DE102005049924B4 - Transpondersystem - Google Patents

Transpondersystem Download PDF

Info

Publication number
DE102005049924B4
DE102005049924B4 DE102005049924A DE102005049924A DE102005049924B4 DE 102005049924 B4 DE102005049924 B4 DE 102005049924B4 DE 102005049924 A DE102005049924 A DE 102005049924A DE 102005049924 A DE102005049924 A DE 102005049924A DE 102005049924 B4 DE102005049924 B4 DE 102005049924B4
Authority
DE
Germany
Prior art keywords
coil
transponder
stator
rotor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102005049924A
Other languages
English (en)
Other versions
DE102005049924A1 (de
DE102005049924B8 (de
Inventor
Thomas JÄGER
Peter Wiese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pro Micron GmbH
Original Assignee
Pro micron GmbH and Co KG Modular Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202004016751U external-priority patent/DE202004016751U1/de
Application filed by Pro micron GmbH and Co KG Modular Systems filed Critical Pro micron GmbH and Co KG Modular Systems
Priority to DE102005049924A priority Critical patent/DE102005049924B8/de
Publication of DE102005049924A1 publication Critical patent/DE102005049924A1/de
Publication of DE102005049924B4 publication Critical patent/DE102005049924B4/de
Application granted granted Critical
Publication of DE102005049924B8 publication Critical patent/DE102005049924B8/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Transpondersystem zur kontaktlosen induktiven Energieübertragung von einer stehenden Seite mit mindestens einer am Stator (1) angeordneten Lesespule (2) auf eine rotierende Seite mit mindestens einer auf einem Rotor (11) angeordneten Transponderspule (4), dadurch gekennzeichnet, daß die Lesespule (2) als um einen Kern (7) gewickelte Spule (8) ausgebildet ist, daß die Umgebung (5) der Lesespule (2) und der Stator (1) aus einem elektrisch gut leitfähigen Material geringer magnetischer Permeabilität, vorzugsweise aus Aluminium gefertigt ist, daß im Bereich der Transponderspule (4) im inneren Umfang (9) des Stators (1) eine bandförmige Schicht (18) aus einem magnetisch hochpermeablen Material vorgesehen ist, welches im Bereich der Lesespule (2) unterbrochen ausbildet ist, daß die Transponderspule (4) als Flachspule außen auf einem zylindrischen Umfang (10) des Rotors (11) angeordnet ist und daß zwischen der Transponderspule (4) und dem Rotor (11) eine Schicht (17) eines magnetisch hochpermeablen Materials angeordnet ist.

Description

  • Die Erfindung betrifft ein Transpondersystem zur kontaktlosen induktiven Energieübertragung von einer stehenden Seite mit mindestens einer am Stator angeordneten Lesespule auf eine rotierende Seite mit mindestens einer auf einer Spindel angeordneten Transponderspule. Solche Transpondersysteme gewinnen im täglichen Leben zunehmende Bedeutung. Sie werden in einer Passivvariante als Identifikations- und Speichermedium genutzt oder in einer Aktivvariante zur Sensordatenverarbeitung eingesetzt. Die drahtlose Datenkommunikation erlaubt den bidirektionalen Austausch von Nutz- und Kontrollinformationen. Im technischen Bereich sind miniaturisierte autonome Meßsysteme realisierbar. Mittlerweile sind eine Vielzahl von Transponderschaltkreisen und -systemen am Markt verfügbar.
  • Ein Beispiel eines solchen Transpondersystems ist aus der DE 199 24 830 bekannt. Diese Anordnung dient zur Messung von Temperatur und Luftdruck sowie der Überwachung des Verschleißes von Fahrzeugreifen. Die Messung der Temperatur und des Drucks erfolgt mittels eines in die Reifenwange einvulkanisierten elektronischen Transponders, der die Meßwerte auf Anforderung des Transceivers induktiv mit einem digitalen Trägerfrequenzverfahren über eine radial in die Reifenwange integrierte Flachspule als Transponderspule auf einen am Fahrzeug montierten Transceiver mit einer Sendespule überträgt. Der Transponder besteht bekanntlich aus einem oder wenigen Siliziumchips, auf denen Temperatursensor und mikromechanischer Drucksensor zusammen mit einem Mikroprozessor und zugehöriger Auswerte- und Übertragungselektronik integriert ist, sowie wenigen externen Komponenten. Die Kommunikation erfolgt zwischen Transceiver und Transponder in geträgerter digitaler Form, wobei der Transceiver ein Kommando an den Transponder ausstrahlt, der dieses zum Beispiel durch Durchführung der Messung, Kompensation – und Linearisierung der Meßwerte und Übertragung der Meßdaten und/oder weiterer im Transponder gespeicherter Daten beantwortet.
  • Sensoren zur Prozeßüberwachung oder Aktoren zur Prozeßoptimierung sind auch aus dem Werkzeugmaschinenbau nicht mehr wegzudenken. Die Meßwertaufnehmer werden vorwiegend dort montiert, wo sie anschließend auch gut kontaktiert werden können. Dies führt dazu, daß zum Beispiel bei rotierenden Bauteilen, wie einer Spindel, physikalische Eigenschaften auf dem Rotor nur indirekt am Stator gemessen werden können. Drahtlose Übertragungsmethoden sind zwar hinreichend bekannt, jedoch ist die Forderung des Maschinenbaus, daß solche Systeme autark arbeiten müssen. Somit kommt die Energieeinkopplung zusätzlich zur Datenübertragung hinzu, welche vorzugsweise induktiv zu realisieren ist. Bekannte Verfahren, wie zum Beispiel die Nutzung der Transpondertechnologie kann jedoch nicht einfach adaptiert werden, weil die speziellen Forderungen des Maschinenbaus bei der Entwicklung solcher Systeme nicht ausreichend berücksichtigt sind.
  • Es treten beispielsweise in Folge von Wirbelstromverlusten und anderer parasitärer Effekte Signalstörungen auf, die die Datenübertragung wesentlich erschweren. Hinzu kommen komplexe Kapazitäts- und Widerstandsveränderungen sowie geometrie- und materialbedingte Induktivitätsschwankungen im Bereich der Datenübertragung.
  • Zur Vermeidung derartiger Störungen ist aus der DE 196 10 284 eine Antennenspule bekannt, mit wenigstens einer Spulenwindung, bei der eine Seite der Spule mit einer leitenden, im wesentlichen den Bereich der Leiterschleife abdeckenden und eine offene Schleife bildenden Abschirmung versehen ist. Dadurch soll der Einfluß elektrischer Störfelder verringert werden. Durch Überbrückung der Unterbrechung in der Abschirmung durch eine frequenzselektive Schaltung können auch die Einflüsse magnetischer Störfelder unterdrückt werden.
  • Bei der Auslegung eines induktiv gekoppelten Systems spielen die Materialien in der direkten Umgebung eine wichtige Rolle. Beispielsweise verändert sich der komplexe Widerstand einer Spule in Abhängigkeit von der Frequenz und von den magnetischen und elektrischen Eigenschaften des Materials. Das angelegte Wechselfeld erzeugt im Material Wirbelstromverluste, die die Leistungseinkopplung auf rotierende Systeme erschweren. Ein wichtiges Merkmal in einem induktiv gekoppelten System ist die Kopplung der Spulen, wobei ein möglichst hoher Kopplungsfaktor erreicht werden sollte. Deshalb gilt, je höher die Güte des Schwingkreises ist, desto kleiner der notwendige Strom in der Sekundärspule, weil die Verluste abnehmen. Für praktische Anwendungen sind Leistungen in der Transponderspule von z. B. 10 mW bei 5 Volt typisch, was allerdings in den Lesespulen einen Strom von 170 mA bedingt.
  • Aus der EP 0 218 142 A2 ist eine Rotierübertragungsanordnung zum Übertragen elektrischer Signale zwischen einem Statorsystem und einem Rotorsystem bekannt, die eine Anzahl von Rotierübertragern aufweist, die in radialer Richtung übereinander aufgebaut sind. Diese Rotierübertrageanordnung besteht aus einer Stator- und Rotorscheibe, die koaxial angeordnet sind und deren Aufbau identisch ist. Als Werkstoff für die Scheiben soll sich Aluminium oder ein anderes Leichtmetall eignen. Konzentrisch ausgeführte Ringnuten nehmen weichmagnetisches Material auf, in das wiederum eine Nut eingebracht wird, die die Spulen aufnimmt. Durch diese Formgebung entstehen zwei Hälften symmetrischer Topfkerne.
  • Aus der US 3,611,230 A ist ebenfalls eine Anordnung bekannt, bei der zwischen einem Stator und einem Rotor induktiv elektrische Energie übertragen wird. Die Spule des Rotors läuft dabei durch die Öffnung eines C-förmigen Kerns der Statorspule.
  • Aus der DE 1 920 890 A ist ein schleifringloser induktiver Übertrager mit konzentrisch zueinander angeordneten Spulen bekannt.
  • Aus der WO 03/067512 A1 ist ein Transponderetikett bekannt, bei dem eine flexible Folie, die einen Anteil an weichmagnetischem Material zur Erhöhung der Permeabilitätszahl der Folie aufweist, zwischen einem Spulenelement und einer Unterlage vorgesehen ist. Dadurch wird das Tranponderetikett detektierbar, auch wenn es auf eine elektrisch leitende Fläche aufgebracht worden ist.
  • Aus der DE 199 29 344 A1 ist eine Wicklung bekannt, bei der jeweils aus mehreren parallelen Leitern aufgebaute Wicklungsabschnitte über Verbindungselemente mechanisch miteinander verbunden sind. Bei einem Verbindungselement sind zwei Wicklungsabschnitte versetzt gegeneinander elektrisch miteinander verbunden.
  • Aus der DE 298 04 579 U1 ist ebenfalls ein Transponderetikett bekannt, bei dem eine kupferbeschichtete Ferritfolie auf die Spule aufgebracht ist. Zur Abstimmung und Stabilisierung der Resonanzfrequenz von Radiofrequenzetiketten legt man ein genau definiertes Stück solcher Folie auf eine Stelle der aufgetragenen Spulenwicklung.
  • Aufgabe der Erfindung ist es, das gattungsgemäße Transpondersystem so zu verbeessern, daß sich die Übertragung ausreichender Leistungen für einen Mikrochip und Sensoren kostengünstig verwirklichen läßt.
  • Diese Aufgabe wird bei einem gattungsgemäßen Transpondersystem durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Beispielsweise hat ein Stator aus Aluminium im Wesentlichen zwei Wirkungen. Zum einen wird die Induktivität der Transponderspule verringert. Dies begründet sich durch die Wirbelstromverluste im elektrisch gut leitfähigen Aluminium. Überraschenderweise, entgegen den Erwartungen, sinkt jedoch die Spulenimpedanz und somit die Verlustleistung ebenfalls signifikant ab. Diese Maßnahme erhöht vorteilhaft die Güte der Transponderspule und somit auch die Leistungsübertragung zwischen der stehenden und der rotierenden Seite. Durch die bessere Güte des Parallelschwingkreises ist die Leistungsaufnahme sowie die Spannungsüberhöhung bei Resonanz wesentlich besser als ohne Aluminiumstator. Bei einer angestrebten festen Leistung der Transponderspule ist somit ein geringerer Strom in der Lesespule notwendig. Die Stromdichte sinkt deshalb, so daß auch die Lesespule vorteilhaft geringere Abmessungen aufweisen kann.
  • Einen vorteilhaft hohen magnetischen Fluß erzielt man, wenn die Lesespule als um einen U-förmigen Kern gewickelte Spule ausgebildet ist. Der Fertigungsaufwand ist gering, da derartige Kerne standardmäßig am Markt verfügbar sind.
  • Die Anbringung der Spule ist besonders einfach, wenn die Transponderspule als Flachspule außen auf einem zylindrischen Umfang des Rotors angeordnet ist.
  • Die überwiegende Zahl rotierender Wellen, an denen gemessen wird, ist aus hochlegierten MnCr-Stahl oder normalen Werkzeugstählen. Die Leistungsübertragung zwischen stehendem und rotierendem Teil läßt sich in einem überraschend hohem Maße dadurch verbessern, daß zwischen der Flachspule und dem Rotor eine Schicht eines magnetisch hochpermeablen Materials angeordnet ist, vorzugsweise als Folie eines amorphen Metalls oder eines nichtleitenden ferritischen Metalls. Dieser Effekt wird dadurch erklärt, daß der magnetische Fluß durch das Ferrit geleitet wird und dadurch weniger parasitäre Wirbelströme im umgebenden metallischen Material auftreten.
  • Es reicht bereits aus, wenn die Schicht des hochpermeablen Materials zwischen 0,01 mm und 1 mm dick ist.
  • Dadurch, daß die Flachspule als rotationssymmetrische Planarspule ausgebildet ist, vorzugsweise mehrlagig, erreicht man eine vorteilhaft gleichmäßige Energieübertragung. Durch mehrlagige Planarspulen lassen sich die Induktivitäten und Windungszahlen leicht an den Bedarfsfall anpassen. Die Transponderspule läßt sich so vorteilhaft an die notwendige Versorgungsspannung des Mikrosystems und dem Lastwiderstand anpassen.
  • Die Anpassung der Transponderspule wird besonders einfach, wenn die Flachspule aus einem Folienband mit im wesentlichen parallelen Leitern gebildet ist, das willkürlich ablängbar ist, wobei die Leiterenden nach einem zu einem Zylinder gebogenem Band sich um einen Leiterabstand versetzt zu einer Spule zusammenfügend kontaktiert sind.
  • Bei einer Ausgestaltung, bei der die Flachspule in einer Ringnut der Spindel oder des Rotors angeordnet ist, werden die Spulen vorteilhaft geschützt gelagert und in ihrer axialen Lage fixiert. Sie können sich auch bei Vibrationen nicht verschieben.
  • Eine geeignete Auswahl des Materials für die Schicht zwischen Spule und ihrer metallischen Umgebung gelingt, wenn die hochpermeable Folie eine Permeabilität aufweist, die höher ist als die einer die Spule umgebenden Werkstoffs der Spindel oder des Rotors.
  • Die Kopplung kann in bestimmten Fällen noch verbessert werden, wenn zwischen dem Stator der Ferritfolie eine Schicht aus einem elektrisch gut leitendem Material, vorzugsweise Kupfer, angeordnet ist.
  • Schließlich ist mit Vorteil vorgesehen, daß die Lesespule auf einem Ferritkern gewickelt ist und die im inneren Umfang des Stators vorgesehene Schicht aus einem hochpermeablen Material oder aus ferritschem Material besteht.
  • Die Erfindung wird nun anhand einiger bevorzugter Ausführungsbeispiele mit Hilfe einer Zeichnung erläutert, wobei gleiche Bezugsziffern funktionsmäßig dieselben Teile kennzeichnen. Die Figuren der Zeichnung zeigen im Einzelnen:
  • 1 bis 4: eine Auswahl unterschiedlicher Konfigurationen von Transponder- und Lesespulen in schematischer Darstellung,
  • 5: den schematischen Aufbau einer mehrlagigen Planarspule,
  • 6: einen Vertikalschnitt durch eine mehrlagige Planarspule im Bereich der Kontaktierung,
  • 7: eine alternative Ausführungsform einer mehrlagigen Planarspule,
  • 8: eine Aufsicht auf eine Folie zur Herstellung einer Planarspule,
  • 9: einen Vertikalschnitt durch eine schematisch dargestellte Transponder-Lesespulenanordnung,
  • 10: eine erfindungsgemäße Ausführungsform einer Transponder-Lesespulenpaarung im Horizontalschnitt und
  • 11: eine Detaildarstellung im Vertikalschnitt gemäß Schnittlinie XI-XI in 10.
  • In den 1 bis 4 sind schematisch unterschiedliche Konfigurationen von Lese- und Transponderspulen dargestellt, die ebenso wie die weiter unten beschriebenen Ausführungsformen gemäß den 5 bis 9 nicht zur vorliegenden Erfindung gehören.
  • In 1 steht eine auf einem schalen- oder E-förmigen Ferritkern 23 gewickelte Lesespule 2 einer rotationssymmetrisch gewickelten Tranponderspule 4 gegenüber. Die Transponderspule ist dabei mit ihrem Leiter 14 als eine auf einem Ringkern 24 mit u-förmigem Querschnitt gewickelten Spulenkörper dargestellt.
  • Die freien Schenkel 25 des U-Profils stehen dabei dem mittleren und dem äußeren Schenkel 25 des E-förmigen Ferritkerns 23 gegenüber.
  • In 2 ist eine rotationssymmetrische axiale Variante dargestellt. Die Transponderspule 4 ist dabei auf der Stirnseite 13 des Rotors 11 befestigt, während die Lesespule 2 auf der Stirnseite 12 des Stators 1 koaxial befestigt ist. Die beiden Leiter der Lese- bzw. Transponderspule sind um die mittleren Zapfen der sich gegenüberstehenden Ferritschalenkern 26 gewunden.
  • Die Anordnung in 3 entspricht prinzipiell der in 1 dargestellten Anordnung, wobei der Stator 1 jedoch den Rotor 11 umhüllt und die Lesespule 2 statt eines Schalen- oder E-Ferritkerns 23 einen U-förmigen Ferritkern besitzt, um den der Leiter der Lesespule gewickelt ist. In diesem Fall ist der Leiter um die Basis des U-förmigen Kerns gewunden. Er kann jedoch auch um die beiden freien Schenkel 25 gewickelt sein.
  • 4 zeigt eine Paarung aus zwei rotationssymmetrischen, sich gegenüberstehenden Spulen, nämlich der Lesespule 2 und der Transponderspule 4. Beide Spulenträger 27 sind als Ringkerne 24 mit U-förmigen Querschnitten ausgebildet, wobei sich jedoch die freien Enden der Schenkel 25 gegenüberstehen.
  • Statt der in den 1 bis 4 gezeigten Ringkerne lassen sich die dort gezeigten Transponderspulen fertigungstechnisch günstiger in Form von Planarspulen verwirklichen, wie in 5 gezeigt. Jeweils ein Teil des Leiters 14 ist auf eine Folie 15 aufgebracht und ergibt somit einen Teil der Planarpule 19. Die Kontakte 27 sind auf der gegenüberliegenden Fläche der Folie 15 aufgebracht. Die nächste Lage ist mit deckungsgleichen Kontakten ausgerüstet, die sich jedoch auf der jeweils gegenüberliegenden Seite der anderen Lage befinden, so daß bei einem in Deckungbringen ein Kontakt der einen Lage mit dem anderen entsprechenden Kontakt der anderen Lage kontaktiert und die anderen beiden Kontakte für die Außenkontaktierung zur Verfügung stehen. In der einen Lage fließt dann der Strom von außen nach innen und in der anderen Lage entgegengesetzt, wenn der Leiter 14 der Planarspule jeder Ebene spiralförmig ausgebildet ist. Diese Planarspule kann sowohl als Lese-, als auch als Transponderspule Verwendung finden. Wenn sie um die Spindel gelegt ist, bildet sie jedoch keine rotationssymmetrische Spule. Die Übertragung von Energie erfolgt gleichförmiger, je größer der Umfang ist, den die Planarspule im Stator oder auf dem Rotor überstreicht.
  • In 6 ist als Vertikalschnitt schematisch eine Möglichkeit zur Kontaktierung zweier Lagen von Planarspulen dargestellt. Auf der unteren Lage 28 der Planarspule ist der Kontakt 27 als Kontakthügel 30 ausgebildet, der bei einem Aufeinanderpressen der beiden Lagen 28 und 29 eine gegenüberliegende Öffnung 31 durchsetzt und die Kontaktfläche 32 berührt. Durch geeignete Verfahren können dann Hügel 30 mit Fläche 32 verbunden werden.
  • Auf diese Weise lassen sich fast beliebig viele Planarspulen übereinander anordnen, wie beispielsweise in 7 gezeigt.
  • Besonders kostengünstig läßt sich eine Planarspule verwirklichen, bei der auf einer Folie 15, beispielsweise wie in 8 gezeigt, mehrere Leiter 14 nebeneinander angeordnet sind. Die einzelnen Kontakte 27 am Ende 33 sind durch geeignete Leiterführung im Bereich 34 so gegenüber den Leitern 14 im Bereich 35 um einen Leiterabstand versetzt, daß bei einem Umschlingen, beispielsweise des Rotors, die Leiter sich zu einer Wicklung nach einem geeigneten Kontaktieren zusammenfügen. Die Spule weist an ihren diagonal gegenüberliegenden Enden jeweils ein außen kontaktierendes Wicklungsende 36 auf. Durch entsprechendes Ablängen kann eine derartige Folie auch für unterschiedliche Durchmesser Verwendung finden.
  • In 9 ist eine Anordnung von Lese- und Transponderspule mittels Planarspulen 19 dargestellt, wie sie der in 4 gezeigten Konfiguration entspricht. Der Stator 1 ist dabei vorzugsweise aus einem elektrisch gut leitenden Material gefertigt, beispielsweise Aluminium. Zwischen der Lesespule 2 und dem Stator 1 ist eine Schicht 18 vorgesehen, die vorzugsweise aus einem ferritischen Material, insbesondere aus einer Ferritfolie von 0,2 mm Stärke besteht, wie es unter der Bezeichnung F96 von der Firma Epcos vertrieben wird. Zwischen Folie und Rotor kann noch eine dünne Kupferschicht, z. B. von 0,05 mm Dicke vorgesehen werden. Die Lesespule 2 ist vorzugsweise als rotationssymmetrische Spule gefertigt, die an geeigneter Stelle in bekannter Weise mit dem Schreib-Lese-Gerät verbunden wird. Ihr gegenüber liegt die ebenfalls als rotationssymmetrische Planarspule 19 ausgebildete Transponderspule 4. Zwischen dieser und dem meist aus einem Werkzeugstahl bestehenden Rotor 11, meist einer Werkzeugmaschinenspindel 3 also, ist eine Schicht 17 mit 0,025 mm Dicke aus einem hochpermeablen Material, nämlich aus einem amorphen, weichmagnetischen Metall bestehend vorgesehen, beispielsweise dem von der Vakuumschmelze Hanau unter der Bezeichnung Vitrovac vertriebenen Material.
  • 10 zeigt eine Aufsicht auf einen Horizontalschnitt mit einer alternativen Ausführungsform der Lesespule 2, bei der die Spule 8 auf einem U-förmigen Ferritkern 7 gewickelt ist und zwar auf den freien Schenkeln 25 des Kerns 7. Die Lesespule 2 befindet sich dabei in einem Gehäuse 37 aus Aluminium und ist in diesem durch Vergußmasse 38 fixiert. Die Umgebung 5 der Lesespule 2 kann auch von einem anderen üblichen Werkstoff, wie Baustahl gebildet sein. Vorzugsweise ist sie jedoch ebenfalls aus Aluminium. Der innere Umfang 9 des Stators 1 ist von der erwähnten Schicht 18 im Bereich der Lesespule 2 bandförmig ausgekleidet. Das Band ist jedoch im Bereich 39 der Lesespule 2 unterbrochen.
  • 11 zeigt einen Vertikalschnitt als Detail gemäß Schnittlinie XI-XI in 10. Die unterbrochene ferritische Schicht 18 hat zusätzlich an ihrer, dem Stator 1 zugewandten Seite eine gut leitende Schicht 22, beispielsweise aus Kupfer. In einer ringförmigen Nut 21 ist die rotationssymmetrische, in axialer Richtung wesentlich schmalere Transponderspule 4 angeordnet. Zwischen der als Planarspule 19 ausgebildeten Transponderspule 4 und dem Rotor 11 ist die bereits erwähnte hochpermeable weichmagnetische Schicht 17 vorgesehen. Die Schicht 17 ist breiter als die axiale Abmessung der Transponderspule 4.
  • Auf diese Weise lassen sich ausreichende Leistungen für einen Mikrochip und Sensoren mit bekannter Auswerte- und Übertragungselektronik, wie sie bei heutigen Transpondersystemen üblich sind, besonders kostengünstig verwirklichen. Typische Abmessungen sind dabei für die Transponderspule eine axiale Erstreckung von beispielsweise 6 mm, die zwischen Rotor und Stator vorgesehen Schichten haben eine axiale Erstreckung von beispielsweise 7 mm. Es reicht aus, wenn die ferritische Schicht beispielsweise 0,2 mm und die hochpermeable Schicht 0,025 mm Dicke aufweist. Die Dicke solcher Planarspulen liegt bei ca. 0,1 mm. Solche Spulen werden bei einer Frequenz von etwa 125 kHz betrieben.
  • Bei anderen Frequenzen, die von solchen Transpondersystemen genutzt werden, sind entsprechende Anpassungen vorzunehmen. Auf diese Weise lassen sich Spulenpaarungen darstellen, die eine überraschend hohe Güte auch bei der im Maschinenbau üblichen metallischen Umgebung tiefem. Die Transponderspule ist an die Last anzupassen. Aufgrund der erfindungsgemäßen Maßnahmen reicht eine klein dimensionierte Sendespule aus, um das Mikrosystem auf dem Rotor zu versorgen. Typisch sind Abmessungen der Sendespule von 25 × 25 × 25 mm. Natürlich lassen sich auch mehrere Spulen jeweils in einem System vereinigen.
  • Die Spulen werden vorzugsweise in Reihenresonanz betrieben, wobei eine besonders gute Energieübertragung zwischen dem stehenden und bewegten Teil möglich ist. Die beschriebenen Maßnahmen bewirken gegenüber Luftspulen eine Verbesserung von mehr als einem Faktor 10.
  • 1
    Stator
    2
    Lesespule
    3
    Spindel
    4
    Transponderspule
    5
    Umgebung
    6
    7
    Kern, u-förmig
    8
    Spule
    9
    Umfang, Stator
    10
    Umfang, Rotor
    11
    Rotor
    12
    Stirnseite, Stator
    13
    Stirnseite, Rotor
    14
    Leiter
    15
    Folie
    16
    17
    amorphe, weichmetallische Metallschicht
    18
    ferritische, elektrisch nicht leitende Metallschicht
    19
    Planarspule
    20
    Folienband
    21
    Ringnut
    22
    Kupferschicht
    23
    Ferritkern
    24
    Ringkern
    25
    Schenkel
    26
    Ferritschalenkern
    27
    Kontakte
    28
    Untere Lage
    29
    Obere Lage
    30
    Kontakthügel
    31
    Öffnung
    32
    Kontaktflächen
    33
    Ende
    34
    Bereich
    35
    Bereich
    36
    Wicklungsende
    37
    Gehäuse
    38
    Vergußmasse
    39
    Bereich

Claims (8)

  1. Transpondersystem zur kontaktlosen induktiven Energieübertragung von einer stehenden Seite mit mindestens einer am Stator (1) angeordneten Lesespule (2) auf eine rotierende Seite mit mindestens einer auf einem Rotor (11) angeordneten Transponderspule (4), dadurch gekennzeichnet, daß die Lesespule (2) als um einen Kern (7) gewickelte Spule (8) ausgebildet ist, daß die Umgebung (5) der Lesespule (2) und der Stator (1) aus einem elektrisch gut leitfähigen Material geringer magnetischer Permeabilität, vorzugsweise aus Aluminium gefertigt ist, daß im Bereich der Transponderspule (4) im inneren Umfang (9) des Stators (1) eine bandförmige Schicht (18) aus einem magnetisch hochpermeablen Material vorgesehen ist, welches im Bereich der Lesespule (2) unterbrochen ausbildet ist, daß die Transponderspule (4) als Flachspule außen auf einem zylindrischen Umfang (10) des Rotors (11) angeordnet ist und daß zwischen der Transponderspule (4) und dem Rotor (11) eine Schicht (17) eines magnetisch hochpermeablen Materials angeordnet ist.
  2. Transpondersystem nach Anspruch 1, dadurch gekennzeichnet, daß die Schicht (17, 18) des hochpermeablen Materials zwischen 0,01 mm und 1 mm dick ist.
  3. Transpondersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Transponderspule (4) als rotationssymmetrische Planarspule (19) ausgebildet ist, vorzugsweise mehrlagig.
  4. Transpondersystem nach Anspruch 3, dadurch gekennzeichnet, daß die Transponderspule (4) aus einem Folienband (20) mit im wesentlichen parallelen Leitern (14) gebildet ist, das willkürlich ablängbar ist, wobei die Leiterenden nach einem zu einem Zylinder gebogenem Band sich um einen Leiterabstand versetzt zu einer Spule zusammenfügend kontaktiert sind.
  5. Transpondersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Transponderspule (4) in einer Ringnut (21) der Spindel (3) oder des Rotors (11) angeordnet ist.
  6. Transpondersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die hochpermeable Schicht (17, 18) eine Permeabilität aufweist, die höher ist die eines die Lese- und/oder Transponderspule (2, 4, 8) umgebenden Werkstoffes der Spindel (3) oder des Rotors (11) oder des Stators (1).
  7. Transpondersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zwischen dem Stator (1) und der hochpermeablen Schicht (18) eine Schicht (22) aus einem elektrisch gut leitendem Material, vorzugsweise Kupfer, angeordnet ist.
  8. Transpondersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Lesespule (2) auf einem Ferritkern gewickelt ist und die im inneren Umfang des Stators (1) vorgesehene Schicht (18) aus ferritschem Material besteht.
DE102005049924A 2004-10-28 2005-10-17 Transpondersystem Expired - Fee Related DE102005049924B8 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102005049924A DE102005049924B8 (de) 2004-10-28 2005-10-17 Transpondersystem

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202004016751U DE202004016751U1 (de) 2004-10-28 2004-10-28 Transpondersystem
DE202004016751.4 2004-10-28
DE102005049924A DE102005049924B8 (de) 2004-10-28 2005-10-17 Transpondersystem

Publications (3)

Publication Number Publication Date
DE102005049924A1 DE102005049924A1 (de) 2006-07-13
DE102005049924B4 true DE102005049924B4 (de) 2008-04-10
DE102005049924B8 DE102005049924B8 (de) 2008-07-24

Family

ID=36599523

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005049924A Expired - Fee Related DE102005049924B8 (de) 2004-10-28 2005-10-17 Transpondersystem

Country Status (1)

Country Link
DE (1) DE102005049924B8 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000899A1 (de) * 2013-01-18 2014-08-07 Volkswagen Aktiengesellschaft Elektrotechnische Spule und/oder Spulenwicklung, Verfahren zu ihrer Herstellung sowie elektrisches Gerät

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131161A1 (en) * 2009-05-11 2010-11-18 Koninklijke Philips Electronics N.V. Inductive power transfer for wireless sensor systems inside a tyre

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1920890A1 (de) * 1969-04-24 1970-11-12 Guenther Vogeler Schleifringloser induktiver UEbertrager
US3611230A (en) * 1970-11-23 1971-10-05 Lebow Associates Inc Rotary transformer structure
EP0218142A2 (de) * 1985-10-11 1987-04-15 Institut Dr. Friedrich Förster Prüfgerätebau GmbH & Co. KG Rotierübertrageranordnung
DE19610284A1 (de) * 1996-03-15 1997-08-07 Siemens Ag Antennenspule
DE29804569U1 (de) * 1998-03-16 1998-08-06 Sporer, Ana, 88239 Wangen FTS-Modul
DE19924830A1 (de) * 1999-05-29 2000-11-30 Fachhochschule Offenburg Hochs Vorrichtung zur Messung von Druck und Temperatur in Kraftfahrzeugreifen und zur Verschleißüberwachung
DE19929344A1 (de) * 1999-06-26 2000-12-28 Abb Research Ltd Wicklung
WO2003067512A1 (de) * 2002-02-06 2003-08-14 Schreiner Gmbh & Co. Kg Transponderetikett

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29804579U1 (de) * 1998-03-18 1998-11-26 Georg Siegel GmbH, 59174 Kamen Radiofrequenzetikett mit kupferbeschichteter Ferrit-Folie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1920890A1 (de) * 1969-04-24 1970-11-12 Guenther Vogeler Schleifringloser induktiver UEbertrager
US3611230A (en) * 1970-11-23 1971-10-05 Lebow Associates Inc Rotary transformer structure
EP0218142A2 (de) * 1985-10-11 1987-04-15 Institut Dr. Friedrich Förster Prüfgerätebau GmbH & Co. KG Rotierübertrageranordnung
DE19610284A1 (de) * 1996-03-15 1997-08-07 Siemens Ag Antennenspule
DE29804569U1 (de) * 1998-03-16 1998-08-06 Sporer, Ana, 88239 Wangen FTS-Modul
DE19924830A1 (de) * 1999-05-29 2000-11-30 Fachhochschule Offenburg Hochs Vorrichtung zur Messung von Druck und Temperatur in Kraftfahrzeugreifen und zur Verschleißüberwachung
DE19929344A1 (de) * 1999-06-26 2000-12-28 Abb Research Ltd Wicklung
WO2003067512A1 (de) * 2002-02-06 2003-08-14 Schreiner Gmbh & Co. Kg Transponderetikett

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000899A1 (de) * 2013-01-18 2014-08-07 Volkswagen Aktiengesellschaft Elektrotechnische Spule und/oder Spulenwicklung, Verfahren zu ihrer Herstellung sowie elektrisches Gerät

Also Published As

Publication number Publication date
DE102005049924A1 (de) 2006-07-13
DE102005049924B8 (de) 2008-07-24

Similar Documents

Publication Publication Date Title
EP1805695B1 (de) Transpondersystem
EP0826190B1 (de) Kontaktlose chipkarte
EP1586135A1 (de) Antennenkern
DE60014708T2 (de) Antenne für radiofrequenzen für ein objektabfragegerät mit einer radiofrequenzantenne und ein damit verbundener elektrischer schaltkreis
EP0557608A1 (de) Spulenaufbau
EP2256673A1 (de) RFID-Transponder zur Montage auf Metall und Herstellungsverfahren für denselben
DE102005049924B4 (de) Transpondersystem
DE102008017490B4 (de) Readerantenne für einen Einsatz mit RFID-Transpondern
DE9000575U1 (de) Meßeinrichtung zur Bestimmung eines Drehwinkels
DE19538917C2 (de) Kontaktlose Chipkarte
DE102006058168B4 (de) Antenne für einen rückstreubasierten RFID-Transponder
EP3839462B1 (de) Zahnriemen mit integrierter sensorik
EP2810222B1 (de) Rfid-transponder mit einer schlitzantenne
DE19651923C2 (de) Sonde zur Erfassung von magnetischen Wechselfeldern
DE602005003990T2 (de) RF Transponder und Verfahren zur Frequenzabstimmung
EP1554590B1 (de) Vorrichtung mit einer spulenanordnung als magnetfeldsensor zur positionsbestimmung
DE4123781A1 (de) Winkelsensor
EP1496339B1 (de) Induktiver Drehwinkelsensor
EP1814068A1 (de) Antenne für einen rückstreubasierten RFID-Transponder
DE4122797C2 (de) Spulenanordnung für Messungen mittels magnetischer Resonanz
EP1516160A2 (de) Sensorspule und wegmesssensor
WO2012019694A1 (de) Tragbarer datenträger mit über spulenkopplung arbeitender datenkommunikationseinrichtung
DE4107457C1 (de)
EP0777292A1 (de) Antenneneinheit
WO2008000325A1 (de) Chipkarte und verfahren zur herstellung einer chipkarte

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8396 Reprint of erroneous front page
8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: PRO-MICRON GMBH, DE

Free format text: FORMER OWNER: PRO-MICRON GMBH & CO. KG MODULAR SYSTEMS, 87600 KAUFBEUREN, DE

R082 Change of representative

Representative=s name: VKK PATENTANWAELTE PARTG MBB, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee