CZ310064B6 - A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement - Google Patents

A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement Download PDF

Info

Publication number
CZ310064B6
CZ310064B6 CZ2013-150A CZ2013150A CZ310064B6 CZ 310064 B6 CZ310064 B6 CZ 310064B6 CZ 2013150 A CZ2013150 A CZ 2013150A CZ 310064 B6 CZ310064 B6 CZ 310064B6
Authority
CZ
Czechia
Prior art keywords
measurement
point
measured
laser
space
Prior art date
Application number
CZ2013-150A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CZ2013150A3 (en
Inventor
Michael VALÁŠEK
DrSc. Valášek Michael prof. Ing.
Martin NeÄŤas
Ph.D. MSc. Nečas Martin Ing.
Original Assignee
České vysoké učení technické v Praze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by České vysoké učení technické v Praze filed Critical České vysoké učení technické v Praze
Priority to CZ2013-150A priority Critical patent/CZ310064B6/en
Priority to PCT/CZ2014/000019 priority patent/WO2014131379A2/en
Priority to EP14710789.0A priority patent/EP2962126A2/en
Publication of CZ2013150A3 publication Critical patent/CZ2013150A3/en
Publication of CZ310064B6 publication Critical patent/CZ310064B6/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement is performed in multiple steps. In the first step, the laser tracker is set into a position for sending the optical laser beam to the measured point and its position is measured using an absolute method of measurement. After that, in the next step, the laser tracker is set into a different position and then the laser tracker is set into the original position for sending the optical beam to the measured point for the second measurement of its position using an absolute method of measurement. This procedure is repeated at least three times, whereas before each next measurement of the position of the point in space, the laser tracker is set into a different position. The measured values of the position of the measured point are used to determine the resulting value of the position of the measured point in space using statistical treatment. After each measurement, the laser tracker is alternately set to a different side from the position for sending the optical beam to the measured point.

Description

Zpûsob zvyseni presnosti optického mereni polohy bodu v prostoru redundantnim merenimA method of increasing the accuracy of the optical measurement of the position of a point in space by redundant measurement

Oblast technikyField of technology

Vynalez se tÿka zpùsobu zvÿseni presnosti optického mereni polohy bodu v prostoru redundantnim merenim alespon jednim laserovÿm sledovacem pro absolutni zpùsob mereni polohy, skladajici se alespon z jednoho laserového sledovace a z alespon jednoho mereného bodu v prostoru, ve kterém je umisten odrazec laserového paprsku.The invention relates to a method of increasing the accuracy of the optical measurement of the position of a point in space by redundant measurement with at least one laser tracer for an absolute method of position measurement, consisting of at least one laser tracer and at least one measured point in the space in which the laser beam reflector is placed.

Dosavadni stav technikyCurrent state of the art

Dnesni laserové sledovace (laser tracker) vychazejici z US 4714339 nabizeji dva zpùsoby mereni polohy bodu v prostoru. Jeden je nazÿvan inkrementalni a je zalozen na inkrementalnim zpùsobu mereni laserovÿm sledovacem, kdy odrazec je sledovan optickÿm laserovÿm paprskem postupne behem jeho pohybu ze znamé polohy do neznamé polohy, ktera ma bÿt zmerena. Druhÿ je nazÿvan absolutni a je zalozen na pretrzitém zpùsobu mereni laserovÿm sledovacem, kdy odrazec je nalezen optickÿm laserovÿm paprskem skokem ze znamé polohy do neznamé polohy, ktera ma bÿt zmerena. Presnost absolutniho zpùsobu mereni laserovÿm sledovacem je podstatne horsi nez u inkrementalniho zpùsobu.Today's laser trackers based on US 4714339 offer two ways of measuring the position of a point in space. One is called incremental and is based on the incremental method of measuring with a laser tracker, where the reflector is tracked by an optical laser beam gradually during its movement from a known position to an unknown position to be measured. The second is called absolute and is based on the current method of measurement with a laser tracker, when the reflector is found by an optical laser beam by jumping from a known position to an unknown position to be measured. The accuracy of the absolute method of measuring with a laser tracker is significantly worse than that of the incremental method.

Cilem tohoto vynalezu je zvÿsit presnost absolutniho zpùsobu mereni.The aim of this invention is to increase the accuracy of the absolute method of measurement.

Podstata vynàlezuThe essence of the invention

Podstata zpùsobu zvÿseni presnosti optického mereni polohy bodu v prostoru redundantnim merenim alespon jednim laserovÿm sledovacem pro absolutni zpùsob mereni polohy, skladajici se alespon z jednoho laserového sledovace a z alespon jednoho mereného bodu v prostoru, ve kterém je umisten odrazec laserového paprsku spociva v tom, ze mereni se provadi ve vice krocich, kdy v prvnim kroku se laserovÿ sledovac ustanovi do polohy pro vyslani optického laserového paprsku do mereného bodu a zmeri se jeho poloha absolutnim zpùsobem mereni, nasledne se v dalsim kroku laserovÿ sledovac ustanovi do odlisné polohy a poté se laserovÿ sledovac ustanovi do pùvodni polohy pro vyslani optického paprsku do mereného bodu pro druhé zmereni jeho polohy absolutnim zpùsobem mereni a tento postup se alespon trikrat opakuje, pricemz pred kazdÿm dalsim merenim polohy tohoto bodu v prostoru je laserovÿ sledovac ustanoven do odlisné polohy, a z namerenÿch hodnot polohy mereného bodu se stanovi statistickÿm zpracovanim vÿsledna hodnota polohy mereného bodu v prostoru.The essence of the method of increasing the accuracy of the optical measurement of the position of a point in space by redundant measurement with at least one laser tracker for the absolute method of position measurement, consisting of at least one laser tracker and at least one measured point in the space in which the laser beam reflector is located, consists in the fact that the measurement is carried out in several steps, when in the first step the laser tracker is set to the position for sending an optical laser beam to the measured point and its position is measured by the absolute measurement method, then in the next step the laser tracker is set to a different position and then the laser tracker is set to the original position for sending an optical beam to the measured point for the second measurement of its position by the absolute measurement method, and this procedure is repeated at least three times, whereby before each further measurement of the position of this point in space, the laser tracker is set to a different position, and from the measured values of the position of the measured point the resulting value of the position of the measured point in space is determined by statistical processing.

Je dale vÿhodné, pokud se laserovÿ sledovac stridave ustanovuje po kazdém mereni na rozdilnou stranu od polohy pro vyslani optického paprsku do mereného bodu.It is also preferable if the laser tracer is alternately set after each measurement on a different side from the position for sending the optical beam to the measured point.

Vÿhodou zpùsobu a zarizeni podle vynalezu je moznost podstatného zvÿseni presnosti absolutniho zpùsobu mereni laserovÿm sledovacem.The advantage of the method and device according to the invention is the possibility of substantially increasing the accuracy of the absolute method of measuring with a laser tracker.

Objasneni vÿkresùClarification of the drawing

Na prilozenÿch obrazcich je znazorneno zarizeni pro optické mereni polohy bodu v prostoru redundantnim merenim, kde znazornuje:The attached figures show a device for optical measurement of the position of a point in space by redundant measurement, where it shows:

obr. 1 zarizeni s laserovÿm sledovacem usporadanÿm na ramu; aFig. 1 device with a laser tracker arranged on the frame; a

- 1 CZ 310064 B6 obr. 2 zarizeni s laserovÿm sledovacem usporâdanÿm na stroji.- 1 CZ 310064 B6 fig. 2 devices with a laser tracker arranged on the machine.

Pnklady uskutecneni vynâlezuExamples of the implementation of the invention

Na obr. 1 je znâzorneno schematicky zâkladni usporâdâni zarizeni pro optické mereni polohy bodu v prostoru redundantnim merenim. Jde o prostorovÿ prùmet zâkladniho usporâdâni, kde pro optické mereni polohy bodu 2 v prostoru umisteného na stroji 7, pricemz v bode 2 je umisten odrazec 4 laserového paprsku 5 upevnenÿ na stroji 7, pomoci absolutniho mereni laserovÿm sledovacem 1 umistenÿm na râmu 6. Laserovÿ sledovac 1 pomoci laserového paprsku 5 meri polohu mereného bodu 2, kterÿ lezi ve stredu odrazece 4 laserového paprsku 5. Poloha mereného bodu 2 je merena absolutnim merenim, tedy zmerenim dvou ùhlù laserového sledovace 1, které jsou ekvivalentni ùhlùm azimutu a elevace laserového 5 paprsku mezi laserovÿm sledovacem 1 a merenÿm bodem 2 a zmerenim vzdâlenosti mezi laserovÿm sledovacem 1 a merenÿm bodem 2. Klicové je mereni vzdalenosti absolutnim zpùsobem (ADM - Absolute Distance Meter), kdy merenÿ objekt mùze bÿt libovolnÿ objekt a nemusi nejdrive projit sledovanou cestu ze znamé polohy do merené polohy jako u tradicniho mereni laserovÿm interferometrem. Mereni probihâ ve vice krocich a postup mereni je ten, ze v prvnim kroku se laserovÿ sledovac 1 ustanovi do polohy pro vyslani optického laserového paprsku 5 do mereného bodu 2 a zmeri se jeho poloha absolutnim zpùsobem mereni, nasledne se v dalsim kroku laserovÿ sledovac 1 ustanovi do odlisné polohy, napriklad takové, ze optickÿ laserovÿ paprsek 5 padne do bodu 3a na ramu 6 nebo do bodu 3b na stroji 7 nebo do bodu 3c na ramu 6, ve kterém je umisten odrazec 4 laserového paprsku 5, nebo do bodu 3d na stroji 7, ve kterém je umisten odrazec 4 laserového paprsku 5. Poté se laserovÿ sledovac 1 opet ustanovi do pùvodni polohy pro vyslani optického laserového paprsku 5 do mereného bodu 2 pro druhé zmereni jeho polohy absolutnim zpùsobem mereni a tento postup se vicenâsobne, alespon trikrat, opakuje, pricemz pred kazdÿm dalsim merenim polohy tohoto bodu 2 v prostoru je laserovÿ sledovac 1 ustanoven do odlisné polohy, kdy optickÿ laserovÿ paprsek padne do bodu 3a nebo 3b nebo 3c nebo 3d nebo jiného bodu mimo bod 2. Z takto namerenÿch hodnot polohy mereného bodu 2 se stanovi statistickÿm zpracovanim vÿsledna hodnota polohy mereného bodu v prostoru. Statistické zpracovani techto namerenÿch hodnot polohy mereného bodu 2 v prostoru mùze bÿt provedeno tak, ze se vypocte aritmetickÿ prùmer namerenÿch hodnot polohy mereného bodu 2 v prostoru a tento prùmer je vÿsledna hodnota polohy mereného bodu 2 v prostoru. Je mozné pouzit i slozitejsi zpùsoby statistického zpracovani namerenÿch hodnot, napriklad uvazovat jednotliva mereni s rùznou vahou podle predem znamé nejistoty takového mereni nebo v histogramech provedenÿch mereni provést nejdrive regresi na predem znamé rozlozeni pravdepodobnosti chyb mereni. Tento zpùsob vyhodnoceni mereni predstavuje statistické zpracovani redundantnich mereni polohy mereného bodu 2. Vÿpocet prùmeru nebo jiné statistické zpracovani se provâdi pocitacem.In fig. 1 schematically shows the basic arrangement of the device for optical measurement of the position of a point in space by redundant measurement. It is a three-dimensional projection of the basic arrangement, where for the optical measurement of the position of point 2 in the space located on the machine 7, and at point 2 the reflector 4 of the laser beam 5 fixed on the machine 7 is placed, with the help of absolute measurement by the laser tracker 1 located on the frame 6. Laser tracker 1 with the help of the laser beam 5 measures the position of the measured point 2, which lies in the center of the reflector 4 of the laser beam 5. The position of the measured point 2 is measured by absolute measurement, i.e. by measuring two angles of the laser tracking 1, which are equivalent to the azimuth and elevation angles of the laser beam 5 between the laser tracker 1 and measuring point 2 and measuring the distance between laser tracker 1 and measuring point 2. The key is measuring the distance by the absolute method (ADM - Absolute Distance Meter), when the measured object can be any object and does not have to travel the tracked path from the known position to the measured one position as in traditional measurement with a laser interferometer. The measurement takes place in several steps, and the measurement procedure is that, in the first step, the laser tracker 1 is set to the position for sending the optical laser beam 5 to the measured point 2 and its position is measured by the absolute measurement method, then in the next step, the laser tracker 1 is set to a different position, for example such that the optical laser beam 5 falls to point 3a on the frame 6 or to point 3b on the machine 7 or to point 3c on the frame 6, in which the reflector 4 of the laser beam 5 is placed, or to point 3d on the machine 7, in which the reflector 4 of the laser beam 5 is placed. Then the laser tracker 1 is set again to the original position for sending the optical laser beam 5 to the measured point 2 for the second measurement of its position by the absolute measurement method, and this procedure is repeated several times, at least three times , whereby before each further measurement of the position of this point 2 in space, the laser tracker 1 is set to a different position, when the optical laser beam falls on point 3a or 3b or 3c or 3d or another point outside point 2. From the thus measured values of the position of the measured point 2 the resulting value of the position of the measured point in space is determined by statistical processing. The statistical processing of these measured values of the position of the measured point 2 in space can be done by calculating the arithmetic mean of the measured values of the position of the measured point 2 in the space, and this average is the resulting value of the position of the measured point 2 in the space. It is also possible to use more complex methods of statistical processing of measured values, for example considering individual measurements with different weights according to the known uncertainty of such a measurement, or in the histograms of the measurements carried out, perform a regression based on the known distribution of the probability of measurement errors. This method of measurement evaluation represents the statistical processing of redundant measurements of the position of the measured point 2. The calculation of the average or other statistical processing is performed by a computer.

Zâkladni zpùsob zpracovani zalozenÿ na vÿpoctu prùmeru namerenÿch hodnot polohy mereného bodu 2 vychâzi z poznatku, ze pravdepodobnost chyb mereni se ridi normâlnim rozdelenim. Vÿpocet prùmeru podstatnÿm zpùsobem zmensuje nejistotu vÿsledku mereni.The basic processing method based on the calculation of the average of the measured values of the position of the measured point 2 is based on the knowledge that the probability of measurement errors follows a normal distribution. The calculation of the average significantly reduces the uncertainty of the measurement result.

Prestavovani laserového sledovace 1 pred kazdÿm novÿm merenim polohy bodu 2 a jeho opetné ustaveni do polohy pro mereni polohy bodu 2 zajisti, ze nepredvidatelné jevy, napriklad vliv vùli, treni, kolisani proudu v pohonech a jiné, se projevi nahodne, vytvori statisticky urcitelné rozlozeni pravdepodobnosti vlivu techto chyb, a tak umozni mereni statistickÿmi metodami zlepsit. Dale je vÿhodné, kdyz najizdeni na merenÿ bod 2 nastane stridave zleva, zprava, ze shora, ze spoda, a tak vytvori nevychÿlené rozdeleni pravdepodobnosti odchylek mereni od presné hodnoty, jak je popsano u provedeni podle obr. 2.Resetting the laser tracking 1 before each new measurement of the position of point 2 and setting it again to the position for measuring the position of point 2 ensures that unpredictable phenomena, for example the influence of clearance, friction, current fluctuations in the drives and others, will manifest themselves randomly, creating a statistically determinable probability distribution the influence of these errors, thus enabling the measurement by statistical methods to be improved. Furthermore, it is preferable if the arrival at measuring point 2 occurs alternately from the left, right, top, and bottom, thus creating an unbiased distribution of the probability of measurement deviations from the exact value, as described in the implementation according to fig. 2.

Na obr. 2 je schematicky znazornen prostorovÿ prùmet usporâdâni zarizeni pro optické mereni polohy bodu v prostoru redundantnim merenim obdobné usporâdâni na obr. 1, kdy ale je laserovÿ sledovac 1 umisten na stroji 7 a merenÿ bod 2, ve kterém je umisten odrazec 4 laserového paprsku 5, je usporâdân na râmu 6 a bodù 3, do nichz padne optickÿ laserovÿ paprsek, kdyz jeIn fig. 2 is a schematic representation of the spatial projection of the arrangement of the device for optical measurement of the position of a point in space by redundant measurement, similar to the arrangement in fig. 1, when the laser tracker 1 is placed on the machine 7 and the measuring point 2, in which the reflector 4 of the laser beam 5 is placed, is arranged on the frame 6 and the point 3, into which the optical laser beam falls, when

- 2 CZ 310064 B6 laserovÿ sledovac 1 ustanoven do odlisné polohy, je vice. Na obr. 2 jsou tvoreny body 31, 3.2, 33, 34, v nichz jsou umisteny odrazece laserového paprsku 4, a tyto body 31, 3^, 3^, 3t, jsou usporâdâny na rùznÿch stranach od mereného bodu 2. V podstate jsou tyto body 3 umisteny vlevo, vpravo, nad a pod merenÿm bodem 2 pri pohledu od laserového sledovace 1. Mereni probiha tak, ze v prvnim kroku se laserovÿ sledovac i ustanovi do polohy pro vyslani optického laserového paprsku 5 do mereného bodu 2 a zmeri se jeho poloha absolutnim zpùsobem mereni, nasledne se laserovÿ sledovac 1 ustanovi do odlisné polohy, napriklad takové, ze optickÿ laserovÿ paprsek 5 padne do nekterého bodu 3 na ramu 6, pak se laserovÿ sledovac 1 opet ustanovi do pùvodni polohy pro vyslani optického laserového paprsku 5 do mereného bodu 2 pro druhé zmereni jeho polohy absolutnim zpùsobem mereni, poté laserovÿ sledovac 1 stridave v druhÿch krocich zameruje optickÿ laserovÿ paprsek 5 na body 3 stridave, napriklad 31, 33, 31, 32, 31, 33 34, 32, a tak dale, a dale probiha opakované mereni polohy bodu 2. Tim je dosazeno, ze na merenÿ bod 2 pri mereni najizdi laserovÿ sledovac stridave zleva, zprava, ze shora a ze zdola, a tak mechanické problémy mereni dané vùlemi a trenim se v merenÿch hodnotach vyskytuji symetricky, rovnomerne. To umozni, aby vypoctenÿ aritmetickÿ prùmer byl méne vychÿlen oproti presné hodnote polohy mereného bodu 2. Zpùsoby prepinani mezi prepinacimi body 3 mohou bÿt rùzné, jak deterministické posloupnosti, tak zamerne zcela nahodné posloupnosti.- 2 CZ 310064 B6 laser tracer 1 established in a different position, it is more. In fig. 2 are formed by points 31, 3.2, 33, 34, in which laser beam reflectors 4 are located, and these points 31, 3^, 3^, 3t are arranged on different sides from the measured point 2. Basically, these points are 3 located to the left, right, above and below the measuring point 2 when viewed from the laser tracker 1. The measurement takes place in such a way that, in the first step, the laser tracker i is set in a position to send the optical laser beam 5 to the measured point 2 and its position is measured in an absolute way measurement, then the laser tracker 1 is set to a different position, for example such that the optical laser beam 5 falls on a certain point 3 on the frame 6, then the laser tracker 1 is again set to the original position for sending the optical laser beam 5 to the measured point 2 for the second measurement of its position by the absolute measurement method, then the laser tracker 1 of the drive in the second steps focuses the optical laser beam 5 on the points of the drive 3, for example 31, 33, 31, 32, 31, 33 34, 32, and so on, and so on measurement of the position of point 2. This means that during the measurement, the laser tracer approaches measurement point 2 alternately from the left, right, top and bottom, and thus mechanical measurement problems caused by clearances and friction occur symmetrically and evenly in the measurement values. This will allow the calculated arithmetic mean to be less biased compared to the exact value of the position of the measured point 2. The ways of switching between the switching points 3 can be different, both deterministic sequences and deliberately completely random sequences.

V ramci vynalezu je mozné vyuzit pro stanoveni polohy telesa, napr. stroje vice merenÿch bodù na vice laserovÿch odrazecich, pripadne vyuzit vice laserovÿch sledovacù apod.Within the framework of the invention, it is possible to use for determining the position of the body, e.g. machines with more measuring points on more laser reflectors, or use more laser trackers, etc.

Mereni polohy mereného bodu a jeho vyhodnoceni je provadeno pocitacem, pricemz zvysovani miry redundance je vÿhodné. laserové sledovace lze nahrazovat optickÿmi kamerami s referencnim prvkem a/nebo zdrojem laserového paprsku pro fotocitlivÿ prvek.The measurement of the position of the measured point and its evaluation is carried out by a computer, thereby increasing the degree of redundancy is advantageous. laser tracking can be replaced by optical cameras with a reference element and/or a laser beam source for the photosensitive element.

Opticka kamera je ustanovena do polohy mereni pomoci dvou ùhlù ekvivalentnich ùhlùm azimutu a elevace provedenÿch dvema pohony, které zajisti, ze kamera vzdy sleduje referencni prvek, a vyhodnocenim obrazu referencniho prvku je urcena jednak vzdalenost referencniho prvku z jeho znamÿch rozmerù a jednak korekce nastavenÿch ùhlù ekvivalentnich ùhlùm azimutu a elevace. Nasledne je vypoctena poloha referencniho prvku vùci kamere. Popsanÿm zpùsobem redundantniho mereni lze zpresnit mereni polohy bodu v prostoru, ve kterém je umisten referencni prvek.The optical camera is set to the measurement position with the help of two angles equivalent to the azimuth and elevation angles made by two drives, which ensure that the camera always follows the reference element, and by evaluating the image of the reference element, the distance of the reference element from its known dimensions and the correction of the set equivalent angles are determined Azimuth and elevation angle. Next, the position of the reference element relative to the camera is calculated. The described method of redundant measurement can be used to measure the position of the point in the space in which the reference element is placed.

Podobne zdroj laserového paprsku je ustanoven do polohy mereni pomoci dvou ùhlù ekvivalentnich ùhlùm azimutu a elevace provedenÿch dvema pohony, které zajisti, ze vyslané laserové paprsky ze zdroje laserového paprsku v poctu nejméne 3 vzdy dopada na fotocitlivÿ prvek, a vyhodnocenim polohy dopadù laserovÿch paprskù na fotocitlivÿ prvek je urcena jednak vzdalenost fotocitlivého prvku ze znamÿch vzajemnÿch ùhlù laserovÿch paprskù a jednak korekce nastavenÿch ùhlù ekvivalentnich ùhlùm azimutu a elevace. Nasledne je vypoctena poloha fotocitlivého prvku vùci zdroji laserového paprsku. Popsanÿm zpùsobem redundantniho mereni lze zpresnit mereni polohy bodu v prostoru, ve kterém je umisten fotocitlivÿ prvek.Similarly, the laser beam source is set to the measurement position with the help of two angles equivalent to the azimuth and elevation angles made by two drives, which ensure that the laser beams sent from the laser beam source in the number of at least 3 always fall on the photosensitive element, and by evaluating the position of the laser beam incidence on the photosensitive element, the distance of the photosensitive element is determined from the known mutual angles of the laser beams, and the correction of the set angles equivalent to the azimuth and elevation angles is determined. Next, the position of the photosensitive element relative to the laser beam source is calculated. The described method of redundant measurement can be used to measure the position of the point in the space in which the photosensitive element is placed.

Claims (1)

1. Zpùsob zvÿseni presnosti optického mereni polohy bodu v prostoru redundantnim merenim alespon jednim laserovÿm sledovacem pro absolutni zpùsob mereni polohy, skladajici se alespon z jednoho laserového sledovace a z alespon jednoho mereného bodu v prostoru, ve kterém je umisten odrazec laserového paprsku, vyznacujici se tim, ze vedle mereného bodu (2) s odrazecem (4) jsou umisteny aspon dalsi ctyri body (3) s odrazeci (4) vlevo, vpravo, nahore, dole od mereného bodu, mereni se provadi ve vice krocich, kdy v prvnim kroku se laserovÿ sledovac (1) ustanovi do polohy pro vyslani optického laserového paprsku (5) do mereného bodu (2) a zmeri se jeho poloha absolutnim zpùsobem mereni zalozeném na mereni vzdalenosti absolutnim zpùsobem, nasledne se v dalsim kroku laserovÿ sledovac (1) ustanovi do odlisné polohy, kde se zastavi, a poté se laserovÿ sledovac (1) ustanovi do pùvodni polohy pro vyslani optického paprsku (5) do mereného bodu (2) pro druhé zmereni jeho polohy absolutnim zpùsobem mereni a tento postup se alespon trikrat opakuje, pricemz pred kazdÿm dalsim merenim polohy tohoto mereného bodu (2) v prostoru je laserovÿ sledovac (1) ustanoven do odlisné polohy, a z namerenÿch hodnot polohy mereného bodu (2) se stanovi statistickÿm zpracovanim vÿsledna hodnota polohy mereného bodu v prostoru, pricemz se laserovÿ sledovac (1) stridave ustanovuje po kazdém mereni na rozdilnou stranu od polohy pro vyslani optického paprsku (5) do mereného bodu (2) alespon jeho postupnÿm vyslanim na merenÿ bod (2), vlevo na merenÿ bod (31), na merenÿ bod (2), vpravo na merenÿ bod (3s) , na merenÿ bod (2), nahoru na merenÿ bod (32), na merenÿ bod (2), dolu na merenÿ bod (34), na merenÿ bod (2).1. A method of increasing the accuracy of the optical measurement of the position of a point in space by redundant measurement with at least one laser tracker for an absolute method of position measurement, consisting of at least one laser tracker and at least one measured point in the space in which the laser beam reflector is located, characterized by that next to the measured point (2) with the reflector (4) there are at least four other points (3) with reflectors (4) to the left, right, above, below the measured point, the measurement is performed in several steps, when in the first step the laser the tracker (1) is set to the position for sending the optical laser beam (5) to the measured point (2) and its position is measured by the absolute method of measurement based on distance measurement by the absolute method, then in the next step the laser tracker (1) is set to a different position , where it stops, and then the laser tracker (1) is set to its original position for sending the optical beam (5) to the measured point (2) for the second measurement of its position by the absolute measurement method, and this procedure is repeated at least three times, and before each other by measuring the position of this measured point (2) in space, the laser tracker (1) is set to a different position, and from the measured values of the position of the measured point (2) the resulting value of the position of the measured point in space is determined by statistical processing, through which the laser tracker (1) establishes after each measurement on a different side from the position for sending the optical beam (5) to the measured point (2) or at least by sending it successively to the measuring point (2), to the left to the measuring point (31), to the measuring point (2), to the right to measuring point (3s), to measuring point (2), up to measuring point (32), to measuring point (2), down to measuring point (34), to measuring point (2).
CZ2013-150A 2013-02-27 2013-02-27 A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement CZ310064B6 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CZ2013-150A CZ310064B6 (en) 2013-02-27 2013-02-27 A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement
PCT/CZ2014/000019 WO2014131379A2 (en) 2013-02-27 2014-02-25 A method to increase accuracy of the optical measurement of a position of a point in space by means of a redundant measurement
EP14710789.0A EP2962126A2 (en) 2013-02-27 2014-02-25 A method to increase accuracy of the optical measurement of a position of a point in space by means of a redundant measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2013-150A CZ310064B6 (en) 2013-02-27 2013-02-27 A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement

Publications (2)

Publication Number Publication Date
CZ2013150A3 CZ2013150A3 (en) 2014-09-03
CZ310064B6 true CZ310064B6 (en) 2024-07-10

Family

ID=50289325

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ2013-150A CZ310064B6 (en) 2013-02-27 2013-02-27 A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement

Country Status (3)

Country Link
EP (1) EP2962126A2 (en)
CZ (1) CZ310064B6 (en)
WO (1) WO2014131379A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884889A (en) * 1987-11-19 1989-12-05 Brown & Sharpe Manufacturing Company Calibration system for coordinate measuring machine
US4939678A (en) * 1987-11-19 1990-07-03 Brown & Sharpe Manufacturing Company Method for calibration of coordinate measuring machine
US5671053A (en) * 1995-11-16 1997-09-23 Virtek Vision Corp. Method of calibrating laser projector using moving reflector
US20040055170A1 (en) * 1999-04-08 2004-03-25 Renishaw Plc Use of surface measuring probes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714339B2 (en) 1986-02-28 2000-05-23 Us Commerce Three and five axis laser tracking systems
US5216236A (en) * 1991-02-19 1993-06-01 National Research Council Of Canada Optical tracking system
US8619265B2 (en) * 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884889A (en) * 1987-11-19 1989-12-05 Brown & Sharpe Manufacturing Company Calibration system for coordinate measuring machine
US4939678A (en) * 1987-11-19 1990-07-03 Brown & Sharpe Manufacturing Company Method for calibration of coordinate measuring machine
US5671053A (en) * 1995-11-16 1997-09-23 Virtek Vision Corp. Method of calibrating laser projector using moving reflector
US20040055170A1 (en) * 1999-04-08 2004-03-25 Renishaw Plc Use of surface measuring probes

Also Published As

Publication number Publication date
WO2014131379A2 (en) 2014-09-04
WO2014131379A3 (en) 2014-10-23
EP2962126A2 (en) 2016-01-06
CZ2013150A3 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP2020500310A5 (en)
US9551571B2 (en) Method and device for measuring a decentration and tilt of faces of an optical element
KR20140043941A (en) Measuring device for determining the spatial position of an auxiliary measuring instrument
Konyakhin et al. Three-coordinate digital autocollimator
US12159425B2 (en) Three-dimensional measurement system and three-dimensional measurement method
ES2882712T3 (en) Artificial vision system
CN113702991A (en) Light detection and ranging device and calibration system thereof
US20190146364A1 (en) Dual-layer alignment device and method
CN111986512B (en) Method and device for determining target distance
MX2021012825A (en) Method and installation for the in-line dimensional control of manufactured objects.
CN102288392A (en) Two-dimensional Ronchi grating-based freeform surface spectacle lens focal power measuring device
JP2017198477A (en) Distance image generation device
CN102589484A (en) Autocollimation indication error detection method and device using same
TW201623915A (en) Focus leveling device for self-adjustment of grooves and method thereof
JP2015197744A5 (en)
CN103913217B (en) Based on the main shaft of hoister method for detecting vibration of PSD laser triangulation
CZ310064B6 (en) A method of increasing an accuracy of optical measurement of position of a point in space using redundant measurement
CN112304214B (en) Tool detection method and tool detection system based on photogrammetry
RU2556740C1 (en) Method of check of spatial position of railroad, and system of its implementation
JP2005208027A (en) Distance-measuring equipment, optical measurement equipment and method for them
KR102052612B1 (en) 3D shape measuring device
JP2014206489A (en) Distance measuring device
JP5032952B2 (en) Measurement method of curvature of luminous flux wavefront
TWI621826B (en) Metrology method and system
TWI532974B (en) Method for using fringe encoding to measure shape of object