DE06794236T1 - Verfahren und anordnung zur verarbeitung stickstoffkonzentrierter abgase in einem sequenziellen biologischen reaktor mit fraktioniertem zyklus - Google Patents

Verfahren und anordnung zur verarbeitung stickstoffkonzentrierter abgase in einem sequenziellen biologischen reaktor mit fraktioniertem zyklus Download PDF

Info

Publication number
DE06794236T1
DE06794236T1 DE06794236T DE06794236T DE06794236T1 DE 06794236 T1 DE06794236 T1 DE 06794236T1 DE 06794236 T DE06794236 T DE 06794236T DE 06794236 T DE06794236 T DE 06794236T DE 06794236 T1 DE06794236 T1 DE 06794236T1
Authority
DE
Germany
Prior art keywords
reactor
nitrogen
phase
volume
nitrites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE06794236T
Other languages
English (en)
Inventor
Samuel Martin
Adriana Gonzalez Ospina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suez International SAS
Vigie Groupe SAS
Original Assignee
Degremont SA
Suez Environnement SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36384399&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE06794236(T1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Degremont SA, Suez Environnement SAS filed Critical Degremont SA
Publication of DE06794236T1 publication Critical patent/DE06794236T1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Verfahren zur Behandlung von an Stickstoff konzentrierten Abwässern, in welchem eine Oxidation des Ammoniums zu Nitriten und anschließend eine Denitritation der Nitrite zu gasförmigem Stickstoff in einem sequentiellen Bioreaktor, dessen Reaktionsphasen fraktioniert sind, durchgeführt wird, wobei dieser Reaktor nitrifizierende Bakterien enthält und die Betriebsbedingungen vorgesehen sind, dass die Tätigkeit der nitritierenden Bakterien begünstigt und die Tätigkeit der nitratisierenden Bakterien maximal inhibiert wird, ein Verfahren, in welchem ein Zuflussvolumen, das in einem vollständigen Zyklus zu behandeln ist, in aufeinander folgenden Volumenfraktionen in den Reaktor geleitet wird, wobei der vollständige Behandlungszyklus sich in aufeinander folgende Unterzyklen unterteilt, jeder Unterzyklus eine Zufuhrphase durch eine Volumenfraktion, anschließend eine Belüftungsphase, um die Nitritationsphase auszulösen, und danach eine Anoxiephase, während welcher die Belüftung unterbrochen und eine Kohlenstoffquelle in den Reaktor geleitet wird, um die Nitrite in Stickstoff umzuwandeln, umfasst, dadurch gekennzeichnet, dass in dem zu behandelnden Abwasser, dem Abfluss und dem Bioreaktor eine Messreihe in Echtzeit...

Claims (17)

  1. Verfahren zur Behandlung von an Stickstoff konzentrierten Abwässern, in welchem eine Oxidation des Ammoniums zu Nitriten und anschließend eine Denitritation der Nitrite zu gasförmigem Stickstoff in einem sequentiellen Bioreaktor, dessen Reaktionsphasen fraktioniert sind, durchgeführt wird, wobei dieser Reaktor nitrifizierende Bakterien enthält und die Betriebsbedingungen vorgesehen sind, dass die Tätigkeit der nitritierenden Bakterien begünstigt und die Tätigkeit der nitratisierenden Bakterien maximal inhibiert wird, ein Verfahren, in welchem ein Zuflussvolumen, das in einem vollständigen Zyklus zu behandeln ist, in aufeinander folgenden Volumenfraktionen in den Reaktor geleitet wird, wobei der vollständige Behandlungszyklus sich in aufeinander folgende Unterzyklen unterteilt, jeder Unterzyklus eine Zufuhrphase durch eine Volumenfraktion, anschließend eine Belüftungsphase, um die Nitritationsphase auszulösen, und danach eine Anoxiephase, während welcher die Belüftung unterbrochen und eine Kohlenstoffquelle in den Reaktor geleitet wird, um die Nitrite in Stickstoff umzuwandeln, umfasst, dadurch gekennzeichnet, dass in dem zu behandelnden Abwasser, dem Abfluss und dem Bioreaktor eine Messreihe in Echtzeit durchgeführt, die im Zufluss zu behandelnde Stickstoffvolumenlast bestimmt und die Mindestanzahl der Zufuhrphasen eines vollständigen Zyklus in Abhängigkeit von dieser Stickstofflast und dem Mindestflüssigkeitsvolumen in dem Reaktor gemäß der Formel:
    Figure 00010001
    worin: – Nalimmin: Mindestzahl der Zufuhrzyklen, – FNH4,j: tägliche Stickstofflast, – [NH4 +]eff: Ammoniumkonzentration in dem den Reaktor verlassenden Abwasser, – Vmin: Mindestflüssigkeitsvolumen (nach der Entnahme und vor der Zufuhr), – NRBS: Anzahl der vollständigen RBS-Zyklen pro Tag, – [NH4 +]inhib: Konzentration an inhibierendem Ammonium der nitritierenden Biomasse, derart ermittelt wird, dass die Stickstoffkonzentration der eingeleiteten Volumenfraktion in dem in dem Reaktor verbleibenden Flüssigkeitsvolumen verdünnt wird, was es erlaubt, die Inhibition der nitritierenden Bakterien zu vermeiden, wobei die Stickstofflast der Volumenfraktion jedoch ausreichend ist, um in dem Reaktor beim Ableiten jeder Fraktion einen "Sprung" oder eine Spitze (P) der Ammoniakbelastung, der/die für die Entwicklung der Nitrite erzeugenden Biomasse vorteilhaft ist, sicherzustellen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die im Zufluss zu behandelnde Stickstoffvolumenlast durch Messung der Leitfähigkeit (X) und des Durchflusses (Q) des Zuflusses bestimmt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass beim Ableiten jeder Fraktion die Spitze (P) der Ammoniaklast größer als 125% der Ammoniakkonzentration, die das Ende des betreffenden Unterzyklus charakterisiert, einen Zeitraum lang bleibt, der höchstens gleich dem Viertel der Dauer des Unterzyklus ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration des gelösten Sauerstoffs im Reaktor gemessen und kontrolliert wird, um sie auf niedrigen Werten zu halten, indem die Dauer der Belüftungsphasen begrenzt und die Sauerstoffzufuhr an die zu behandelnde Last angepasst wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Konzentrationsschwankungen des gelösten Sauerstoffs auf zwischen 0 und 2 mg O2/l durch eine minimale Anzahl Nbiolmin von aeroben/anoxischen Unterzyklen begrenzt werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Anzahl (NC) der effektiv durchgeführten Unterzyklen der größte Wert zwischen Nalimmin und Nbiolmin ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der pH-Wert in dem Reaktor gemessen und eine Selbstregulierung des pH-Wertes durch eine abwechselnde Abfolge von einander nahen Nitritations- und Denitritationsphasen sichergestellt wird, wobei die Schwankungen des pH-Wertes auf zwischen 6,5 und 8,5 und vorzugsweise zwischen 7 und 8 begrenzt werden.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reaktortemperatur gemessen und eine Regelung der Temperatur derart durchgeführt wird, dass sie auf zwischen 5 und 45°C gehalten wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass "aerobe/anoxische" biologische Zyklen mit einer festgelegten Dauer der belüfteten und anoxischen Phasen vorher festgelegt werden und die Gesamtdauer tC dieser Reaktionsphasen in Abhängigkeit von der Zyklenzahl NC berechnet wird: tC = (tRBS – talim – tsedim – textract)/NC, worin: – tRBS: Dauer des gesamten RBS-Zyklus, – talim: Gesamtdauer der (nicht fraktionierten) Zufuhr, – tsedim: Dauer der Sedimentationsphase, – textrakt: Dauer der Entnahmephase.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zeit der Einleitung der Kohlenstoffquelle während der unbelüfteten Phase aus den Messungen der eingetragenen Stickstofflast ermittelt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es auf die Behandlung von Überständen anaerober Faulbehälter angewendet wird.
  12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es auf die Behandlung von Kondensaten einer Gasbehandlung angewendet wird.
  13. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es auf die Behandlung von Deponieauslaugungen angewendet wird.
  14. Vorrichtung zur Behandlung von an Stickstoffkonzentrierten Abwässern, die insbesondere mehr als 100 mg N/l enthalten, in welcher eine Oxidation des Ammoniums zu Nitriten und anschließend eine Denitritation der Nitrite zu gasförmigem Stickstoff in einem sequentiellen Bioreaktor (1), dessen Reaktionsphasen fraktioniert sind, durchgeführt wird, wobei dieser Reaktor nitrifizierende Bakterien enthält, die Betriebsbedingungen vorgesehen sind, dass die Tätigkeit der nitritierenden Bakterien begünstigt und die Tätigkeit der nitratisierenden Bakterien maximal inhibiert wird, ein Zuflussvolumen, das in einem vollständigen Zyklus zu behandeln ist, in aufeinander folgenden Volumen fraktionen in den Reaktor geleitet wird, der vollständige Behandlungszyklus sich in aufeinander folgende Unterzyklen unterteilt und jeder Unterzyklus eine Zufuhrphase durch eine Volumenfraktion, anschließend eine Belüftungsphase, um die Nitritationsphase auszulösen, und danach eine Anoxiephase, während welcher die Belüftung unterbrochen und eine Kohlenstoffquelle in den Reaktor geleitet wird, um die Nitrite in Stickstoff umzuwandeln, umfasst, dadurch gekennzeichnet, dass sie Mittel (17, 18, C) zur Durchführung einer Messreihe in Echtzeit in dem zu behandelnden Abwasser, dem Abfluss und dem Bioreaktor und zur Bestimmung der zu behandelnden Stickstoffvolumenlast im Zufluss, insbesondere durch eine Sonde (17) für die Messung der Leitfähigkeit (X) und durch einen Durchflussmesser (18) für die Messung des Durchflusses (Q) des Zuflusses und ein Mittel (C) für die Berechnung und Steuerung der Anzahl der Zufuhrphasen eines vollständigen Zyklus in Abhängigkeit von dieser Stickstofflast und dem Mindestflüssigkeitsvolumen in dem Reaktor derart umfasst, dass die Stickstoffkonzentration der eingeleiteten Volumenfraktion in dem in dem Reaktor verbleibenden Flüssigkeitsvolumen verdünnt wird, was es erlaubt, die Inhibition der nitritierenden Bakterien zu vermeiden, wobei die Stickstofflast der Volumenfraktion jedoch ausreichend ist, um in dem Reaktor beim Ableiten jeder Fraktion einen "Sprung" oder eine Spitze (P) der Ammoniakbelastung, der/die für die Entwicklung der Nitrite erzeugenden Biomasse vorteilhaft ist, sicherzustellen.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass sie eine Sonde (19) zur Messung der Leitfähigkeit und einen Durchflussmesser (20) in dem abfließenden Abwasser und verschiedene Sensoren in dem Reaktor (1), insbesondere solche für die Leitfähigkeit (21), die Konzentration (22) des gelösten Sauerstoffs, das Redoxpotential (23) und den pH-Wert (24) umfasst, wobei alle diese Sonden und Sensoren an eine Kontrolleinheit (C) angeschlossen sind, um die kontinuierliche Verfolgung der Veränderung der Behandlung und die Steuerung korrigierender Tätigkeiten zu erlauben.
  16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass sie eine Kohlenstoffquelle (8) und eine von der Kontrolleinheit (C) gesteuerte Dosierpumpe (9) für den Zeitraum des Einleitens der Kohlenstoffquelle während einer anoxischen Phase umfasst, wobei dieser Einleitungszeitraum aus den Messungen der zugeführten Stickstofflast ermittelt wird.
  17. Vorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass sie Belüftungsmittel (10, 11, 12) umfasst, die von einer Kontrolleinheit (C) entsprechend den Messungen der Konzentration des gelösten Sauerstoffs gesteuert werden.
DE06794236T 2005-08-01 2006-07-27 Verfahren und anordnung zur verarbeitung stickstoffkonzentrierter abgase in einem sequenziellen biologischen reaktor mit fraktioniertem zyklus Pending DE06794236T1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0508201A FR2889180B1 (fr) 2005-08-01 2005-08-01 Procede et installation de traitement d'effluents concentres en azote dans un reacteur biologique sequentiel a cycles fractionnes
FR0508201 2005-08-01
PCT/FR2006/001841 WO2007014994A1 (fr) 2005-08-01 2006-07-27 Procédé et installation de traitement d'effluents concentrés en azote dans un réacteur biologique séquentiel à cycles fractionnés

Publications (1)

Publication Number Publication Date
DE06794236T1 true DE06794236T1 (de) 2008-09-25

Family

ID=36384399

Family Applications (1)

Application Number Title Priority Date Filing Date
DE06794236T Pending DE06794236T1 (de) 2005-08-01 2006-07-27 Verfahren und anordnung zur verarbeitung stickstoffkonzentrierter abgase in einem sequenziellen biologischen reaktor mit fraktioniertem zyklus

Country Status (13)

Country Link
US (1) US7645385B2 (de)
EP (1) EP1910233B1 (de)
JP (1) JP2009502494A (de)
CN (1) CN101258108B (de)
AU (1) AU2006274754B2 (de)
BR (1) BRPI0615164B1 (de)
CA (1) CA2616624C (de)
DE (1) DE06794236T1 (de)
ES (1) ES2304334T3 (de)
FR (1) FR2889180B1 (de)
PL (1) PL1910233T3 (de)
PT (1) PT1910233E (de)
WO (1) WO2007014994A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889180B1 (fr) * 2005-08-01 2008-04-04 Suez Environnement Sa Procede et installation de traitement d'effluents concentres en azote dans un reacteur biologique sequentiel a cycles fractionnes
FR2921917B1 (fr) * 2007-10-09 2011-04-08 Degremont Procede et installation de traitement d'effluents contenant de l'azote dans un reacteur biologique sequentiel.
FR2952932B1 (fr) 2009-11-20 2012-11-09 Otv Sa Procede de traitement d'eau au sein d'un reacteur biologique sequentiel comprenant une mesure en ligne de la concentration en nitrites a l'interieur dudit reacteur
US20130020257A1 (en) * 2010-03-26 2013-01-24 Severn Trent Water Purification, Inc. Mainstream Wastewater Treatment
MX2013001094A (es) 2010-07-26 2013-06-03 Acciona Agua S A U Sistema y procedimiento para el tratamiento de aguas.
US8580113B2 (en) * 2010-08-31 2013-11-12 Zenon Technology Partnership Method for utilizing internally generated biogas for closed membrane system operation
US8685246B2 (en) 2010-09-20 2014-04-01 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal with energy recovery
US8747671B2 (en) 2010-09-20 2014-06-10 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal
US8721888B2 (en) * 2011-09-01 2014-05-13 Leaderman & Associates Co., Ltd. Wastewater treatment method using annularly arranged microorganism carriers
CA2851282C (en) 2011-10-13 2023-04-18 Tenfold Technologies, LLC Balanced system and method for production of microbial output
US9758410B2 (en) * 2011-11-16 2017-09-12 Evoqua Water Technologies Llc Using continuous nitrate measurement to control aeration in an aerated-anoxic process
US8308946B2 (en) * 2012-01-28 2012-11-13 Epcot Crenshaw Corporation Systems and methods for anaerobic digestion of biomaterials
MX360501B (es) * 2012-09-13 2018-11-05 D C Water & Sewer Authority Metodo y aparato para la eliminacion de nitrogeno en el tratamiento de aguas residuales.
US9475715B2 (en) 2012-11-16 2016-10-25 Xylem Water Solutions U.S.A., Inc. Optimized process and aeration performance with an advanced control algorithm
US9902635B2 (en) * 2014-07-23 2018-02-27 Hampton Roads Sanitation District Method for deammonification process control using pH, specific conductivity, or ammonia
FR3024726B1 (fr) * 2014-08-08 2023-05-05 Degremont Procede batch sequence pour reduire la teneur en azote dans les eaux residuaires
EP3028998B1 (de) * 2014-12-03 2019-03-06 Institut National des Sciences Appliquées de Toulouse Verfahren zur Behandlung von Abwasser durch Nitrifikation/Denitrifikation
CN107032497B (zh) * 2017-06-23 2019-02-19 长春工程学院 提前停止硝化进程的sbr深度脱氮在线控制方法
KR101962566B1 (ko) 2018-01-04 2019-07-17 두산중공업 주식회사 연속회분식 반응조를 활용한 저 에너지 혐기성 암모늄 산화 시스템 및 이 시스템을 위한 선행 스케줄링 방법
DE102019004375A1 (de) * 2019-06-06 2020-12-10 Bta International Gmbh Steuerung der Ammonium-Konzentration im Faulreaktor durch Nitrifikation von zurückgeführtem Prozesswasser
CN110723815B (zh) * 2019-10-25 2021-07-23 北京工业大学 一种通过传统活性污泥快速实现城市污水短程硝化方法
CN111675433A (zh) * 2020-06-16 2020-09-18 兰州大学 一种西北黄土区垃圾渗滤液生态强化处理的方法
FR3112768B1 (fr) 2020-07-24 2023-12-15 Suez Groupe Traitement biologique d’effluents riches en matiere carbonee et en azote avec production de biogaz
CN115261261B (zh) * 2022-06-23 2023-12-12 浙江巨能环境工程有限公司 一种自养氨氧化菌富集方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155003B (en) * 1984-01-20 1987-12-31 Nishihara Env San Res Co Ltd Activated sludge method
JPS60150894A (ja) * 1984-01-20 1985-08-08 Nishihara Environ Sanit Res Corp バツチ式活性汚泥処理装置
JPS61118194A (ja) * 1984-11-13 1986-06-05 Kankyo Eng Kk 排水の生物学的処理方法
JPS61120696A (ja) * 1984-11-15 1986-06-07 Unitika Ltd 排水の処理方法
JP3303352B2 (ja) * 1992-09-17 2002-07-22 株式会社明電舎 回分式活性汚泥処理の運転制御方法
JP3452162B2 (ja) * 1995-11-07 2003-09-29 株式会社西原環境テクノロジー 水質制御装置
US5989428A (en) * 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
ATE407915T1 (de) * 1998-03-04 2008-09-15 Mikkel G Mandt Batch-reaktor mit anoxischer mischung
WO2000005176A1 (en) * 1998-07-24 2000-02-03 Paques Bio Systems B.V. Process for the treatment of waste water containing ammonia
US6875357B1 (en) * 2000-03-15 2005-04-05 Aqua-Aerobic Systems, Inc. Process and apparatus for treatment of waste water
US6312599B1 (en) * 2000-06-01 2001-11-06 John H. Reid Method of using wastewater flow equalization basins for multiple biological treatments
CN1331780C (zh) * 2004-11-04 2007-08-15 中国科学院生态环境研究中心 一种处理垃圾渗滤液的一体化生物反应器
FR2889180B1 (fr) * 2005-08-01 2008-04-04 Suez Environnement Sa Procede et installation de traitement d'effluents concentres en azote dans un reacteur biologique sequentiel a cycles fractionnes

Also Published As

Publication number Publication date
ES2304334T1 (es) 2008-10-16
FR2889180A1 (fr) 2007-02-02
ES2304334T3 (es) 2013-07-19
PT1910233E (pt) 2013-06-27
EP1910233A1 (de) 2008-04-16
PL1910233T3 (pl) 2013-09-30
AU2006274754A1 (en) 2007-02-08
CA2616624A1 (fr) 2007-02-08
US7645385B2 (en) 2010-01-12
CA2616624C (fr) 2014-02-04
AU2006274754B2 (en) 2011-11-17
JP2009502494A (ja) 2009-01-29
WO2007014994A1 (fr) 2007-02-08
BRPI0615164A2 (pt) 2018-08-28
CN101258108A (zh) 2008-09-03
US20080223784A1 (en) 2008-09-18
FR2889180B1 (fr) 2008-04-04
CN101258108B (zh) 2013-03-20
EP1910233B1 (de) 2013-03-27
BRPI0615164B1 (pt) 2019-09-03

Similar Documents

Publication Publication Date Title
DE06794236T1 (de) Verfahren und anordnung zur verarbeitung stickstoffkonzentrierter abgase in einem sequenziellen biologischen reaktor mit fraktioniertem zyklus
Li et al. The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR)
Kim et al. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors
Gu et al. Start up partial nitrification at low temperature with a real-time control strategy based on blower frequency and pH
Akın et al. Monitoring and control of biological nutrient removal in a sequencing batch reactor
Randall et al. Nitrite build-up in activated sludge resulting from temperature effects
AU2011347092B2 (en) Method and facility for treating water by nitritation/denitritation comprising at least one aerated step and one step for controlling the oxygen input during the aerated step
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
EP0284976B1 (de) Abwasserreinigungsverfahren mit schubweiser Abwasserzufuhr zum Belebungsbecken
Copp et al. Estimation of the active nitrifying biomass in activated sludge
AU2018346562B2 (en) Method for biological treatment of nitrogen of effluents by nitritation
Pire-Sierra et al. Nitrogen and COD removal from tannery wastewater using biological and physicochemical treatments
Khorsandi et al. Innovative anaerobic upflow sludge blanket filtration combined bioreactor for nitrogen removal from municipal wastewater
Wang et al. Nitrification-denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control
Quan et al. Application of anoxic phase in SBR reactor to increase the efficiency of ammonia removal in Vietnamese municipal WWTPs
Pijuan et al. Development and optimization of a sequencing batch reactor for nitrogen and phosphorus removal from abattoir wastewater to meet irrigation standards
Murat et al. Sequencing batch reactor treatment of tannery wastewater for carbon and nitrogen removal
Zhang et al. The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment
Luccarini et al. Monitoring denitrification by means of pH and ORP in continuous-flow conventional activated sludge processes
Han et al. Oxidization–reduction potential and pH for optimization of nitrogen removal in a twice-fed sequencing batch reactor treating pig slurry
Poo et al. Full-cyclic control strategy of SBR for nitrogen removal in strong wastewater using common sensors
Foxon et al. Denitrifying activity measurements using an anoxic titration (pHstat) bioassay
Dabkowski Applying oxidation reduction potential sensors in biological nutrient removal systems
Choubert et al. Maximum growth and decay rates of autotrophic biomass to simulate nitrogen removal at 10 C with municipal activated sludge plants
KR100424999B1 (ko) 연속식 회분반응기의 운전 제어시스템 및 운전 제어방법