CZ309351B6 - Alloy based on Fe-Al-Si-X and its use - Google Patents

Alloy based on Fe-Al-Si-X and its use Download PDF

Info

Publication number
CZ309351B6
CZ309351B6 CZ2021200A CZ2021200A CZ309351B6 CZ 309351 B6 CZ309351 B6 CZ 309351B6 CZ 2021200 A CZ2021200 A CZ 2021200A CZ 2021200 A CZ2021200 A CZ 2021200A CZ 309351 B6 CZ309351 B6 CZ 309351B6
Authority
CZ
Czechia
Prior art keywords
alloy
weight
group
resistance
mass
Prior art date
Application number
CZ2021200A
Other languages
Czech (cs)
Other versions
CZ2021200A3 (en
Inventor
Pavel Hanus
Hanus Pavel Ing., Ph.D.
JaromĂ­r Moravec
Moravec Jaromír doc. Ing., Ph.D.
Pavel NOVÁK
Novák Pavel doc. Ing., Ph.D.
Original Assignee
Technická univerzita v Liberci
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technická univerzita v Liberci filed Critical Technická univerzita v Liberci
Priority to CZ2021200A priority Critical patent/CZ309351B6/en
Priority to PCT/IB2022/051167 priority patent/WO2022224046A1/en
Publication of CZ2021200A3 publication Critical patent/CZ2021200A3/en
Publication of CZ309351B6 publication Critical patent/CZ309351B6/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/127Discs; Drums for disc brakes characterised by properties of the disc surface; Discs lined with friction material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Abstract

The Fe-Al-Si-X-based alloy with oxidation resistance at up to 1100 °C and mechanical and tribological resistance at least up to 750 °C contains a basic Fe-Al-Si alloy matrix with an Al content of 16 ± 4 by weight %, of 6 ± 4 by weight %, and at least one alloy element X of 4 ± 3 by weight % from the group of Zr, Cr, Nb, Ni, Ti, W, V and Mo, and the rest is Fe. The basic alloy matrix may also contain at least one additional alloy element Y from 0.01 to 1.5 by weight %, from the group of elements Zr, Cr, Nb, Ni, Ti, W, V, B and Sc, different from the element X. The alloy can be used as cast semi-finished products, in products from the group of forged semi-finished products, wire for welding and wire for hot spraying and in powder form.

Description

Slitina na bázi Fe-Al-Si-X a její použitíAlloy based on Fe-Al-Si-X and its use

Oblast technikyField of technology

Vynález se týká slitiny na bázi Fe-Al-Si-X s oxidační odolností při teplotách do 1100 °C a velmi dobrou mechanickou a tribologickou odolností nejméně do teploty 750 °C, zejména pro teplotně a mechanicky zatížené komponenty spalovacích motorů. Jedná se o materiál schopný pracovat se zvýšenou životností a abrazní odolností ve specifických podmínkách. Jde o materiál schopný odolávat vysokým teplotám a cyklické i teplotní únavě při zachování velmi dobré tribologické odolnosti. Jedná se o slitiny obsahující železo s výrazným podílem hliníku s křemíkem a dalšími prvky upravujícími vlastnosti a zpracovatelnost materiálu. Předpokládané hlavní aplikační využití je na páry ventilů a ventilových sedel v hlavách spalovacích motorů, ale slitiny bude možné využít i v dalších oblastech, jako jsou komponenty turbín, součásti brzdných zařízení, komponenty pecí atd.The invention relates to an alloy based on Fe-Al-Si-X with oxidation resistance at temperatures up to 1100 °C and very good mechanical and tribological resistance up to at least 750 °C, especially for thermally and mechanically loaded components of internal combustion engines. It is a material capable of working with increased durability and abrasion resistance in specific conditions. It is a material capable of withstanding high temperatures and cyclic and thermal fatigue while maintaining very good tribological resistance. These are alloys containing iron with a significant proportion of aluminum with silicon and other elements that modify the properties and workability of the material. The expected main application use is for pairs of valves and valve seats in the heads of internal combustion engines, but the alloy will be able to be used in other areas as well, such as turbine components, brake equipment components, furnace components, etc.

Dosavadní stav technikyCurrent state of the art

V současné době, která se snaží snižovat emise vypouštěné do okolí, se běžně používají pro výrobu ventilů a ventilových sedel pracujících při teplotách okolo 800 °C materiály na bázi austenitických ocelí, např. se složením 13 %Ni, 13 % Cr, 2,5 % W a 1,5 %Mn, či stellitů, kde základem je kobalt, 17 až 32 % Cr, 2 až 16 % W, 0,1 až 2,5 % C, 3 až 22 % Ni, 1 až 8 % Mo a jednotky procent Fe a Si. Sedla a ventily jsou obvykle z jednoho kusu materiálu, ale často se funkční plochy vylepšují návary či spojením/svařením z několika částí. Obdobné je to i u dalších typů komponent.Currently, in an effort to reduce emissions released into the environment, materials based on austenitic steels, e.g. with a composition of 13%Ni, 13%Cr, 2.5 % W and 1.5 % Mn, or cobalt-based stellites, 17 to 32 % Cr, 2 to 16 % W, 0.1 to 2.5 % C, 3 to 22 % Ni, 1 to 8 % Mo and units of percent Fe and Si. Seats and valves are usually made of one piece of material, but often the functional surfaces are improved by welding or joining/welding several parts. It is similar for other types of components.

Uvedené slitiny obsahují kritické prvky, jako jsou Cr, Ni a Co, které jsou drahé a mohou způsobit problémy v konečném materiálu.These alloys contain critical elements such as Cr, Ni and Co, which are expensive and can cause problems in the final material.

Stávající slitiny mají vyšší obsah hliníku, což snižuje jejich houževnatost. Minimální obsah křemíku může mít negativní vliv na vysokoteplotní mechanické vlastnosti a tepelnou a oxidační odolnost. Vyšší obsah C může způsobit poškození povětrnostními vlivy. Mechanické vlastnosti, zejména houževnatost, jsou relativně nízké, přičemž jejich korozní odolnost za zvýšených teplot je nižší.Existing alloys have a higher aluminum content, which reduces their toughness. The minimum silicon content can have a negative effect on high-temperature mechanical properties and thermal and oxidation resistance. Higher C content can cause weather damage. Mechanical properties, especially toughness, are relatively low, while their corrosion resistance at elevated temperatures is lower.

Podstata vynálezuThe essence of the invention

Výše uvedené nedostatky jsou do značné míry odstraněny slitinou na bázi Fe-Al-Si-X s výbornou oxidační odolností při teplotách do 1100 °C a velmi dobrou mechanickou a tribologickou odolností nejméně do teploty 750 °C podle tohoto vynálezu. Jeho podstatou je to, že obsahuje slitinovou matrici Fe-Al-Si s obsahem AI 16 ± 4 hmota. %, Si 6 ± 4 hmota. %, a alespoň jedním slitinovým prvkem X v množství 4 ± 3 hmota. %, který je vybrán ze skupiny Zr, Cr, Nb, Ni, Ti, W, V a Mo, a zbytek je Fe.The above-mentioned shortcomings are largely eliminated by the Fe-Al-Si-X-based alloy with excellent oxidation resistance at temperatures up to 1100 °C and very good mechanical and tribological resistance at least up to 750 °C according to this invention. Its essence is that it contains a Fe-Al-Si alloy matrix with an AI content of 16 ± 4 mass. %, Si 6 ± 4 wt. %, and at least one alloy element X in the amount of 4 ± 3 mass. % which is selected from the group of Zr, Cr, Nb, Ni, Ti, W, V and Mo, and the rest is Fe.

Slitina ve výhodném provedení dále obsahuje další alespoň jeden slitinový prvek Y v rozmezí od 0,01 do 1,5 hmota. %, vybraný ze skupiny prvků Zr, Cr, Nb, Ni, Ti, W, V, B a Sc, rozdílný od prvku X.The alloy in a preferred embodiment further contains at least one additional alloy element Y in the range from 0.01 to 1.5 mass. %, selected from the group of elements Zr, Cr, Nb, Ni, Ti, W, V, B and Sc, different from the element X.

Další podstatou vynálezu je použití slitiny ve formě litého polotovaru, tvářeného polotovaru, drátu určeného k navařování, drátu určeného k žárovým nástřikům, prášku za použití atomizéru nebo mechanického legování.Another essence of the invention is the use of an alloy in the form of a cast semi-finished product, a formed semi-finished product, a wire intended for welding, a wire intended for heat injection, powder using an atomizer or mechanical alloying.

- 1 CZ 309351 B6- 1 CZ 309351 B6

Ve výhodném řešení se jedná o použití slitiny ve formě prášků pro 3D tisk kovových materiálů, slinování a tvorbu funkčních vrstev realizovaných pomocí návarů a nástřiků za studená či žárových, případně pro technologie vstřikování kovových prášků.An advantageous solution involves the use of an alloy in the form of powders for 3D printing of metal materials, sintering and the creation of functional layers realized using coatings and cold or heat spraying, or for metal powder injection technologies.

Podstatou vynálezu je nový materiál s konkrétně definovaným vzájemným poměrem středního obsahu jednotlivých prvků a definovaným maximálním a minimálním obsahem jednotlivých legujících prvků. Vzájemný poměr a definované rozmezí prvků zaručuje žárupevnost a žáruvzdornost materiálu až do teplot okolo 1100 °C a zároveň zaručuje také mechanickou a tribologickou odolnost při teplotách do 750 °C i v prostředích obsahujících S. Materiál je možné využít v litém i tvářeném stavu, ale dané poměry prvků lze aplikovat i ve formě prášku a využít je pro návary, žárové nástřiky, difuzní plátování a pro výrobu dílů pomocí sintrace a aditivních technologií. Vynález zároveň umožňuje úplnou náhradu či značné snížení obsahu stávajících drahých a vzácných legujících prvků, jako jsou Co, Cr, W, Ni, Mo, vyskytujících se ve značných objemech v materiálech používaných v současnosti.The essence of the invention is a new material with a specifically defined mutual ratio of the average content of individual elements and a defined maximum and minimum content of individual alloying elements. The mutual ratio and defined range of the elements guarantees the heat strength and heat resistance of the material up to temperatures of around 1100 °C, and at the same time it also guarantees mechanical and tribological resistance at temperatures up to 750 °C even in environments containing S. The material can be used in cast and forged state, but given element ratios can also be applied in powder form and used for coatings, heat spraying, diffusion plating and for the production of parts using sintering and additive technologies. At the same time, the invention enables a complete replacement or significant reduction of the content of existing expensive and rare alloying elements such as Co, Cr, W, Ni, Mo, occurring in significant volumes in the materials used today.

Slitiny podle vynálezu umožní využití vyšších pracovních teplot, při současném zachování, nebo prodloužení životnosti výše uvedených komponent. Benefitem je rovněž výrazné snížení obsahu kritických legujících prvků, zejména těch importovaných z prostoru mimo EU, což se projeví na snížení ceny vstupních surovin, a tedy i na ceně výrobku. Při porovnání se v současnosti používanými vysokoteplotními slitinami je možná i úspora hmotnosti komponent až o 25 % daná nižší měrnou hmotností. Slitiny se rovněž vyznačují vyšší korozní odolností ve vodných prostředích. Důvodem je tvorba pasivní vrstvy tvořené oxidem hlinitým při pH vyšším než cca 3. Při nižších hodnotách pH je pak pasivní vrstva tvořena oxidem křemičitým a má rovněž ochranný účinek.Alloys according to the invention will enable the use of higher working temperatures, while maintaining or extending the life of the above components. The benefit is also a significant reduction in the content of critical alloying elements, especially those imported from outside the EU, which will be reflected in a reduction in the price of input raw materials, and therefore also in the price of the product. When compared to currently used high-temperature alloys, a weight saving of up to 25% of the components is possible due to the lower specific weight. Alloys are also characterized by higher corrosion resistance in aqueous environments. The reason is the formation of a passive layer made of aluminum oxide at a pH higher than about 3. At lower pH values, the passive layer is made of silica and also has a protective effect.

Jako vstupní suroviny pro přípravu slitin je možné použít i recyklovaný materiál, např. bloky motorů ze slitin Al-Si, a to i s případným podílem ocelových částí.It is also possible to use recycled material as input raw materials for the preparation of alloys, e.g. engine blocks made of Al-Si alloys, even with a possible share of steel parts.

Oproti výše zmíněným materiálům nejsou u navrhovaných slitin typu Fe-Al-Si-X a Fe-Al-Si-X-Y výše uvedené kritické prvky, tedy Cr, Ni, Co, zastoupeny buď vůbec, nebo ve množstvích jednotek procent. Přitom užitné vlastnosti navrhovaných slitin jsou lepší, nebo zůstávají obdobné jako u komerčně používaných slitin.In contrast to the above-mentioned materials, in the proposed Fe-Al-Si-X and Fe-Al-Si-X-Y alloys, the above-mentioned critical elements, i.e. Cr, Ni, Co, are not represented either at all or in amounts of units of percent. At the same time, the useful properties of the proposed alloys are better or remain similar to those of commercially used alloys.

Oproti materiálu pyroferal mají navrhované slitiny nižší obsah hliníku, což vede k vyšší houževnatosti, dále zvýšený obsah křemíku oproti slitině pyroferal (patent CS 115312 B5) má pozitivní vliv na vysokoteplotní mechanické vlastnosti a tepelnou a oxidační odolnost. Navrhovaná slitina má menší obsah C, takže se zamezí poškození povětrnostními vlivy, a to vede ke stabilitě výrobků.Compared to the pyroferal material, the proposed alloys have a lower aluminum content, which leads to higher toughness, and the increased silicon content compared to the pyroferal alloy (patent CS 115312 B5) has a positive effect on high-temperature mechanical properties and thermal and oxidation resistance. The proposed alloy has less C content so that weathering damage is avoided and this leads to product stability.

Při porovnání navrhovaných slitin a čistě binární slitiny Fc^AI či slitin temámích slitin vykazují navrhované slitiny významně menší velikost zrna a tím lepší mechanické vlastnosti, zejména vyšší houževnatost, ale i vyšší korozní odolnost za zvýšených teplot, zejména oxidaci.When comparing the proposed alloys and purely binary Fc^AI alloys or alloys of the same alloys, the proposed alloys show a significantly smaller grain size and thus better mechanical properties, especially higher toughness, but also higher corrosion resistance at elevated temperatures, especially oxidation.

Objasnění výkresůClarification of drawings

Slitina na bázi Fe-Al-Si-X podle tohoto vynálezu bude podrobněji popsána na konkrétních příkladech provedení s pomocí přiložených výkresů, kde na obr. 1 jsou znázorněny mechanické vlastnosti při zkoušce v tlaku slitiny Fe-Al-Si5 připravené odléváním. Na obr. 2 je znázorněna oxidační odolnost slitiny Fe-Al-Si5 připravené práškovou metalurgií ve srovnání s binární slitinou Fe-Al. Na obr. 3 je znázorněn polotovar pro výrobu ventilového sedla ze slitiny Fe-Al-Si.The alloy based on Fe-Al-Si-X according to the present invention will be described in more detail on concrete examples of implementation with the help of the attached drawings, where Fig. 1 shows the mechanical properties during the pressure test of the Fe-Al-Si5 alloy prepared by casting. Fig. 2 shows the oxidation resistance of the Fe-Al-Si5 alloy prepared by powder metallurgy in comparison with the Fe-Al binary alloy. Fig. 3 shows a semi-finished product for the production of a valve seat from the Fe-Al-Si alloy.

-2CZ 309351 B6-2CZ 309351 B6

Příklady uskutečnění vynálezuExamples of implementation of the invention

Vynález bude v dalším textu blíže popsán s pomocí konkrétních příkladů, které jsou pouze ilustrativní a neomezují nijak rozsah vynálezu.The invention will be described in more detail in the following text with the help of specific examples, which are only illustrative and do not limit the scope of the invention in any way.

Jedná se o slitinu na bázi Fe-Al-Si-X s oxidační odolností při teplotách do 1100 °C a mechanickou a tribologickou odolností nejméně do teploty 750 °C, která obsahuje slitinovou matrici Fe-Al-Si s obsahem Al 16 ± 4, Si 6 ± 4 hmota. %, alespoň jedním slitinovým prvkem X v množství 4 ± 3 hmota. %, který je vybrán ze skupiny Zr, Cr, Nb, Ni, Ti, W, V a Mo, a zbytek je Fe.It is an alloy based on Fe-Al-Si-X with oxidation resistance at temperatures up to 1100 °C and mechanical and tribological resistance at least up to 750 °C, which contains an Fe-Al-Si alloy matrix with an Al content of 16 ± 4, Si 6 ± 4 mass. %, at least one alloy element X in the amount of 4 ± 3 mass. % which is selected from the group of Zr, Cr, Nb, Ni, Ti, W, V and Mo, and the rest is Fe.

V dalším případu se jedná o slitinu, kde slitinová matrice dále obsahuje další alespoň jeden slitinový prvek v rozmezí od 0,01 do 1,5 hmota. %, vybraný ze skupiny prvků Zr, Cr, Nb, Ni, Ti, W, V, B a Sc, který je rozdílný od prvku v předchozí slitině.In another case, it is an alloy, where the alloy matrix further contains at least one other alloy element in the range from 0.01 to 1.5 mass. %, selected from the group of elements Zr, Cr, Nb, Ni, Ti, W, V, B and Sc, which is different from the element in the previous alloy.

Příklad 1Example 1

Příprava slitiny Fe-Al-Si5 odléváním: Slitina obsahující 16 ± 4 hmota. % Al a 3 ± 2 hmota. % Si byla připravena tavením ve vakuové peci. Pro odlití byla použita měděná kokila.Preparation of Fe-Al-Si5 alloy by casting: An alloy containing 16 ± 4 mass. % Al and 3 ± 2 wt. % Si was prepared by melting in a vacuum furnace. A copper mold was used for casting.

Příklad 2Example 2

Slitina Fe-Al-Si5 byla připravena mechanickým legováním a slinováním v plazmatu. Byla otestována oxidační odolnost při teplotě 800 °C a porovnána s binární slitinou Fe-Al. Slitina s přídavkem křemíku dosahuje výrazně nižší rychlosti oxidace než referenční binární slitina Fe-Al.The Fe-Al-Si5 alloy was prepared by mechanical alloying and plasma sintering. Oxidation resistance at 800 °C was tested and compared with Fe-Al binary alloy. The alloy with the addition of silicon achieves a significantly lower oxidation rate than the reference Fe-Al binary alloy.

Příklad 3Example 3

Slitina Fe-Al-Si5 byla připravena mechanickým legováním a slinováním v plazmatu a na tepelně zpracovaném materiálu, byla vyzkoušena výroba ventilového sedla za pomoci elektrojiskrového obrábění, viz polotovar na obr. 3.The Fe-Al-Si5 alloy was prepared by mechanical alloying and sintering in plasma and on a heat-treated material, the production of a valve seat was tested with the help of electric spark machining, see the semi-finished product in Fig. 3.

Příklad 4Example 4

Prášek vyrobený atomizací ze slitiny základní báze Fe, Al 16 ± 4, Si 6 ± 2 hmota. %, doplněné o prvek X, kterým je Ti v množství 2 ± 1 hmota. %, a o prvek Y, kterým je v tomto případě B v množství 0,6 ± 0,2 hmota. %. Prášek je použit k žárovému nástřiku pomocí plazmatu, nebo metody HVOF a k vytvoření funkční vrstvy s výrazně zvýšenou tribologickou odolností až do teplot 700 °C. Příklad využití je například u brzdových kotoučů v rámci vytvoření kompaktní vrstvy i kompozitního rozložení nástřiku.Powder produced by atomization from the base alloy Fe, Al 16 ± 4, Si 6 ± 2 mass. %, supplemented by element X, which is Ti in an amount of 2 ± 1 mass. %, and by element Y, which in this case is B in an amount of 0.6 ± 0.2 mass. %. The powder is used for heat spraying using plasma or the HVOF method and to create a functional layer with significantly increased tribological resistance up to temperatures of 700 °C. An example of use is, for example, with brake discs within the framework of the creation of a compact layer and a composite spray distribution.

Příklad 5Example 5

Prášek vyrobený mletím ze slitiny základní báze Fe, Al 16 ± 4, Si 6 ± 2 hmota. %, doplněné o prvek X, kterým je W v množství 1 ± 0,5 hmota. %, a o prvek Y, kterým je Nb v množství 0,4 ± 0,15 hmota. %. Prášek je využit pro 3D tisk metodou SLS, například pro výrobu tvarových vložek do forem pro vstřikování metodami MIM a CIM. Takto vytvořená vložka má zvýšenou teplotní i abrazní odolnost proti keramickým i kovovým částicím vstřikovaným metodami MIM a CIM.Powder produced by grinding from the base alloy Fe, Al 16 ± 4, Si 6 ± 2 mass. %, supplemented by element X, which is W in the amount of 1 ± 0.5 mass. %, and by element Y, which is Nb in the amount of 0.4 ± 0.15 mass. %. The powder is used for 3D printing using the SLS method, for example for the production of shaped inserts in molds for injection using the MIM and CIM methods. The insert created in this way has increased temperature and abrasion resistance against ceramic and metal particles injected by the MIM and CIM methods.

Příklad 6Example 6

Prášek vyrobený mletím ze slitiny základní báze Fe, Al 16 ± 4, Si 3 ± 2 hmota. %, doplněné o prvek X, kterým je Mo v množství 1,5 ± 0,5 hmota. %, a o prvek Y, kterým je V v množství 0,3 ±0,1 hmota. %. Prášek je využit pro 3D tisk metodou SLM, například pro výrobu komponent využitelných v energetice. V tomto případě se konkrétně jedná o domeček pro rozvod páryPowder produced by grinding from the base alloy Fe, Al 16 ± 4, Si 3 ± 2 mass. %, supplemented by element X, which is Mo in an amount of 1.5 ± 0.5 mass. %, and by element Y, which is V in the amount of 0.3 ±0.1 mass. %. The powder is used for 3D printing using the SLM method, for example for the production of components that can be used in the energy sector. In this case, it is specifically a house for the distribution of steam

-3 CZ 309351 B6 umístěný před první stupeň parní turbíny. Takto vytvořený díl má dostatečnou korozní i abrazní odolnost při teplotách do 580 °C, i dlouhodobou teplotní stabilitu.-3 CZ 309351 B6 located before the first stage of the steam turbine. The part created in this way has sufficient corrosion and abrasion resistance at temperatures up to 580 °C, as well as long-term temperature stability.

Příklad 7Example 7

Prášek vyrobený mletím ze slitiny základní báze Fe, AI 16 ± 4, Si 3 ± 2 hmota. %, doplněné o prvek X, kterým je Zr v množství 1,2 ± 0,5 hmota. %. Prášek je využit pro laserové návary funkčních dosedacích ploch na dílech svařovacích přípravků určených pro velkosériovou výrobu komponent pro automotive. Takto vytvořené vrstvy mají cca l,2krát větší abrazní odolnost než díly s nitridovanými, případně cementovanými povrchy.Powder produced by grinding from the base alloy Fe, AI 16 ± 4, Si 3 ± 2 mass. %, supplemented by element X, which is Zr in an amount of 1.2 ± 0.5 mass. %. The powder is used for laser welding of functional contact surfaces on parts of welding fixtures intended for large-scale production of automotive components. The layers formed in this way have approximately 1.2 times greater abrasion resistance than parts with nitrided or cemented surfaces.

Příklad 8Example 8

Drát pro žárový nástřik elektrickým obloukem vytvořený odléváním a následným tvářením ze slitiny základní báze Fe, AI 16 ± 4, Si 3 ± 2 hmota. %, doplněné o prvek X, kterým je Cr v množství 2 ± 0,5 hmota. %, a o prvek Y, kterým je Ti v množství 1 ± 0,4 hmota. %. Drát je využit pro renovaci opotřebených šoupat a ventilů v primárním okruhu a u přehříváků páry.Arc welding wire made by casting and subsequent forming from a base alloy of Fe, AI 16 ± 4, Si 3 ± 2 mass. %, supplemented by element X, which is Cr in an amount of 2 ± 0.5 mass. %, and by element Y, which is Ti in the amount of 1 ± 0.4 mass. %. The wire is used for the renovation of worn valves and valves in the primary circuit and in steam superheaters.

Průmyslová využitelnostIndustrial applicability

Slitina podle tohoto vynálezu je určena pro výrobky určené zejména do dvou průmyslových segmentů, a to pro vysokoteplotní aplikace do 1100 °C, kam patří například komponenty pecí, jako jsou nosné části, žáruvzdorné přepážky, rošty, mufle, odporová topná tělesa atd., a dále vysokoteplotní potrubí, trysky hořáků, šoupátka a ventily, a dále pro výrobky určené pro aplikace s velmi dobrou mechanickou a tribologickou odolností, nejméně do teploty 750 °C. Jako příklad lze uvést komponenty spalovacích motorů a turbodmychadel, součásti spalovacích, parních, plynových a paroplynových turbín, případně součásti brzdných zařízení, jako jsou kotouče, brzdové segmenty atd.The alloy according to this invention is intended for products intended mainly for two industrial segments, namely for high-temperature applications up to 1100 °C, which include, for example, furnace components such as bearing parts, refractory partitions, grates, muffles, resistance heating elements, etc., and also high-temperature pipes, burner nozzles, slide valves and valves, and also for products designed for applications with very good mechanical and tribological resistance, at least up to a temperature of 750 °C. Examples include components of internal combustion engines and turbochargers, components of combustion, steam, gas and steam turbines, or components of braking devices such as discs, brake segments, etc.

Claims (6)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Slitina na bázi Fe-Al-Si-X s oxidační odolností při teplotách do 1100 °C a mechanickou a tribologickou odolností nejméně do teploty 750 °C, vyznačující se tím, že obsahuje slitinovou matrici Fe-Al-Si s obsahem AI 16 ± 4 % hmota., Si 6 ± 4 % hmota., a alespoň jedním slitinovým prvkem X v množství 4 ± 3 % hmota., který je vybrán ze skupiny Zr, Cr, Nb, Ni, Ti, W, V a Mo, a zbytek je Fe.1. Alloy based on Fe-Al-Si-X with oxidation resistance at temperatures up to 1100 °C and mechanical and tribological resistance at least up to 750 °C, characterized by the fact that it contains an Fe-Al-Si alloy matrix with AI 16 content ± 4% by weight, Si 6 ± 4% by weight, and at least one alloying element X in an amount of 4 ± 3% by weight, which is selected from the group of Zr, Cr, Nb, Ni, Ti, W, V and Mo, and the rest is Fe. 2. Slitina podle nároku 1 nebo 2, vyznačující se tím, že dále obsahuje další alespoň jeden slitinový prvek Y v rozmezí od 0,01 do 1,5 % hmota., vybraný ze skupiny prvků Zr, Cr, Nb, Ni, Ti, W, V, B a Sc, rozdílný od prvku X.2. The alloy according to claim 1 or 2, characterized in that it further contains at least one additional alloy element Y in the range of 0.01 to 1.5 wt.%, selected from the group of elements Zr, Cr, Nb, Ni, Ti, W, V, B and Sc, different from the X element. 3. Použití slitiny podle nároku 1 nebo 2 pro lité polotovary.3. Use of the alloy according to claim 1 or 2 for cast semi-finished products. 4. Použití slitiny podle nároku 1 nebo 2 pro výrobky vybrané ze skupiny tvářený polotovar, drát určený k navařování a drát určený k žárovým nástřikům.4. Use of the alloy according to claim 1 or 2 for products selected from the group of formed semi-finished products, wire intended for welding and wire intended for heat spraying. 5. Použití slitiny podle nároku 1 nebo 2 pro výrobu prášku.5. Use of the alloy according to claim 1 or 2 for the production of powder. 6. Použití slitiny podle nároku 5 ve formě prášků pro 3D tisk kovových materiálů, slinování a tvorbu funkčních vrstev realizovaných pomocí návarů a nástřiků za studená či žárových, případně pro technologie vstřikování kovových prášků.6. Use of the alloy according to claim 5 in the form of powders for 3D printing of metal materials, sintering and the creation of functional layers realized by means of coatings and cold or heat spraying, or for metal powder injection technologies.
CZ2021200A 2021-04-20 2021-04-20 Alloy based on Fe-Al-Si-X and its use CZ309351B6 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CZ2021200A CZ309351B6 (en) 2021-04-20 2021-04-20 Alloy based on Fe-Al-Si-X and its use
PCT/IB2022/051167 WO2022224046A1 (en) 2021-04-20 2022-02-09 Fe-al-si-x-based alloy and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2021200A CZ309351B6 (en) 2021-04-20 2021-04-20 Alloy based on Fe-Al-Si-X and its use

Publications (2)

Publication Number Publication Date
CZ2021200A3 CZ2021200A3 (en) 2022-09-21
CZ309351B6 true CZ309351B6 (en) 2022-09-21

Family

ID=83283033

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ2021200A CZ309351B6 (en) 2021-04-20 2021-04-20 Alloy based on Fe-Al-Si-X and its use

Country Status (2)

Country Link
CZ (1) CZ309351B6 (en)
WO (1) WO2022224046A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2604057A1 (en) * 1975-07-26 1977-01-27 Furukawa Electric Co Ltd WEAR-RESISTANT ALLOY WITH HIGH PERMEABILITY
JPS5920451A (en) * 1982-07-27 1984-02-02 Furukawa Electric Co Ltd:The Alloy for core of head for vtr picture
JPS60141817A (en) * 1983-12-28 1985-07-26 Hitachi Metals Ltd Production of magnetic head core material
CN108611580A (en) * 2018-05-16 2018-10-02 蔡明东 A kind of high-effect Fe-based amorphous alloy electric heating material and preparation method thereof
CN112509777A (en) * 2020-11-25 2021-03-16 广东泛瑞新材料有限公司 Soft magnetic alloy material and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2604057A1 (en) * 1975-07-26 1977-01-27 Furukawa Electric Co Ltd WEAR-RESISTANT ALLOY WITH HIGH PERMEABILITY
JPS5920451A (en) * 1982-07-27 1984-02-02 Furukawa Electric Co Ltd:The Alloy for core of head for vtr picture
JPS60141817A (en) * 1983-12-28 1985-07-26 Hitachi Metals Ltd Production of magnetic head core material
CN108611580A (en) * 2018-05-16 2018-10-02 蔡明东 A kind of high-effect Fe-based amorphous alloy electric heating material and preparation method thereof
CN112509777A (en) * 2020-11-25 2021-03-16 广东泛瑞新材料有限公司 Soft magnetic alloy material and preparation method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
(Martin Švec a kol.: The Effect of Chromium Addition and Heat Treatment on Phase Composition of Cast FeAlSi Alloys; Manufacturing Technology 18(6):DOI:10.21062/ujep/219.2018/a/1213-2489/MT/18/6/1029) 2018 *
(P. Novák a kol.: Structure and Properties of Fe-Ni-Al-Si Alloys Produced by Powder Metallurgy; Acta Physica Polonica Series a 122(3):524-527; DOI:10.12693/APhysPolA.122.524) 2012 *
(Věra Vodičková a kol.: The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides; Molecules 25(18); DOI:10.3390/molecules25184268) 2020 *

Also Published As

Publication number Publication date
WO2022224046A1 (en) 2022-10-27
CZ2021200A3 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP6767398B2 (en) Tribology system including valve seat ring and valve
JP5742447B2 (en) High hardness overlaying alloy powder
JP6291175B2 (en) Valve seat and manufacturing method thereof
TW201446969A (en) Thermal spraying powder for highly stressed sliding systems
JP5755819B2 (en) Ni-Cr-Co alloy with high-temperature corrosion resistance and surface-modified poppet valve using the same
JP2016535714A (en) Enamel powder, metal component having a surface portion provided with an enamel coating, and method for producing such metal component
US20170101707A1 (en) Treated component
CN105296858A (en) High-performance engine inlet valve and preparing method thereof
GB2264079A (en) Coated components of the intermetallic phase titanium aluminide
JP3853322B2 (en) Powder composite material for thermal spraying, thermal spray coating member and method for producing the member
CZ309351B6 (en) Alloy based on Fe-Al-Si-X and its use
US9334977B2 (en) Engine valve
US6913842B2 (en) Liquid phase diffusion welded metal-made precision machine component and production method thereof
JP6101058B2 (en) Method for producing ferritic surface modified metal member
CN106637186A (en) NiCrAlY coated YSZ powdered material and coating preparing method
JPS6217169A (en) Surface coating method for metallic material
US11732331B2 (en) Ni-based alloy, and Ni-based alloy product and methods for producing the same
Maki et al. Development of a high-performance TiAl exhaust valve
Milan Shahana et al. High-Temperature Oxidation and Hot Corrosion of Thermal Spray Coatings
WO2022120328A1 (en) Ferritic alloy with high temperature and oxidation resistance for use in additive manufacturing, with manufacturing method and engine components made using the method
CN105385950A (en) Novel amorphous reinforced valve material
CN105296861A (en) Surface-graphene-reinforced novel engine valve material
Ahmad Development of Thermal Barrier Coating on Tool Steel Surface
Sikka et al. Structural applications for general use
US20140287261A1 (en) Process for producing a protective chromium layer