DE10157325A1 - Federelement - Google Patents

Federelement

Info

Publication number
DE10157325A1
DE10157325A1 DE2001157325 DE10157325A DE10157325A1 DE 10157325 A1 DE10157325 A1 DE 10157325A1 DE 2001157325 DE2001157325 DE 2001157325 DE 10157325 A DE10157325 A DE 10157325A DE 10157325 A1 DE10157325 A1 DE 10157325A1
Authority
DE
Germany
Prior art keywords
support ring
spring element
reinforcement
spring
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2001157325
Other languages
English (en)
Inventor
Tom Gehring
August-Wilhelm Gelmke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE2001157325 priority Critical patent/DE10157325A1/de
Publication of DE10157325A1 publication Critical patent/DE10157325A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/42Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing
    • F16F1/44Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing loaded mainly in compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/376Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having projections, studs, serrations or the like on at least one surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die Erfindung betrifft Federelemente, enthaltend ein Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten sowie einen Stützring (ii), wobei der Stützring eine Armierung (iii) aufweist, die in einem Mantel aus thermoplastischem Kunststoff (iv) eingebettet ist.

Description

  • Die Erfindung betrifft Federelemente enthaltend ein Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten, bevorzugt auf der Basis von zelligen Polyurethanelastomeren, die ggf. Polyharnstoffstrukturen enthalten können, besonders bevorzugt auf der Basis von zelligen Polyurethanelastomeren bevorzugt mit einer Dichte nach DIN 53 420 von 200 bis 1100, bevorzugt 300 bis 800 kg/m3, einer Zugfestigkeit nach DIN 53 571 von ≥ 2, bevorzugt 2 bis 8 N/mm2, einer Dehnung nach DIN 53 571 von ≥ 300, bevorzugt 300 bis 700% und einer Weiterreißfestigkeit nach DIN 53 515 von ≥ 8, bevorzugt 8 bis 25 N/mm, sowie einen Stützring (ii). Außerdem betrifft die Erfindung Automobile, d. h. Kraftfahrzeuge aller Art, z. B. Personenkraftfahrzeuge, Lastkraftfahrzeuge oder Busse, aber auch Motorräder und Fahrräder, bevorzugt aber Kraftfahrzeuge, enthaltend die erfindungsgemäßen Federelemente.
  • Aus Polyurethanelastomeren hergestellte Federungselemente werden in Automobilen beispielsweise innerhalb des Fahrwerks verwendet und sind allgemein bekannt. Sie werden insbesondere in Kraftfahrzeugen als Schwingungsdämpfer oder Federelemente eingesetzt. Dabei übernehmen die Federelemente eine Endanschlagfunktion sowie das Ausbilden einer progressiven Charakteristik der gesamten Fahrzeugfederung. Durch diese Funktion wird der Fahrkomfort erhöht und ein Höchstmaß an Fahrsicherheit gewährleistet.
  • Aufgrund der sehr unterschiedlichen Charakteristika und Eigenschaften einzelner Automobilmodelle müssen die Federelemente individuell an die verschiedenen Automobilmodelle angepasst werden, um eine ideale Fahrwerksabstimmung zu erreichen. Beispielsweise können bei der Entwicklung der Federelemente das Gewicht des Fahrzeugs, das Fahrwerk des speziellen Modells, die vorgesehenen Stoßdämpfer sowie die gewünschte Federcharakteristik berücksichtigt werden. Hinzu kommt, dass für verschiedene Automobile aufgrund des zur Verfügung stehenden Bauraums individuelle, auf die Baukonstruktion abgestimmte Einzellösungen erfunden werden müssen.
  • Aus den vorstehend genannten Gründen können die bekannten Lösungen für die Ausgestaltung einzelner Federelemente nicht generell auf neue Automobilmodelle übertragen werden. Bei jeder neuen Entwicklung eines Automobilmodells muss eine neue Form des Federelements entwickelt werden, das den spezifischen Anforderungen des Modells gerecht wird. Häufige Vorgaben betreffen die Federlänge, die Anlaufsteifigkeit und das Blockmaß, das die Restfederhöhe bei einer definierten Last, z. B. 30 kN bei statischer oder 35 kN bei dynamischer Belastung, darstellt.
  • Um ein vorgegebenes Blockmaß zu erreichen, werden häufig Stützringe eingesetzt, die auf das eigentliche Dämpfungselement (die Feder) aufgesetzt werden oder diese Feder umfassen. Derartige Stützringe, die üblicherweise aus Kunststoffen gefertigt werden, erhöhen in gewünschter Art das Blockmaß. Die bisher verwendeten Kunststoffringe sind jedoch nur bis etwa 20 kN (Kilo-Newton) belastbar. Belastungen darüber hinaus führen zum Bruch der Ringe. Die Folge dieser Schädigung ist im allgemeinen der Totalausfall des Federelementes.
  • Aufgabe der vorliegenden Erfindung war es somit, ein Federelement enthaltend ein Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten sowie einen Stützring (ii) zu entwickeln, das hohe Belastbarkeit des Stützringes, mehr als 20 kN, bevorzugt mehr als 25 kN, aufweist. Derartige Federelemente sollten als Zusatzfeder mit Endanschlagfunktion und progressiver Kennlinie geeignet sein und einen möglichst guten Fahrkomfort und eine ausgezeichnete Fahrsicherheit gewährleisten.
  • Diese Aufgaben konnten dadurch gelöst werden, dass der Stützring eine Armierung (iii) aufweist, die in einem Mantel aus thermoplastischem Kunststoff (iv) eingebettet ist.
  • Gegenstand der Erfindung ist daher ein Federelement enthaltend ein Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten sowie einen Stützring (ii), wobei der Stützring eine Armierung (iii) aufweist, die in einem Mantel aus thermoplastischem Kunststoff (iv) eingebettet ist.
  • Weiterhin ist Gegenstand der Erfindung die Verwendung eines Stützrings (ii), aufgebaut aus einer Armierung (iii), die in einem Mantel aus thermoplastischem Kunststoff (iv) eingebettet ist, zur Herstellung von Federelementen.
  • Schließlich sind Gegenstand der Erfindungen Automobile, enthaltend die erfindungsgemäßen Federsysteme.
  • Ein beispielhaftes Federelement ist in der Fig. 1 dargestellt. Die Vorteile, die sich durch den erfindungsgemäßen Stützring ergeben, sind auf Federelemente mit Dämpfungselementen (i) in nahezu beliebiger dreidimensionaler Form anwendbar. Insofern stellt die skizzierte Form des Dämpfungselementes (i) nur eine mögliche dreidimensionale Form dar. Der erfindungsgemäße Aufbau des Stützringes (ii) gewährleistet einerseits, dass das Blockmaß in gewünschter Art variiert werden und das zellige Material von (i) durch den Kunststoffmantel geschont werden kann, und andererseits, dass der Stützring hohen mechanischen Belastungen standhalten kann, so dass es nicht zum Bruch des Stützringes beim Einsatz der Federelemente in Automobilen kommt.
  • Die Armierung (iii) basiert erfindungsgemäß auf einem harten Material, beispielsweise auf Metallen wie Aluminium, Kupfer, Eisen, Stahl oder Legierungen davon. Besonders bevorzugt basiert die Armierung (iii) auf Stahl. Die Armierung (iii) weist bevorzugt einen Durchmesser von 10 mm bis 150 mm, bevorzugt 25 mm bis 100 mm, insbesondere etwa 50 mm auf.
  • Der Mantel (iv) basiert erfindungsgemäß auf einem thermoplastischen Kunststoff.
  • Als thermoplastische Kunststoffe sind im allgemeinen alle Kunststoffe geeignet, die über Spritzguss verarbeitbar sind. Geeignete thermoplastische Kunststoffe sind sowohl Polykondensate als auch Polymerisate und Polyaddukte. Geeignete thermoplastische Polykondensate sind Polyamide, wie 6,6-Polyamid, Polycarbonate, Polyester, bevorzugt Polyterephthalate wie Polyethylenterephthalat und Polybutylenterephthalat, Polyphenylenoxide, Polysulfone und Polyvinylacetate. Geeignete thermoplastische Polymerisate sind Polyolefine, insbesondere Polyethylen, Polypropylen, Poly-1- buten, Poly-4-methyl-1-penten, des weiteren Polyvinylchlorid, Polyvinylidenchlorid, Polymethylmethacrylat, Polyacrylnitril, Polystyrol, schlagzähes Polystyrol, Polyacetale, Polyvinylalkohole, Polyvinylacetat, Polyoxymethylen und Poly-p-xylylen. Geeignete thermoplastische Polyaddukte sind thermoplastische Polyurethane.
  • Weitere geeignete thermoplastische Polymere sind Styrol-Acrylnitril-Copolymerisate (SAN), α-Methylstyrol-Acrylnitril-Copolymerisate, Styrol-Methacrylsäuremethylester-Copolymerisate und Styrol-Maleinsäurenydrid-Copolymerisate sowie Acrylnitril-Butadien-Styrol-Polymerisate (ABS) und Acrylnitril-Styrol-Acrylester- Polymerisate (ASA).
  • Besonders bevorzugt wird als thermoplastischer Kunststoff Polyoxymethylen (POM), Polyamid, Polypropylen oder ABS verwendet.
  • Die thermoplastischen Kunststoffe können zusätzlich Verstärkungsstoffe in einer Menge von 0 bis 80 Gew.-%, bevorzugt von 1 bis 50 Gew.-%, mehr bevorzugt von 2 bis 30 Gew.-%, bezogen auf das Gewicht des Mantels (iv), enthalten, die im allgemeinen zu einer Verstärkung des Kunststoffs und damit zu einer Verbesserung seiner mechanischen Eigenschaften führen. Bevorzugt werden die Verstärkungsstoffe in Form von Fasern und/oder Plättchen eingesetzt. Als Fasern können übliche für diesen Zweck bekannte Fasern eingesetzt werden, beispielsweise Naturfasern oder Kunstfasern. Bei den Naturfasern handelt es sich beispielsweise um Flachs, Jute oder Sisal. Ebenfalls können Mineralfasern, Kunstfasern, wie beispielsweise Polyamidfasern, Polyesterfaser, Carbonfasern oder Polyurethanfasern oder beliebige Gemische aller genannten Fasern verwendet werden. Bevorzugt setzt man Glasfasern ein. Die Fasern, insbesondere die Glasfasern, weisen bevorzugt eine Länge von 0,1 bis 100 mm auf. Bei den gegebenenfalls verwendeten plättchenförmigen Füllstoffen kann es sich um sogenannte Glassflakes oder mineralische Stoffe wie Mica oder Glimmer handeln.
  • Der Mantel (iv) weist bevorzugt eine Dicke von 1 mm bis 50 mm, bevorzugt 4 mm bis 30 mm, auf. Besonders bevorzugt weist der Mantel (iv) eine Gesamtdicke in Hauptfederrichtung von 5 mm bis 15 mm auf.
  • Die Herstellung der erfindungsgemäßen Stützringe kann nach allgemein bekannten Verfahren erfolgen. Der Stützring (ii) weist bevorzugt einen äußeren Durchmesser von 30 mm bis 100 mm auf. Die erfindungsgemäßen Dämpfungselemente (i) sind bevorzugt zylindrisch und besonders bevorzugt hohl ausgestaltet. Sie werden bevorzugt über die Kolbenstange beispielsweise der Fahrwerksfederung eines Kraftfahrzeuges geschoben. Bevorzugt weisen die Dämpfungselemente (i) einen äußeren Durchmesser von 30 mm bis 100 mm und eine Höhe von 50 mm bis 150 mm auf. Dabei bezieht sich der Durchmesser auf den Durchmesser eines zylindrischen Dämpfungselementes und entsprechend die Höhe auf die Höhe des Zylinders.
  • Das Dämpfungselement (i) und der Stützring (ii) sind bevorzugt derart angeordnet, dass der Stützring (ii) das Dämpfungselement (i) umfasst. Diese Anordnung ist in der Fig. 1 dargestellt. Besonders bevorzugt ist der Stützring (ii) in einer Einschnürung auf der äußeren Oberfläche von (i) platziert. Der Zusammenbau des Federelementes kann aufgrund des elastischen Materials von (i) insbesondere durch Überstreifen des Stützringes (ii) über das Dämpfungselement (i) erfolgen. Beispielsweise kann das Dämpfungselement in einer geeigneten Vorrichtung zusammengepresst und der Stützring in die gewünschte Einschnürung geschoben werden.
  • Die erfindungsgemäßen Dämpfungselemente (i) basieren bevorzugt auf Elastomeren auf der Basis von Polyisocyanat-Polyadditionsprodukten, beispielsweise Polyurethanen und/oder Polyharnstoffen, beispielsweise Polyurethanelastomeren, die gegebenenfalls Harnstoffstrukturen enthalten können. Bevorzugt handelt es sich bei den Elastomeren um mikrozellige Elastomere auf der Basis von Polyisocyanat-Polyadditionsprodukten, bevorzugt mit Zellen mit einem Durchmesser von 0,01 mm bis 0,5 mm, besonders bevorzugt 0,01 bis 0,15 mm. Besonders bevorzugt besitzen die Elastomere die eingangs dargestellten physikalischen Eigenschaften. Elastomere auf der Basis von Polyisocyanat-Polyadditionsprodukten und ihre Herstellung sind allgemein bekannt und vielfältig beschreiben, beispielsweise in EP-A 62 835, EP-A 36 994, EP-A 250 969, DE-A 195 48 770 und DE-A 195 48 771.
  • Die Herstellung erfolgt üblicherweise durch Umsetzung von Isocyanaten mit gegenüber Isocyanaten reaktiven Verbindungen.
  • Die Elastomere auf der Basis von zelligen Polyisocyanat-Polyadditionsprodukte werden üblicherweise in einer Form hergestellt, in der man die reaktiven Ausgangskomponenten miteinander umsetzt. Als Formen kommen hierbei allgemein übliche Formen in Frage, beispielsweise Metallformen, die aufgrund ihrer Form die erfindungsgemäße dreidimensionale Form des Federelements gewährleisten.
  • Die Herstellung der Polyisocyanat-Polyadditionsprodukte kann nach allgemein bekannten Verfahren erfolgen, beispielsweise indem man in einem ein- oder zweistufigen Prozess die folgenden Ausgangsstoffe einsetzt:
    • a) Isocyanat,
    • b) gegenüber Isocyanaten reaktiven Verbindungen,
    • c) Wasser und gegebenenfalls
    • d) Katalysatoren,
    • e) Treibmittel und/oder
    • f) Hilfs- und/oder Zusatzstoffe, beispielsweise Polysiloxane und/oder Fettsäuresulfonate.
  • Die Oberflächentemperatur der Forminnenwand beträgt üblicherweise 40 bis 95°C, bevorzugt 50 bis 90°C.
  • Die Herstellung der Formteile wird vorteilhafterweise bei einem NCO/OH-Verhältnis von 0,85 bis 1,20 durchgeführt, wobei die erwärmten Ausgangskomponenten gemischt und in einer der gewünschten Formteildichte entsprechenden Menge in ein beheiztes, bevorzugt dichtschließendes Formwerkzeug gebracht werden.
  • Die Formteile sind üblicherweise nach maximal 60 Minuten ausgehärtet und damit entformbar.
  • Die Menge des in das Formwerkzeug eingebrachten Reaktionsgemisches wird üblicherweise so bemessen, dass die erhaltenen Formkörper die bereits dargestellte Dichte aufweisen.
  • Die Ausgangskomponenten werden üblicherweise mit einer Temperatur von 15 bis 120°C, vorzugsweise von 30 bis 110°C, in das Formwerkzeug eingebracht. Die Verdichtungsgrade zur Herstellung der Formkörper liegen zwischen 1,1 und 8, vorzugsweise zwischen 2 und 6.
  • Die zelligen Polyisocyanat-Polyadditionsprodukte werden zweckmäßigerweise nach dem one shot-Verfahren mit Hilfe der Niederdruck-Technik oder insbesondere der Reaktionsspritzguss- Technik (RIM) in offenen oder vorzugsweise geschlossenen Formwerkzeugen, hergestellt. Die Reaktion wird insbesondere unter Verdichtung in einem geschlossenen Formwerkzeug durchgeführt. Die Reaktionsspritzguss-Technik wird beispielsweise beschrieben von H. Piechota und H. Röhr in "Integralschaumstoffe", Carl Hanser- Verlag, München, Wien 1975; D. J. Prepelka und J. L. Wharton in Journal of Cellular Plastics, März/April 1975, Seiten 87 bis 98 und U. Knipp in Journal of Cellular Plastics, März/April 1973, Seiten 76-84.
  • Bei Verwendung einer Mischkammer mit mehreren Zulaufdüsen können die Ausgangskomponenten einzeln zugeführt und in der Mischkammer intensiv vermischt werden. Als vorteilhaft hat es sich erwiesen, nach dem Zweikomponenten-Verfahren zu arbeiten.
  • Nach einer besonders vorteilhaften Ausführungsform wird in einem zweistufigen Prozess zunächst ein NCO-gruppenhaltiges Prepolymeres hergestellt. Dazu wird die Komponente (b) mit (a) im Überschuss üblicherweise bei Temperaturen von 80°C bis 160°C, vorzugsweise von 110°C bis 150°C, zur Reaktion gebracht. Die Reaktionszeit ist auf das Erreichen des theoretischen NCO- Gehaltes bemessen.
  • Bevorzugt erfolgt demnach die erfindungsgemäße Herstellung der Formkörper in einem zweistufigen Verfahren, indem man in der ersten Stufe durch Umsetzung von (a) mit (b) ein Isocyanatgruppen aufweisendes Prepolymer herstellt und dieses Prepolymer in der zweiten Stufe in einer Form mit einer Vernetzerkomponente enthaltend gegebenenfalls die weiteren eingangs dargestellten Komponenten umsetzt.
  • Zur Verbesserung der Entformung der Schwingungsdämpfer hat es sich als vorteilhaft erwiesen, die Formwerkzeuginnenflächen zumindest zu Beginn einer Produktionsreihe mit üblichen äußeren Formtrennmitteln, beispielsweise auf Wachs- oder Silikonbasis oder insbesondere mit wässrigen Seifenlösungen, zu beschichten.
  • Die Formstandzeiten betragen in Abhängigkeit von der Größe und Geometrie des Formteils durchschnittlich 5 bis 60 Minuten.
  • Nach der Herstellung der Formteile in der Form können die Formteile bevorzugt für eine Dauer von 1 bis 48 Stunden bei Temperaturen von üblicherweise von 70 bis 120°C getempert werden.
  • Zu den dem Fachmann allgemein bekannten Ausgangskomponenten zur Herstellung der Polyisocyanat-Polyadditionsprodukte kann folgendes ausgeführt werden:
    Als Isocyanate (a) können allgemein bekannte (cyclo)aliphatische und/oder aromatische Polyisocyanate eingesetzt werden. Zur Herstellung der erfindungsgemäßen Verbundelemente eignen sich besonders aromatische Diisocyanate, vorzugsweise 2,2'-, 2,4' und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 3,3'-Dimethyldiphenyl-diisocyanat, 1,2-Diphenylethandiisocyanat, Phenylen-diisocyanat und/oder aliphatische Isocyanate wie z. B. 1,12-Dodecan-, 2-Ethyl-1,4-butan, 2-Methyl-1,5-pentan-1,4-Butandiisocyanat und vorzugsweise 1,6-Hexamethylendiisocyanat und/oder cycloaliphatische Diisocyanate z. B. Cyclohexan-1,3- und 1,4-diisocyanat, 2,4- und 2,6-Hexahydrotoluyllen-diisocyanat, 4,4'-, 2,4'- und 2,2'-Dicyclohexylmethan-diisocyanat, vorzugsweise 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan und/oder Polyisocyanate wie z. B. Polyphenylpolymethylenpolyisocyanate. Die Isocyanate können in Form der reinen Verbindung, in Mischungen und/oder in modifizierter Form, beispielsweise in Form von Uretdionen, Isocyanuraten, Allophanaten oder Biureten, vorzugsweise in Form von Urethan- und Isocyanatgruppen enthaltenden Umsetzungsprodukten, sogenannten Isocyanat-Prepolymeren, eingesetzt werden. Bevorzugt werden gegebenenfalls modifiziertes 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1,5-Naphthylendiisocyanat (NDI), 3,3'-Dimethyldiphenyl-diisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat (TDI) und/oder Mischungen dieser Isocyanate eingesetzt.
  • Als gegenüber Isocyanaten reaktive Verbindungen (b) können allgemein bekannte Polyhydroxylverbindungen eingesetzt werden, bevorzugt solche mit einer Funktionalität von 2 bis 3 und bevorzugt einem Molekulargewicht von 60 bis 6000, besonders bevorzugt 500 bis 6000, insbesondere 800 bis 5000. Bevorzugt werden als (b) Polyetherpolyole, Polyesterpolyalkohole und/oder hydroxylgruppenhaltige Polycarbonate eingesetzt.
  • Bevorzugt werden als (b) Polyesterpolyalkohole, im Folgenden auch als Polyesterpolyole bezeichnet, eingesetzt. Geeignete Polyesterpolyole können beispielsweise aus Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen und zweiwertigen Alkoholen hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: aliphatische Dicarbonsäuren, wie Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure und Sebacinsäure und aromatische Dicarbonsäuren, wie Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können einzeln oder als Gemische verwendet werden. Zur Herstellung der Polyesterpolyole kann es gegebenenfalls vorteilhaft sein, anstelle der Carbonsäure die entsprechenden Carbonsäurederivate, wie Carbonsäureester mit 1 bis 4 Kohlenstoffatomen im Alkoholrest, Carbonsäureanhydride oder Carbonsäurechloride zu verwenden. Beispiele für zweiwertige Alkohole sind Glykole mit 2 bis 16 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatome, wie z. B. Ethylenglykol, Diethylenglykol, Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6, Decandiol-1,10, 2-Methylpropan-1,3-diol, 2,2-Dimethylpropandiol-1,3, Propandiol-1,3 und Dipropylenglykol. Je nach den gewünschten Eigenschaften können die zweiwertigen Alkohole allein oder gegebenenfalls in Mischungen untereinander verwendet werden.
  • Als Polyesterpolyole vorzugsweise verwendet werden Ethandiolpolyadipate, 1,4-Butandiol-polyadipate, Ethandiol-butandiol-polyadipate, 1,6-Hexandiol-neopentylglykol-polyadipate, 1,6-Hexandiol-1,4-Butandiol-polyadipate, 2-Methyl-1,3-propandiol-1,4- butandiol-polyadipate und/oder Polycaprolactone.
  • Geeignete estergruppenhaltige Polyoxyalkylenglykole, im wesentlichen Polyoxytetramethylenglykole, sind Polykondensate aus organischen, vorzugsweise aliphatischen Dicarbonsäuren, insbesondere Adipinsäure mit Polyoxymethylenglykolen des zahlenmittleren Molekulargewichtes von 162 bis 600 und gegebenenfalls aliphatischen Diolen, insbesondere Butandiol-1,4. Ebenfalls geeignete estergruppenhaltige Polyoxytetramethylenglykole sind solche aus der Polykondensation mit e-Caprolacton gebildete Polykondensate.
  • Geeignete carbonatgruppenhaltige Polyoxyalkylenglykole, im wesentlichen Polyoxytetramethylenglykole, sind Polykondensate aus diesen mit Alkyl- bzw. Arylcarbonaten oder Phosgen.
  • Beispielhafte Ausführungen zu der Komponente (b) sind in DE-A 195 48 771, Seite 6, Zeilen 26 bis 59 gegeben.
  • Zusätzlich zu den bereits beschriebenen gegenüber Isocyanaten reaktiven Komponenten können des weiteren niedermolekulare Kettenverlängerungs- und/oder Vernetzungsmitteln (b1) mit einem Molekulargewicht von kleiner 500, bevorzugt 60 bis 499 eingesetzt werden, beispielsweise ausgewählt aus der Gruppe der di- und/oder trifunktionellen Alkohole, di- bis tetrafunktionellen Polyoxyalkylen-polyole und der alkylsubstituierten aromatischen Diamine oder von Mischungen aus mindestens zwei der genannten Kettenverlängerungs- und/oder Vernetzungsmittel.
  • Als (b1) können beispielsweise Alkandiole mit 2 bis 12, bevorzugt 2, 4, oder 6 Kohlenstoffatomen verwendet werden, z. B. Ethan-, 1,3-Propan-, 1,5-Pentan-, 1,6-Hexan-, 1,7-Heptan-, 1,8-Octan-, 1,9-Nonan-, 1,10-Decandiol und vorzugsweise 1,4-Butandiol, Dialkylenglykole mit 4 bis 8 Kohlenstoffatomen, wie z. B. Diethylenglykol und Dipropylenglykol und/oder di- bis tetrafunktionelle Polyoxyalkylen-polyole.
  • Geeignet sind jedoch auch verzweigtkettige und/oder ungesättigte Alkandiole mit üblicherweise nicht mehr als 12 Kohlenstoffatomen, wie z. B. 1,2-Propandiol, 2-Methyl-, 2,2-Dimethylpropandiol-1,3 2-Butyl-2-ethylpropandiol-1,3, Buten-2-diol-1,4 und Butin-2- diol-1,4, Diester der Terephthalsäure mit Glykolen mit 2 bis 4 Kohlenstoffatomen, wie z. B. Terephthalsäure-bis-ethylenglykol- oder -butandiol-1,4, Hydroxyalkylenether des Hydrochinons oder Resorcins, wie z. B. 1,4-Di-(b-hydroxyethyl)-hydrochinon oder 1,3-Di(b-hydroxyethyl)-resorcin, Alkanolamine mit 2 bis 12 Kohlenstoffatomen, wie z. B. Ethanolamin, 2-Aminopropanol und 3-Amino- 2,2-dimethylpropanol, N-Alkyldialkanolamine, wie z. B. N-Methyl- und N-Ethyl-diethanolamin.
  • Als höherfunktionelle Vernetzungsmittel (b1) seien beispielsweise tri- und höherfunktionelle Alkohole, wie z. B. Glycerin, Trimethylolpropan, Pentaerythrit und Trihydroxycyclohexane sowie Trialkanolamine, wie z. B. Triethanolamin genannt.
  • Als Kettenverlängerungsmittel können verwendet werden: alkyl- substituierte aromatische Polyamine mit Molekulargewichten vorzugsweise von 122 bis 400, insbesondere primäre aromatische Diamine, die in ortho-Stellung zu den Aminogruppen mindestens einen Alkylsubstituenten besitzen, welcher die Reaktivität der Aminogruppe durch sterische Hinderung vermindert, die bei Raumtemperatur flüssig und mit den höhermolekularen, bevorzugt mindestens difunktionellen Verbindungen (b) unter den Verarbeitungsbedingungen zumindest teilweise, vorzugsweise jedoch vollständig mischbar sind.
  • Zur Herstellung der erfindungsgemäßen Formkörper können die technisch gut zugänglichen 1,3,5-Triethyl-2,4-phenylendiamin, 1-Methyl-3,5-diethyl-2,4-phenylendiamin, Mischungen aus 1-Methyl-3,5-diethyl-2,4- und -2,6-phenylendiaminen, sogenanntes DETDA, Isomerengemische aus 3,3'-di- oder 3,3',5,5'-tetraalkylsubstituierten 4,4'-Diaminodiphenylmethanen mit 1 bis 4 C-Atomen im Alkylrest, insbesondere Methyl-, Ethyl- und Isopropylreste gebunden enthaltende 3,3',5,5'-tetraalkylsubstituierte 4,4'-Diamino-diphenylmethane sowie Gemische aus den genannten tetraalkylsubstituierten 4,4'-Diamino-diphenylmethanen und DETDA verwendet werden.
  • Zur Erzielung spezieller mechanischer Eigenschaften kann es auch zweckmäßig sein, die alkylsubstituierten aromatischen Polyamine im Gemisch mit den vorgenannten niedermolekularen mehrwertigen Alkoholen, vorzugsweise zwei- und/oder dreiwertigen Alkoholen oder Dialkylenglykolen zu verwenden.
  • Bevorzugt werden jedoch keine aromatischen Diamine eingesetzt. Bevorzugt erfolgt die Herstellung der erfindungsgemäßen Produkte somit in Abwesenheit von aromatischen Diaminen.
  • Die Herstellung der zelligen Polyisocyanat-Polyadditionsprodukte kann bevorzugt in Gegenwart von Wasser (c) durchgeführt werden. Das Wasser wirkt sowohl als Vernetzer unter Bildung von Harnstoffgruppen als auch aufgrund der Reaktion mit Isocyanatgruppen unter Bildung von Kohlendioxid als Treibmittel. Aufgrund dieser doppelten Funktion wird es in dieser Schrift getrennt von (e) und (b) aufgeführt. Per Definition enthalten die Komponenten (b) und (e) somit kein Wasser, das per Definition ausschließlich als (e) aufgeführt wird.
  • Die Wassermengen, die zweckmäßigerweise verwendet werden können, betragen 0,01 bis 5 Gew.-%, vorzugsweise 0,3 bis 3,0 Gew.-%, bezogen auf das Gewicht der Komponente (b). Das Wasser kann vollständig oder teilweise in Form der wässrigen Lösungen der sulfonierten Fettsäuren eingesetzt werden.
  • Zur Beschleunigung der Reaktion können dem Reaktionsansatz sowohl bei der Herstellung eines Prepolymeren als auch gegebenenfalls bei der Umsetzung eines Prepolymeren mit einer Vernetzerkomponente allgemein bekannte Katalysatoren (d) zugefügt werden. Die Katalysatoren (d) können einzeln wie auch in Abmischung miteinander zugegeben werden. Vorzugsweise sind dies metallorganische Verbindungen, wie Zinn-(II)-Salze von organischen Carbonsäuren, z. B. Zinn-(II)-dioctoat, Zinn-(II)-dilaurat, Dibutylzinndiacetat und Dibutylzinndilaurat und tertiäre Amine wie Tetramethylethylendiamin, N-Methylmorpholin, Diethylbenzylamin, Triethylamin, Dimethylcyclohexylamin, Diazabicyclooctan, N,N'-Dimethylpiperazin, N-Methyl,N'-(4-N-Dimethylamino-)Butylpiperazin, N,N,N',N",N"-Pentamethyldiethylendiamin oder ähnliche.
  • Weiterhin kommen als Katalysatoren in Betracht: Amidine, wie z. B. 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidin, Tris-(dialkylaminoalkyl)-s-hexahydrotriazine, insbesondere Tris-(N,N-dimethylaminopropyl)-s-hexahydrotriazin, Tetraalkylammoniumhydroxide, wie z. B. Tetramethylammoniumhydroxid, Alkalihydroxide, wie z. B. Natriumhydroxid, und Alkalialkoholate, wie z. B. Natriummethylat und Kaliumisopropylat, sowie Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH- Gruppen.
  • Je nach einzustellender Reaktivität gelangen die Katalysatoren (d) in Mengen von 0,001 bis 0,5 Gew.-%, bezogen auf das Prepolymere, zur Anwendung.
  • Gegebenenfalls können in der Polyurethanherstellung übliche Treibmittel (e) verwendet werden. Geeignet sind beispielsweise niedrig siedende Flüssigkeiten, die unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Geeignet sind Flüssigkeiten, welche gegenüber dem organischen Polyisocyanat inert sind und Siedepunkte unter 100°C aufweisen. Beispiele derartiger, vorzugsweise verwendeter Flüssigkeiten sind halogenierte, vorzugsweise fluorierte Kohlenwasserstoffe, wie z. B. Methylenchlorid und Dichlormonofluormethan, per- oder partiell fluorierte Kohlenwasserstoffe, wie z. B. Trifluormethan, Difluormethan, Difluorethan, Tetrafluorethan und Heptafluorpropan, Kohlenwasserstoffe, wie z. B. n- und iso-Butan, n- und iso-Pentan sowie die technischen Gemische dieser Kohlenwasserstoffe, Propan, Propylen, Hexan, Heptan, Cyclobutan, Cyclopentan und Cyclohexan, Dialkylether, wie z. B. Dimethylether, Diethylether und Furan, Carbonsäureester, wie z. B. Methyl- und Ethylformiat, Ketone, wie z. B. Aceton, und/oder fluorierte und/oder perfluorierte, tertiäre Alkylamine, wie z. B. Perfluor-dimethyl-iso-propylamin. Auch Gemische dieser niedrigsiedenden Flüssigkeiten untereinander und/oder mit anderen substituierten oder unsubstituierten Kohlenwasserstoffen können verwendet werden.
  • Die zweckmäßigste Menge an niedrigsiedender Flüssigkeit zur Herstellung derartiger zellhaltiger elastischer Formkörper aus Harnstoffgruppen gebunden enthaltenden Elastomeren hängt ab von der Dichte, die man erreichen will, sowie von der Menge des bevorzugt mit verwendeten Wassers. Im allgemeinen liefern Mengen von 1 bis 15 Gew.-%, vorzugsweise 2 bis 11 Gew.-%, bezogen auf das Gewicht der Komponente (b), zufriedenstellende Ergebnisse. Besonders bevorzugt wird ausschließlich Wasser (c) als Treibmittel eingesetzt.
  • Bei der erfindungsgemäßen Herstellung des Formteile können Hilfs- und Zusatzstoffe (f) eingesetzt werden. Dazu zählen beispielsweise allgemein bekannte oberflächenaktive Substanzen, Hydrolyseschutzmittel, Füllstoffe, Antioxidantien, Zellregler, Flammschutzmittel sowie Farbstoffe. Als oberflächenaktive Substanzen kommen Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur zu regulieren. Genannt seien beispielsweise zu den erfindungsgemäßen Emulgatoren zusätzliche Verbindungen mit emulgierender Wirkung, wie die Salze von Fettsäuren mit Aminen, z. B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z. B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure. Des weiteren kommen Schaumstabilisatoren in Frage, wie z. B. oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Ricinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnussöl und Zellregler, wie Paraffine und Fettalkohole. Außerdem können als (f) Polysiloxane und/oder Fettsäuresulfonate eingesetzt werden. Als Polysiloxane können allgemein bekannte Verbindungen verwendet werden, beispielsweise Polymethylsiloxane, Polydimethylsiloxane und/oder Polyoxyalkylen-Silikon-Copolymere. Bevorzugt weisen die Polysiloxane eine Viskosität bei 25°C von 20 bis 2000 MPas auf.
  • Als Fettsäuresulfonate können allgemein bekannte sulfonierte Fettsäuren, die auch kommerziell erhältlich sind, eingesetzt werden. Bevorzugt wird als Fettsäuresulfonat sulfoniertes Rizinusöl eingesetzt.
  • Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile der Komponenten (b) angewandt.

Claims (10)

1. Federelement enthaltend ein Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten sowie einen Stützring (ii), dadurch gekennzeichnet, dass der Stützring eine Armierung (iii) aufweist, die in einem Mantel aus thermoplastischem Kunststoff (iv) eingebettet ist.
2. Federelement gemäß Anspruch 1, dadurch gekennzeichnet, dass die Armierung (iii) auf Metall basiert.
3. Federelement gemäß Anspruch 1, dadurch gekennzeichnet, dass die Armierung (iii) einen Durchmesser von 10 mm bis 150 mm aufweist.
4. Federelement nach Anspruch 1, dadurch gekennzeichnet, dass der Mantel (iv) auf Polyamid, Polypropylen oder Polyoxymethylen basiert.
5. Federelement gemäß Anspruch 1, dadurch gekennzeichnet, dass der Mantel (iv) eine Dicke von 4 mm bis 30 mm aufweist.
6. Federelement gemäß Anspruch 1, dadurch gekennzeichnet, dass der Stützring (ii) in einer Einschnürung auf der äußeren Oberfläche von (i) platziert ist.
7. Federelement gemäß Anspruch 1, dadurch gekennzeichnet, dass das Dämpfungselement (i) auf zelligen Polyurethanelastomeren basiert.
8. Federelement nach Anspruch 1 auf der Basis von zelligen Polyurethanelastomeren mit einer Dichte nach DIN 53420 von 200 bis 1100 kg/m3, einer Zugfestigkeit nach DIN 53571 von ≥ 2 N/mm2, einer Dehnung nach DIN 53571 von ≥ 300% und einer Weiterreißfestigkeit nach DIN 53515 von ≥ 8 N/mm.
9. Automobile enthaltend Federelemente gemäß einem der Ansprüche 1 bis 8.
10. Verwendung eines Stützrings (ii), aufgebaut aus einer Armierung (iii), die in einem Mantel aus thermoplastischem Kunststoff (iv) eingebettet ist, zur Herstellung von Federelementen.
DE2001157325 2001-11-23 2001-11-23 Federelement Withdrawn DE10157325A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001157325 DE10157325A1 (de) 2001-11-23 2001-11-23 Federelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001157325 DE10157325A1 (de) 2001-11-23 2001-11-23 Federelement

Publications (1)

Publication Number Publication Date
DE10157325A1 true DE10157325A1 (de) 2003-06-05

Family

ID=7706599

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001157325 Withdrawn DE10157325A1 (de) 2001-11-23 2001-11-23 Federelement

Country Status (1)

Country Link
DE (1) DE10157325A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344102B3 (de) * 2003-09-24 2005-02-17 Zf Friedrichshafen Ag Federträger mit einer Zusatzfeder
EP1640634A1 (de) * 2004-09-28 2006-03-29 Carl Freudenberg KG Federelement
DE102004053985B4 (de) * 2004-11-09 2010-10-28 Hans-Dieter Dr. Gohl Schlauchleitung mit einem Stützring
WO2014164104A1 (en) * 2013-03-13 2014-10-09 Basf Se Dual-rate jounce bumper
DE102013009523B4 (de) 2013-06-05 2019-02-28 Effbe Gmbh Fundamentdämpfer
US20190136929A1 (en) * 2016-05-27 2019-05-09 Basf Se Spring element for a vehicle shock absorber, and vehicle shock absorber and vehicle having same
WO2021110871A1 (en) 2019-12-03 2021-06-10 Basf Polyurethanes Gmbh Support ring for a jounce bumper of a suspension system, jounce bumper assembly and use thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344102B3 (de) * 2003-09-24 2005-02-17 Zf Friedrichshafen Ag Federträger mit einer Zusatzfeder
EP1640634A1 (de) * 2004-09-28 2006-03-29 Carl Freudenberg KG Federelement
DE102004053985B4 (de) * 2004-11-09 2010-10-28 Hans-Dieter Dr. Gohl Schlauchleitung mit einem Stützring
WO2014164104A1 (en) * 2013-03-13 2014-10-09 Basf Se Dual-rate jounce bumper
US9545829B2 (en) 2013-03-13 2017-01-17 Basf Se Dual-rate jounce bumper
DE102013009523B4 (de) 2013-06-05 2019-02-28 Effbe Gmbh Fundamentdämpfer
US20190136929A1 (en) * 2016-05-27 2019-05-09 Basf Se Spring element for a vehicle shock absorber, and vehicle shock absorber and vehicle having same
US10920843B2 (en) * 2016-05-27 2021-02-16 Basf Se Spring element for a vehicle shock absorber, and vehicle shock absorber and vehicle having same
WO2021110871A1 (en) 2019-12-03 2021-06-10 Basf Polyurethanes Gmbh Support ring for a jounce bumper of a suspension system, jounce bumper assembly and use thereof

Similar Documents

Publication Publication Date Title
EP1360430B1 (de) Federelement
DE10124924B4 (de) Federelement und Automobil enthaltend das Federelement
DE10157325A1 (de) Federelement
DE20206418U1 (de) Rundlager
DE10137302A1 (de) Rundlager
DE20016151U1 (de) Zusatzfeder
DE20204328U1 (de) Zusatzfeder
DE20100117U1 (de) Federelement
DE20109932U1 (de) Federelement
DE20109657U1 (de) Federelement
DE20100887U1 (de) Federelement
DE20100886U1 (de) Federelement
DE20210603U1 (de) Zusatzfeder
DE20210547U1 (de) Zusatzfeder
DE20206094U1 (de) Zusatzfeder
DE20108157U1 (de) Federelement
DE20109926U1 (de) Federelement
DE20109582U1 (de) Dämpferlager
DE20108487U1 (de) Federelement
DE20109928U1 (de) Federelement
DE20118533U1 (de) Dämpferlager
DE20208861U1 (de) Dämpferlager
DE20109929U1 (de) Federelement
DE20206093U1 (de) Zusatzfeder
DE20117134U1 (de) Federelement

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BASF SE, 67063 LUDWIGSHAFEN, DE

8110 Request for examination paragraph 44
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: F16F0001360000

Ipc: F16F0001371000

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee