the exhaust gas return rate at a return valve before exhaust gas is mixed with an air flow and fed to a combustion engine, involves correcting temperature sensor response to increase accuracy
JP2004293546A (en) * 2003-03-13 2004-10-21 Toyota Motor Corp Intake air amount estimation device for internal combustion engine
DE10362028A1 (en) * 2003-09-26 2005-05-04 Daimler Chrysler Ag Method for determining an exhaust gas recirculation quantity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770148A (en) * 1986-01-10 1988-09-13 Honda Giken Kogyo Kabushiki Kaisha Method of controlling operation of internal combustion engines in dependence upon intake air temperature
WO1999013208A1 (en) * 1997-09-11 1999-03-18 Robert Bosch Gmbh Method and device for controlling an internal combustion engine in accordance with operating parameters
DE10129035A1 (en) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Inlet temperature measurement system for car engines, estimates effect of exhaust gas addition
DE10201933A1 (en) * 2002-01-19 2003-07-31 Daimler Chrysler Ag Method for determining the exhaust gas return rate at a return valve before exhaust gas is mixed with an air flow and fed to a combustion engine, involves correcting temperature sensor response to increase accuracy
JP2004293546A (en) * 2003-03-13 2004-10-21 Toyota Motor Corp Intake air amount estimation device for internal combustion engine
DE10362028A1 (en) * 2003-09-26 2005-05-04 Daimler Chrysler Ag Method for determining an exhaust gas recirculation quantity

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003779A1 (en) * 2007-07-03 2009-01-08 Continental Automotive Gmbh Internal combustion engine and method and device for operating an internal combustion engine
US8386153B2 (en) 2007-07-03 2013-02-26 Continental Automotive Gmbh Internal combustion engine and method and device for operating an internal combustion engine
DE102008027763A1 (en) * 2008-06-11 2009-12-17 Continental Automotive Gmbh Method for determining model temperature of temperature, involves predominating model temperature at respective predetermined position in intake system of internal combustion engine
DE102008027763B4 (en) * 2008-06-11 2010-07-01 Continental Automotive Gmbh Method and device for determining at least one model temperature in an intake tract of an internal combustion engine
FR2939509A1 (en) * 2008-12-09 2010-06-11 Snecma METHOD AND SYSTEM FOR ESTIMATING A VEIN TEMPERATURE IN A TURBOKIN.
WO2010067011A1 (en) * 2008-12-09 2010-06-17 Snecma Method for estimating a jet temperature in a jet engine
CN102246017A (en) * 2008-12-09 2011-11-16 斯奈克玛 Method for estimating a jet temperature in a jet engine
RU2507489C2 (en) * 2008-12-09 2014-02-20 Снекма Method and system to assess flow temperature in turbojet engine
RU2509991C2 (en) * 2008-12-09 2014-03-20 Снекма Method and system to correct signal of temperature measurement
US8682627B2 (en) 2008-12-09 2014-03-25 Snecma Estimating a stream temperature in a turbojet
CN102246017B (en) * 2008-12-09 2014-06-18 斯奈克玛 Method for estimating a jet temperature in a jet engine
FR2953887A1 (en) * 2009-12-14 2011-06-17 Peugeot Citroen Automobiles Sa Exhaust gas temperature determining method for petrol internal combustion engine of automobile, involves determining temperature rise of exhaust gas due to heat input by combustion reaction between excess air mass and unburnt fuel mass
CN106840458A (en) * 2017-03-03 2017-06-13 镇江海姆霍兹传热传动系统有限公司 Multi-temperature sensor fusion method based on EKF
CN106840458B (en) * 2017-03-03 2019-04-05 镇江海姆霍兹传热传动系统有限公司 Multi-temperature sensor fusion method based on Extended Kalman filter
DE102017125119A1 (en) 2017-10-26 2019-05-02 Volkswagen Aktiengesellschaft Method and device for calculating an exhaust gas temperature in the exhaust passage of an internal combustion engine upstream of a turbine of an exhaust gas turbocharger
FR3085432A1 (en) * 2018-08-29 2020-03-06 Psa Automobiles Sa METHOD FOR ESTIMATING A TEMPERATURE OF A RECIRCULATED AIR-GAS EXHAUST MIXTURE OF A HEAT ENGINE
CN112912606A (en) * 2018-09-24 2021-06-04 纬湃科技有限责任公司 Method for controlling an air-cooled internal combustion engine
CN112912606B (en) * 2018-09-24 2022-12-06 纬湃科技有限责任公司 Method for controlling an air-cooled internal combustion engine
CN109899167A (en) * 2019-01-31 2019-06-18 一汽解放汽车有限公司 A kind of manifold temperature dynamic control method
US20200386179A1 (en) * 2019-06-04 2020-12-10 GM Global Technology Operations LLC Method and system for determing thermal state
US10995688B2 (en) * 2019-06-04 2021-05-04 GM Global Technology Operations LLC Method and system for determining thermal state
CN111865267A (en) * 2020-07-03 2020-10-30 武汉依迅电子信息技术有限公司 Temperature measurement data prediction method and device
CN111865267B (en) * 2020-07-03 2024-04-05 武汉依迅北斗时空技术股份有限公司 Temperature measurement data prediction method and device
CN112504491A (en) * 2020-12-11 2021-03-16 无锡博智芯科技有限公司 Body temperature measuring method based on wearable equipment

Similar Documents

Publication Publication Date Title
DE102006042874A1 (en) Method for estimation of temperature in intake manifold of internal combustion engine, involves determining estimated value for temperature in intake manifold of internal combustion engine by kalman filter
EP0886725B1 (en) Process for model-assisted determination of fresh air mass flowing into the cylinder of an internal combustion engine with external exhaust-gas recycling
DE102015211808B4 (en) Control device for internal combustion engine
DE112005001727B4 (en) Estimation of the oxygen concentration in the intake manifold of an unthrottled lean-burn engine
DE60320199T2 (en) Device for estimating the exhaust gas recirculation rate in an internal combustion engine
DE102011009114B4 (en) Adaptive estimation of intake oxygen in a diesel engine
EP1701025B1 (en) Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation
DE10325571B4 (en) Methods and apparatus for estimating gas temperatures in an internal combustion engine
DE102014100954B4 (en) Rate feedback for an external EGR
DE102017009583B3 (en) Method for model-based control and regulation of an internal combustion engine
DE102016101210A1 (en) SYSTEM AND METHOD FOR OPERATING AN EXHAUST GAS VALVE BASED ON A TEMPERATURE DIFFERENCE OF THE VALVE
DE102009016509A1 (en) Method for adjusting mass flow in exhaust gas recirculation process in diesel engine in passenger car, involves utilizing model-assisted predictive automatic controller for regulating virtually determined nitrogen oxide value
WO2001048363A1 (en) Method and device for controlling an internal combustion engine that is provided with an air system
DE102004062018B4 (en) Method for operating an internal combustion engine
DE102015016095A1 (en) Methods and systems for diagnosing an inlet oxygen sensor based on pressure
DE102011017779A1 (en) Method for determining the low-pressure exhaust gas recirculation mass flow in the air system of an internal combustion engine
DE102014224399B4 (en) Estimation device and method for a cylinder intake air amount of an internal combustion engine
WO2002020967A1 (en) Method for determining nox mass flow from characteristics map data with a variable air inlet and engine temperature
DE102019127016A1 (en) Control system of an internal combustion engine, electronic control unit, server and control method of an internal combustion engine
DE10129035A1 (en) Inlet temperature measurement system for car engines, estimates effect of exhaust gas addition
DE10158262A1 (en) Determining gas mixture composition in combustion chamber of internal combustion engine with exhaust gas feedback, involves determining state parameters with physically based models
DE102015120910A1 (en) Residue detection and compensation for the continuously variable compressor recirculation valve
EP3436681B1 (en) Method and device for operating an internal combustion engine with a variable injection profile
DE102017125363B4 (en) Control device for an internal combustion engine
DE10158249B4 (en) Method for determining the exhaust gas recirculation mass flow of an internal combustion engine with exhaust gas recirculation and appropriately designed control system for an internal combustion engine

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R012 Request for examination validly filed

Effective date: 20130523

R082 Change of representative

Representative=s name: DOERFLER, THOMAS, DR.-ING., DE

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final