JP6291175B2 - Valve seat and manufacturing method thereof - Google Patents

Valve seat and manufacturing method thereof Download PDF

Info

Publication number
JP6291175B2
JP6291175B2 JP2013142072A JP2013142072A JP6291175B2 JP 6291175 B2 JP6291175 B2 JP 6291175B2 JP 2013142072 A JP2013142072 A JP 2013142072A JP 2013142072 A JP2013142072 A JP 2013142072A JP 6291175 B2 JP6291175 B2 JP 6291175B2
Authority
JP
Japan
Prior art keywords
valve seat
valve
alloy
based alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013142072A
Other languages
Japanese (ja)
Other versions
JP2015014262A (en
Inventor
公明 橋本
公明 橋本
浩二 逸見
浩二 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2013142072A priority Critical patent/JP6291175B2/en
Priority to CN201410320435.4A priority patent/CN104279019B/en
Publication of JP2015014262A publication Critical patent/JP2015014262A/en
Application granted granted Critical
Publication of JP6291175B2 publication Critical patent/JP6291175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)
  • Laser Beam Processing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンのバルブシート及びその製造方法に関し、特に、バルブ温度の上昇を抑制できる圧入型高伝熱バルブシート及びその製造方法に関する。   The present invention relates to a valve seat for an engine and a method for manufacturing the same, and more particularly to a press-fit high heat transfer valve seat capable of suppressing an increase in valve temperature and a method for manufacturing the same.

近年、自動車エンジンの環境対応による燃費の向上と高性能化を両立する手段として、エンジンの排気量を20〜50%低減する、いわゆるダウンサイジングが推進され、さらに、高圧縮比を実現する技術として直噴エンジンにターボチャージング(過給)を組合せることが行われている。これらのエンジンの高効率化は必然的にエンジン温度の上昇をもたらすが、温度の上昇は出力低下に繋がるノッキングを招くので、特にバルブ周りの部品の冷却能を向上させることが必要となっている。   In recent years, so-called downsizing has been promoted to reduce engine displacement by 20 to 50% as a means to achieve both high fuel efficiency and high performance through environmental compatibility of automobile engines, and as a technology to achieve a high compression ratio Combining turbocharging (supercharging) with a direct injection engine is performed. Higher efficiency of these engines inevitably leads to an increase in engine temperature, but the increase in temperature leads to knocking that leads to a decrease in output, so it is necessary to improve the cooling capacity of parts around the valve in particular. .

冷却能を向上させる手段として、エンジンバルブに関し、特許文献1はバルブの軸部を中空化してその中空部分に金属ナトリウム(Na)を封入するエンジンバルブの製造方法を開示している。また、バルブシートに関しては、特許文献2はレーザー光のような高密度加熱エネルギーを用いてアルミ(Al)合金製のシリンダヘッドに直接肉盛する(以下「レーザークラッド法」という。)というバルブ冷却能を向上させる手段を採用し、そのバルブシート合金としては銅(Cu)基マトリックス中にFe-Ni系の硅化物及び硅化物の粒子が分散し且つCu基初晶中にSn及びZnの1つあるいは両方を固溶する肉盛用分散強化Cu基合金を教示している。   As a means for improving the cooling performance, regarding an engine valve, Patent Document 1 discloses a method for manufacturing an engine valve in which a shaft portion of a valve is hollowed and metal sodium (Na) is sealed in the hollow portion. With respect to the valve seat, Patent Document 2 uses a high-density heating energy such as laser light to directly deposit on an aluminum (Al) alloy cylinder head (hereinafter referred to as “laser cladding method”). As a valve seat alloy, Fe-Ni-based nitrides and nitride particles are dispersed in a copper (Cu) matrix, and 1 of Sn and Zn is contained in a Cu-based primary crystal. It teaches a dispersion-strengthened Cu-based alloy for overlaying that dissolves one or both.

上記の金属Na封入エンジンバルブは、中実バルブに比べ、エンジン駆動時のバルブ温度を約150℃程度低下させ(バルブ温度としては約600℃)、また、レーザークラッド法によるCu基合金バルブシートは、中実バルブのバルブ温度を約50℃程度低下させ(バルブ温度としては約700℃)て、ノッキングの防止を可能にした。しかし、金属Na封入エンジンバルブは製造コストの点で難があり、一部の車を除いて幅広く使用されるまでには至っていない。Cu基合金バルブシートも、Cu基合金が叩かれ摩耗で優先的に凝着するため、耐摩耗性が不十分であるという課題があり、さらに、シリンダヘッドに直接肉盛するため、シリンダヘッド加工ラインの大幅な見直しと設備投資が必要となるという課題も生じてくる。   The above metal Na-enclosed engine valve reduces the valve temperature when the engine is driven by about 150 ° C (valve temperature is about 600 ° C) compared to the solid valve, and the Cu-based alloy valve seat by the laser cladding method is The valve temperature of the solid valve has been reduced by about 50 ° C (the valve temperature is about 700 ° C), making it possible to prevent knocking. However, the metal Na-enclosed engine valve is difficult in terms of manufacturing cost and has not yet been widely used except for some vehicles. Cu-based alloy valve seats also have the problem of insufficient wear resistance because the Cu-based alloy is struck and preferentially adheres due to wear. There will also be a problem that a substantial review of the line and capital investment will be required.

特許文献3は、圧入型バルブシートとして、バルブや燃焼ガスの熱を効率よく冷却系に伝達してエンジン性能の向上を図ることのできる耐久性の高いバルブシートを提供することを目的とし、熱伝導率及び剛性の高い材料からなる基盤リングのフェイス部に耐摩耗性の高い材料からなる薄肉の耐摩耗リングを接合したバルブシートを開示している。具体的には、基盤リングの材料としてCu合金とAl合金が、耐摩耗リングの材料としてFe系焼結合金やFe系鋳造合金が教示されているが、その耐摩耗リングの基盤リングへの接合方法については何も教示されていない。   Patent Document 3 aims to provide a highly durable valve seat that can improve the engine performance by efficiently transferring the heat of the valve and combustion gas to the cooling system as a press-fit valve seat. A valve seat is disclosed in which a thin wear-resistant ring made of a highly wear-resistant material is joined to a face portion of a base ring made of a material having high conductivity and rigidity. Specifically, Cu alloy and Al alloy are taught as the material of the base ring, and Fe-based sintered alloy and Fe-based cast alloy are taught as the material of the wear-resistant ring, but the wear-resistant ring is joined to the base ring. No method is taught.

特開平7−119421号公報Japanese Patent Laid-Open No. 7-119421 特開平3−60895号公報Japanese Patent Laid-Open No. 3-60895 特開平7−279627号公報JP 7-279627 A

上記問題に鑑み、本発明は、高効率エンジンに使用する高いバルブ冷却能と耐摩耗性を有する圧入型バルブシートを提供すること、詳しくは、レーザークラッド法によるCu基合金バルブシートに匹敵するバルブ冷却能を有する圧入型バルブシートを提供することを課題とする。さらに、当該圧入型バルブシートの製造方法を提供することを課題とする。   In view of the above problems, the present invention provides a press-fit valve seat having high valve cooling ability and wear resistance used in a high-efficiency engine, and more specifically, a valve comparable to a Cu-based alloy valve seat by a laser cladding method. It is an object of the present invention to provide a press-fit valve seat having cooling ability. Furthermore, it aims at providing the manufacturing method of the said press-fit type valve seat.

本発明者達は、Al合金製シリンダヘッドに圧入される圧入型バルブシートに関し鋭意研究した結果、熱伝導率の高い基材リングのフェイス部に耐摩耗性の高い硬質合金のシート層を直接肉盛した構造とし、基材リングにCu又はCu基合金、シート層にCo基合金を選択することによって、基材リングとシート層の界面において複雑な中間層の形成を回避することができ、バルブ冷却能の高い圧入型バルブシートが得られることに想到した。   As a result of diligent research on the press-fitted valve seat that is press-fitted into an Al alloy cylinder head, the present inventors directly placed a hard alloy sheet layer with high wear resistance on the face portion of the base ring with high thermal conductivity. By selecting a Cu or Cu base alloy for the base ring and a Co base alloy for the seat layer, a complicated intermediate layer can be avoided at the interface between the base ring and the seat layer. It was conceived that a press-fit valve seat with high cooling ability could be obtained.

すなわち、本発明のバルブシートは、Al合金製シリンダヘッドに圧入されるバルブシートであって、熱伝導率が100 W/(m・K)以上のCu又はCu基合金からなる基材リングのフェイス部にCo基合金からなるシート層が直接肉盛りされ、前記バルブシートの高さhの厚さaに対する比(h/a)が1.5〜4であり、前記シート層の厚さtが0.05〜0.2 mmであり、前記Co基合金が、質量%で、Cr:20.0〜35.0%、W:2.0〜15.0%、C:0.8〜2.0%、残部がCo及び不可避的不純物からなることを特徴とする。前記Cu基合金は、質量%で、Cr:0.5〜1.5%、残部がCu及び不可避的不純物からなることが好ましい。
That is, the valve seat of the present invention is a valve seat that is press-fitted into an Al alloy cylinder head, and the face of a base ring made of Cu or a Cu-based alloy having a thermal conductivity of 100 W / (m · K) or more. A sheet layer made of a Co-based alloy is directly piled on the part, the ratio (h / a) of the valve seat height h to the thickness a is 1.5 to 4, and the thickness t of the sheet layer is 0.05 to 0.2 mm der is, the Co-based alloy, in mass%, Cr: 20.0~35.0%, W : 2.0~15.0%, C: 0.8~2.0%, the balance, wherein Rukoto a Co and unavoidable impurities And The Cu based alloy in wt%, Cr: 0.5 to 1.5%, the balance is not preferable be composed of Cu and unavoidable impurities.

さらに、本発明のバルブシートの製造方法は、Al合金製シリンダヘッドに圧入されるバルブシートの製造方法であって、熱伝導率が100 W/(m・K)以上のCu又はCu基合金からなる基材リングのフェイス部に前記Co基合金からなるシート層を高速フレーム溶射法又はレーザーメタルデポジション法により直接肉盛りすることを特徴とする。
Further, the valve seat manufacturing method of the present invention is a method for manufacturing a valve seat press-fitted into an Al alloy cylinder head, and has a thermal conductivity of 100 W / (m · K) or more from Cu or a Cu-based alloy. characterized in that the sheet layer to the face portion of the composed base ring made of the Co-based alloy for build-up directly by high-speed flame spraying method or a laser metal deposition.

本発明のバルブシートは、熱伝導率が100 W/(m・k)以上のCu基合金からなる基材リングのフェイス部にCo基合金からなるシート層を直接肉盛することによって、基材リングとシート層の界面において複雑な中間層の形成を回避し、すなわち、熱伝達特性の高いシート層/基材リング界面を形成し、さらに、バルブシートの高さhの厚さaに対する比(h/a)と硬質合金から構成されるシート層の厚さtを調整することによって、バルブ冷却能の高い圧入型バルブシートとすることが可能となる。また、シート層の合金組成を限定することによって耐熱性と耐摩耗性に優れたフェイス部とすることができる。これらにより、レーザークラッド法によるCu基合金バルブシートに匹敵するバルブ冷却能を有する圧入型バルブシートを得ることができ、特に高価な金属Na封入バルブの採用やシリンダヘッド加工ラインの見直しをすることなく、ノッキング等のエンジンの異常燃焼の低減により、高圧縮比、高効率エンジンの性能向上に貢献することができる。
The valve seat of the present invention has a base material by directly overlaying a sheet layer made of a Co-based alloy on the face portion of a base ring made of a Cu-based alloy having a thermal conductivity of 100 W / (m · k) or more. Avoid the formation of a complicated intermediate layer at the interface between the ring and the seat layer, that is, form a seat layer / substrate ring interface with high heat transfer characteristics, and further, the ratio of the height h of the valve seat to the thickness a ( By adjusting the thickness t of the sheet layer composed of h / a) and a hard alloy, a press-fit valve seat with high valve cooling capability can be obtained. Moreover, it can be set as the face part excellent in heat resistance and abrasion resistance by limiting the alloy composition of a sheet | seat layer. These make it possible to obtain a press-fitted valve seat with a valve cooling capacity comparable to that of a Cu-based alloy valve seat by the laser cladding method, without particularly adopting an expensive metal Na-encapsulated valve and reviewing the cylinder head processing line. By reducing abnormal combustion of the engine such as knocking, it is possible to contribute to improving the performance of a high compression ratio and high efficiency engine.

シリンダヘッドに圧入された本発明のバルブシートとエンジンバルブのフェイス面同士が接触する状態を示した部分の断面図である。It is sectional drawing of the part which showed the state which the valve seat of this invention press-fitted in the cylinder head and the face surfaces of an engine valve contact. バルブ中心から水冷シリンダヘッドまでの温度分布を、本発明のバルブシートと従来のバルブシートを比較して、模式的に示した図である。It is the figure which showed typically the temperature distribution from a valve center to a water cooling cylinder head, comparing the valve seat of this invention, and the conventional valve seat. 図1の一部を拡大した断面図である。It is sectional drawing to which a part of FIG. 1 was expanded. 高速フレーム溶射のガンの構造を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the gun of a high-speed flame spraying. レーザーメタルデポジション法におけるノズル先端部を模式的に示した断面図である。It is sectional drawing which showed typically the nozzle front-end | tip part in the laser metal deposition method. リグ試験機の概要を示した図である。It is the figure which showed the outline | summary of the rig testing machine.

本発明のバルブシートは、図1に示すように、水冷されたAl合金製シリンダヘッド4に圧入され、熱伝導率が100 W/(m・k)以上のCu又はCu基合金からなる基材リング1のフェイス部にCo基合金からなるシート層2を直接肉盛りしている。バルブ3の熱はバルブシートのシート層2に伝達され、シート層2内、シート層2と基材リング1の界面、基材リング1内、基材リング1とシリンダヘッド4の界面を通って水冷されたシリンダヘッド4内に伝導、伝達される。基材1は基本的に熱伝導率の高いCu基合金で構成され、シート層2も熱伝導率が高いほど好ましいが、シート層2はそれ以上に耐熱性と耐摩耗性が求められるためCo基合金で構成される。金属においては、熱伝導率は主に結晶粒内の自由電子の運動に支配されるため、固溶元素の少ないほど熱伝導率は向上する。その点、CuとCoは高温では一部固溶しても400℃以下では殆ど固溶し合わないので、好ましい組合せとなる。Cu基合金からなる基材リング1にCo基合金を肉盛する際に、たとえ基材の溶融領域が形成されたとしても、複雑な中間層を形成することなく、CuとCoの混合組織となって、Cu又はCu基合金の熱伝導率を著しく低下させるようなことがない。Cu基合金からなる基材リング1の熱伝導率は100 W/(m・k)以上とする。もちろん150 W/(m・K)以上であることが好ましく、200 W/(m・K)であればより好ましい。
As shown in FIG. 1, the valve seat of the present invention is press-fitted into a water-cooled Al alloy cylinder head 4 and made of Cu or a Cu-based alloy having a thermal conductivity of 100 W / (m · k) or more. and interest directly overlaying the sheet layer 2 made of Co-based alloy on the face of the ring 1. The heat of the valve 3 is transferred to the seat layer 2 of the valve seat, and passes through the seat layer 2, the interface between the seat layer 2 and the base ring 1, the base ring 1, and the base ring 1 and the cylinder head 4 interface. Conducted and transmitted into the water-cooled cylinder head 4. The base material 1 is basically composed of a Cu-based alloy having a high thermal conductivity, and the sheet layer 2 is also preferable as the thermal conductivity is higher. However, since the sheet layer 2 is required to have more heat resistance and wear resistance, Co Consists of a base alloy. In metals, the thermal conductivity is mainly governed by the movement of free electrons in the crystal grains, so the smaller the solid solution element, the higher the thermal conductivity. In that respect, Cu and Co are a preferable combination because even if they are partly dissolved at a high temperature, they hardly dissolve at 400 ° C. or less. When depositing a Co-based alloy on a base ring 1 made of a Cu-based alloy, even if a molten region of the base material is formed, a mixed structure of Cu and Co is formed without forming a complicated intermediate layer. Thus, the thermal conductivity of Cu or Cu-based alloy is not significantly reduced. The thermal conductivity of the base material ring 1 made of a Cu-based alloy is 100 W / (m · k) or more. Of course, it is preferably 150 W / (m · K) or more, more preferably 200 W / (m · K).

基材リング1のCu基合金は、熱伝導率が高く、高温硬さに優れたCu-Cr合金が好ましく、その場合、Crは質量%で0.5〜1.5%が好ましい。Crも高温で僅かにCuに固溶するが冷却されればCuとCrの混合組織となり、Cuの熱伝導率に悪影響することはない。また、シート層2のCo基合金は、耐摩耗性の観点で、Co-Cr-W-C系合金とし、質量%で、Cr:20.0〜35.0%、W:2.0〜15.0%、C:0.8〜2.0%、残部がCo及び不可避的不純物からなるものとする。これらの合金はCrの固溶したCoマトリックス中に硬質炭化物相が分散し優れた耐摩耗性を示す。
The Cu-based alloy of the base material ring 1 is preferably a Cu—Cr alloy having high thermal conductivity and excellent high-temperature hardness. In this case, Cr is preferably 0.5 to 1.5% by mass. Cr also dissolves slightly in Cu at high temperatures, but if cooled, it becomes a mixed structure of Cu and Cr and does not adversely affect the thermal conductivity of Cu. Furthermore, Co-based alloy sheet layers 2, in terms of wear resistance, and Co-Cr-WC alloy, in mass%, Cr: 20.0~35.0%, W : 2.0~15.0%, C: 0.8~2.0 %, and the balance shall such Co and inevitable impurities. These alloys exhibit excellent wear resistance with a hard carbide phase dispersed in a Co matrix in which Cr is dissolved.

図2はバルブの中心からAl合金製シリンダヘッドの水冷端までの温度分布を模式的に示している。本発明のバルブシートと従来の鉄基焼結合金のバルブシートを対比させているが、ここでは、シリンダヘッド側のバルブシートとシリンダヘッドの間の界面までは、その冷却能は同じであるとみなしている。バルブシートの温度勾配をみると、従来のバルブシートでは熱伝導率が約20 W/(m・K)で冷却能が低いため温度勾配が大きくなり、本発明のバルブシートでは熱伝導率が100 W/(m・K)以上で冷却能が高いため温度勾配が小さくなる。この違いによるバルブフェイス面の温度の差がバルブ中心温度の差となっている。本発明のバルブシートはシート層2と基材リング1から構成されるため、温度勾配も二段階になっている。   FIG. 2 schematically shows the temperature distribution from the center of the valve to the water-cooled end of the Al alloy cylinder head. The valve seat of the present invention is compared with the valve seat of a conventional iron-based sintered alloy, but here the cooling capacity is the same up to the interface between the valve seat on the cylinder head side and the cylinder head. I consider it. Looking at the temperature gradient of the valve seat, the conventional valve seat has a thermal conductivity of about 20 W / (m ・ K) and the cooling capability is low, so the temperature gradient is large. In the valve seat of the present invention, the thermal conductivity is 100 The temperature gradient is small because of the high cooling capacity above W / (m · K). The difference in valve face temperature due to this difference is the difference in valve center temperature. Since the valve seat of the present invention is composed of the seat layer 2 and the base material ring 1, the temperature gradient is also in two stages.

バルブシートのシート層2と基材リング1の熱伝導率は当然に大きな熱伝導率であることが望ましいが、バルブの冷却能の向上には、図3に示すように、シート層2と基材リング1の界面I1、及び基材リング1とシリンダヘッド4の界面I2の熱伝達が効率的である(図2のI1とI2におけるギャップが小さい)ことが望ましい。界面I1及び界面I2での熱伝達は、
Q1 = h1S1ΔT1 ………………………………………(1)
Q2 = h2S2ΔT2 ………………………………………(2)
で表せる。ここで、Q1(W)、h1(W/(m2・K))、S1(m2)、ΔT1(K)は、それぞれ、界面I1を移動する熱量、熱伝達係数、伝熱面積、温度差を示し、Q2(W)、h2(W/(m2・K))、S2(m2)、ΔT2(K)は、それぞれ、界面I2を移動する熱量、熱伝達係数、伝熱面積、温度差を示す。シート層2と基材リング1の界面I1における伝熱量Q1は、熱伝達係数h1の大きなほど多くなる。その点、中間層や拡散層が存在すると熱伝達係数h1が著しく低下するため、シート層2は基材リング1に直接肉盛し、かつ基材リング1とシート層2が互いに固溶して熱伝導率を低下させないよう、それぞれ、Cu基合金とCo基合金から構成されるものとする。また、温度差ΔT1の観点では、基材1の熱伝導率が高いほどΔT1が大きくなり、伝熱量Q1の増加に繋がると考えられる。
Naturally, it is desirable that the heat conductivity of the seat layer 2 of the valve seat and the base material ring 1 is high, but for improving the cooling capacity of the valve, as shown in FIG. It is desirable that heat transfer at the interface I 1 of the material ring 1 and the interface I 2 between the base material ring 1 and the cylinder head 4 is efficient (the gap between I 1 and I 2 in FIG. 2 is small). The heat transfer at interface I 1 and interface I 2 is
Q1 = h 1 S 1 ΔT 1 ……………………………………… (1)
Q2 = h 2 S 2 ΔT 2 ……………………………………… (2)
It can be expressed as Here, Q 1 (W), h 1 (W / (m 2 · K)), S 1 (m 2), ΔT 1 (K) , respectively, the amount of heat that moves the interface I 1, the heat transfer coefficient, Indicates heat transfer area and temperature difference, Q 2 (W), h 2 (W / (m 2 · K)), S 2 (m 2 ), ΔT 2 (K) move on interface I 2 respectively Shows heat quantity, heat transfer coefficient, heat transfer area, and temperature difference. Heat transfer amount Q 1 at the interface I 1 of the sheet layer 2 and the substrate ring 1 is larger large extent of the heat transfer coefficient h 1. In this respect, since the heat transfer coefficient h 1 is significantly reduced when an intermediate layer or a diffusion layer is present, the sheet layer 2 is directly deposited on the base ring 1 and the base ring 1 and the sheet layer 2 are dissolved in each other. In order to prevent the thermal conductivity from being lowered, each of them is composed of a Cu-base alloy and a Co-base alloy. From the viewpoint of the temperature difference ΔT 1 , it is considered that ΔT 1 increases as the thermal conductivity of the substrate 1 increases, leading to an increase in the heat transfer amount Q 1 .

一方、基材リング1とシリンダヘッド4の界面I2の伝熱量Q2は、式(2)から分かるように、熱伝達係数h2を一定とすれば(圧入型バルブシートの場合、熱伝達係数は圧入面の表面状態や応力状態にも影響されるが、ここでは一定とする。)、伝熱面積S2と温度差ΔT2に比例する。界面I2の伝熱面積S2も温度差ΔT2も大きいほど好ましいが、基材リング1の体積が減少すると、伝熱面積は減少し、温度差ΔT2は増加する。基材リング1の厚さaはフェイス面を考慮するとそれほど小さくできないので、伝熱量Q2に対する影響は基材リング1の高さhが小さいほど温度差ΔT2は大きくなり、伝熱面積S2の減少による伝熱量Q2の減少以上に温度差ΔT2の増加による伝熱量Q2の増加が多くなる。本発明のバルブシートでは、基材リング1の高さhの厚さaに対する比(h/a)が1.25〜4であるものとする。比(h/a)は1.5〜4であることが好ましく、1.5〜2であることがより好ましい
On the other hand, the heat transfer amount Q 2 at the interface I 2 between the base ring 1 and the cylinder head 4 is constant if the heat transfer coefficient h 2 is constant (in the case of a press-fitted valve seat, as can be seen from equation (2)). The coefficient is influenced by the surface state and stress state of the press-fit surface, but is assumed to be constant here), and is proportional to the heat transfer area S 2 and the temperature difference ΔT 2 . Although it is preferable that the heat transfer area S 2 and the temperature difference ΔT 2 of the interface I 2 are larger, when the volume of the base ring 1 is decreased, the heat transfer area is decreased and the temperature difference ΔT 2 is increased. Since the thickness a of the base material ring 1 cannot be reduced so much in consideration of the face surface, the influence on the heat transfer amount Q 2 is such that the temperature difference ΔT 2 increases as the height h of the base material ring 1 decreases, and the heat transfer area S 2 reduction increased heat transfer amount Q 2 due to the increase of the temperature difference [Delta] T 2 increases more than it decreases the heat transfer amount Q 2 by the. In the valve seat of the present invention, the ratio (h / a) of the height h of the base material ring 1 to the thickness a is 1.25 to 4 . The ratio (h / a) is preferably 1.5 to 4, and more preferably 1.5 to 2.

また、シート層2は耐熱性と耐摩耗性を備えていることが求められるが、熱伝導を考慮すると、シート層2の厚さtは耐摩耗性を保持できる範囲内で薄いことが好ましい。前記シート層2の厚さtは0.05〜0.2 mmであるものとする。0.05〜0.17 mmであることが好ましく、0.05〜0.14 mmであることがより好ましい
Further, the sheet layer 2 is required to have heat resistance and wear resistance. However, in consideration of heat conduction, the thickness t of the sheet layer 2 is preferably thin as long as the wear resistance can be maintained. The thickness t of the sheet layer 2 is assumed to be 0.05 to 0.2 mm. The thickness is preferably 0.05 to 0.17 mm, and more preferably 0.05 to 0.14 mm.

本発明のバルブシートの製造方法においては、熱伝導率が100 W/(m・K)以上のCu又はCu基合金からなる基材リングのフェイス部にCo基合金からなるシート層を高速フレーム溶射法又はレーザーメタルデポジション法により直接肉盛する。前記基材リングは肉盛を行うときに予熱してもよく、予熱温度は150〜300℃が好ましく、180〜250℃がより好ましい。   In the valve seat manufacturing method of the present invention, a sheet layer made of a Co-based alloy is applied to a face portion of a base ring made of Cu or a Cu-based alloy having a thermal conductivity of 100 W / (m · K) or higher by high-speed flame spraying. We directly deposit by the method or laser metal deposition method. The base material ring may be preheated when overlaying, and the preheating temperature is preferably 150 to 300 ° C, more preferably 180 to 250 ° C.

高速フレーム溶射(高速酸素火炎(HVOF)溶射)は、図4に示すような構造のスプレーガンを使用し、パウダーインジェクター5とインサート6の間及びシェル7とエアキャップ8の間に流れる圧縮空気に挟まれる形で、インサート6とシェル7の間に流れる高圧プロピレンガスと酸素ガスの混合ガスを燃焼させて高速フレームを形成する。その中に、所望の組成のシート層となるように配合した原料粉末を、パウダーインジェクター5から窒素ガスとともに投入し、先端から噴射して溶射シート層を形成する。高速フレーム溶射は、プラズマ溶射に比べてフレーム温度が低いため、原料サイズをほぼ維持したまま溶射でき、シート層の厚さの薄い、微細で緻密な組織を形成することができる。   High-speed flame spraying (High-Speed Oxygen Flame (HVOF) spraying) uses a spray gun with a structure as shown in FIG. 4 and applies compressed air flowing between the powder injector 5 and the insert 6 and between the shell 7 and the air cap 8. A high-speed flame is formed by burning a mixed gas of high-pressure propylene gas and oxygen gas flowing between the insert 6 and the shell 7 in a sandwiched manner. The raw material powder blended so as to form a sheet layer having a desired composition is put together with nitrogen gas from the powder injector 5 and sprayed from the tip to form a sprayed sheet layer. Since high-speed flame spraying has a lower flame temperature than plasma spraying, it can be sprayed while maintaining the raw material size substantially, and a thin and fine structure with a thin sheet layer can be formed.

また、レーザーメタルデポジションは、図5に示すように、レーザービーム9を中心にして周りから原料粉末10を供給して所望の組成のシート層2を溶融肉盛するものである。なお原料粉末の流路の外側にはシールドガスとしてアルゴンガスを流している。レーザーメタルデポジション法はレーザービームを細く絞れるため、厚さ0.2〜0.5 mm程度に薄く肉盛することができ、また入熱も少ないため基材リング1に与える影響も小さく押さえることができる。   Further, as shown in FIG. 5, the laser metal deposition is a method in which a raw material powder 10 is supplied from around the laser beam 9 to melt and overlay the sheet layer 2 having a desired composition. Argon gas is allowed to flow as a shielding gas outside the raw material powder flow path. In the laser metal deposition method, since the laser beam can be narrowed down, the thickness can be reduced to about 0.2 to 0.5 mm. Further, since the heat input is small, the influence on the base ring 1 can be suppressed.

参考例1
1.2質量%のCrを含むCu基合金から、軸方向から45°傾斜したフェイス面を有する外径25 mmφ、内径21 mmφ、高さ6 mmの基材リングを作製し、質量%で、Cr:8.5%、Mo:28.5%、Si:2.5%、C:0.05%、残部がCoからなるCo基合金(以下「Co基合金A」という。)の組成を持ち、平均粒径63μmの粉末を、レーザー出力1.5 kWの出力のレーザーメタルデポジション法により基材リングのフェイス面に直接肉盛し、約0.3 mmの厚さのシート層を形成した。さらに、フェイス面のシート層厚さを0.2 mmに加工してバルブシートサンプルとした。
Reference example 1
A base ring having an outer diameter of 25 mmφ, an inner diameter of 21 mmφ, and a height of 6 mm having a face surface inclined by 45 ° from the axial direction was prepared from a Cu-based alloy containing 1.2% by mass of Cr. A powder having a composition of 8.5%, Mo: 28.5%, Si: 2.5%, C: 0.05%, the balance being Co-based alloy (hereinafter referred to as “Co-based alloy A”), and having an average particle size of 63 μm, The sheet was deposited directly on the face of the base ring by the laser metal deposition method with a laser output of 1.5 kW to form a sheet layer with a thickness of approximately 0.3 mm. Further, the sheet layer thickness of the face surface was processed to 0.2 mm to obtain a valve seat sample.

[1] バルブ冷却能(バルブ温度)の測定
図6に示したリグ試験機を用いてバルブ温度を測定し、バルブ冷却能を評価した。バルブシートサンプルはシリンダヘッド相当材(Al合金、AC4A材)のバルブシートホルダ24に圧入して試験機にセットされ、リグ試験は、バーナー21によりバルブ23(SUH合金、JIS G4311)を加熱しながら、カム22の回転に連動してバルブ23を上下させることによって行われる。バルブ冷却能は、バーナー21のエアー及びガスの流量とバーナー位置を一定にすることで入熱を一定にし、サーモグラフィーによりバルブの傘中心部の温度を計測することによって行った。バーナー21のエアー及びガスの流量(L/min)は、それぞれ90、5.0、カム回転数は2500 rpmとした。運転開始15分後、飽和したバルブ温度を測定した。
[1] Measurement of valve cooling capacity (valve temperature) The valve temperature was measured using the rig testing machine shown in FIG. 6 to evaluate the valve cooling capacity. The valve seat sample is pressed into a valve seat holder 24 of cylinder head equivalent material (Al alloy, AC4A material) and set in a testing machine. This is done by moving the valve 23 up and down in conjunction with the rotation of the cam 22. The valve cooling capacity was measured by making the heat input constant by making the air and gas flow rates and the burner position of the burner 21 constant, and measuring the temperature of the central part of the valve by thermography. The air and gas flow rates (L / min) of the burner 21 were 90 and 5.0, respectively, and the cam rotation speed was 2500 rpm. 15 minutes after the start of operation, the saturated valve temperature was measured.

比較例1
Fe-Mo-Si合金からなる硬質粒子を10体積%含有したFe基焼結合金を使用して参考例1と同形状のバルブシートサンプルを作製した。また、このFe基焼結合金の熱伝導率は約20 W/(m・K)であった。参考例1と同様にして、リグ試験によりバルブ温度の測定を行った結果、800℃を超える高温であった。
Comparative Example 1
A valve seat sample having the same shape as in Reference Example 1 was prepared using an Fe-based sintered alloy containing 10% by volume of hard particles made of an Fe—Mo—Si alloy. The thermal conductivity of this Fe-based sintered alloy was about 20 W / (m · K). As in Reference Example 1, the bulb temperature was measured by the rig test, and as a result, the temperature was higher than 800 ° C.

先に測定した参考例1のバルブ温度は、比較例1のバルブ温度より53℃低く、-50℃以上のバルブ冷却能を示した。バルブ温度の絶対温度は加熱条件等により変化するため、本願実施例では、絶対温度で評価する代わりに、比較例1のバルブ温度からの温度低下量(低下を−で表示)によりバルブ冷却能を評価した。
The previously measured valve temperature of Reference Example 1 was 53 ° C. lower than the valve temperature of Comparative Example 1, and showed a valve cooling capacity of −50 ° C. or higher. Since the absolute temperature of the valve temperature varies depending on the heating conditions, etc., in this embodiment, instead of evaluating with the absolute temperature, the valve cooling capacity is controlled by the amount of temperature decrease from the valve temperature of Comparative Example 1 (the decrease is indicated by-). evaluated.

実施例1〜3及び参考例2〜4
シート層の材質及び厚さ、基材リングの寸法(高さ、h/a、但し、外径寸法は25 mmφのままとし、厚さaの変更は内径寸法を変えることによって行っている)を、表1に示すように変更した以外は、参考例1と同様にしてバルブシートサンプルを作製し、参考例1と同様にしてリグ試験によりバルブ温度の測定を行った。その結果を、参考例1の結果も含めて表1に示す。バルブシートの高さhを小さくすると、すなわち、バルブシートの高さhの厚さaに対する比(h/a)を小さくすると、バルブ冷却能が向上することが分かった。また、シート層の材質A〜Dによるバルブ冷却能への差異は殆どなかった。
Examples 1 to 3 and Reference Examples 2 to 4
The material and thickness of the sheet layer, and the dimensions of the base ring (height, h / a, but the outer diameter remains at 25 mmφ, and the thickness a is changed by changing the inner diameter) A valve seat sample was prepared in the same manner as in Reference Example 1 except for the changes shown in Table 1, and the valve temperature was measured by a rig test in the same manner as in Reference Example 1. The results are shown in Table 1 including the results of Reference Example 1. It was found that when the height h of the valve seat is reduced, that is, when the ratio (h / a) of the height h of the valve seat to the thickness a is reduced, the valve cooling performance is improved. Further, there was almost no difference in the valve cooling ability depending on the materials A to D of the seat layer.

Figure 0006291175
ここで、「レーザー」はレーザーメタルデポジション法、「材質A」はCr:8.5%、Mo:28.5%、Si:2.5%、C:0.05%、残部がCo、「材質B」はCr:28%、W:4%、C:1.1%、残部がCo、「材質C」はCr:30%、W:8%、C:1.6%、残部がCo、「材質D」はCr:18%、Mo:28%、Si:3.4%、C:0.03%、残部がCoを示す。また、各材質の粉末の平均粒径は60〜70μmの範囲内にあった。
Figure 0006291175
Here, “Laser” is a laser metal deposition method, “Material A” is Cr: 8.5%, Mo: 28.5%, Si: 2.5%, C: 0.05%, the balance is Co, “Material B” is Cr: 28 %, W: 4%, C: 1.1%, balance is Co, “Material C” is Cr: 30%, W: 8%, C: 1.6%, balance is Co, “Material D” is Cr: 18%, Mo: 28%, Si: 3.4%, C: 0.03%, the balance shows Co. Moreover, the average particle diameter of the powder of each material was in the range of 60 to 70 μm.

実施例4及び参考例5〜11
基材リングの材質を99.9%のCuに変更し、表2に示すシート層の材質及び厚さ、並びに基材リング寸法で、参考例1と同様にしてバルブシートサンプルを作製し、参考例1と同様にしてリグ試験によりバルブ温度の測定を行った。その結果を表2に示す。基材リングの材質を99.9%のCuに変えて基材リングの熱伝導率を400 W/(m・K)まで高めたこと、シート層の厚さ、バルブシートの寸法(h/a)がバルブ冷却能に影響することが確認できた。
Example 4 and Reference Examples 5-11
The material of the base ring was changed to 99.9% Cu, and a valve seat sample was prepared in the same manner as in Reference Example 1 with the material and thickness of the seat layer and base ring dimensions shown in Table 2, and Reference Example 1 The valve temperature was measured by the rig test in the same manner as described above. The results are shown in Table 2. By changing the material of the base ring to 99.9% Cu, the thermal conductivity of the base ring was increased to 400 W / (m · K), the thickness of the seat layer, and the dimension (h / a) of the valve seat It was confirmed that the valve cooling capacity was affected.

Figure 0006291175
Figure 0006291175

実施例5
参考例1と同様な、1.2質量%のCrを含むCu基合金から、軸方向から45°傾斜したフェイス面を有する外径25 mmφ、内径21 mmφ、高さ8 mmの基材リングを作製し、ショットブラストによってフェイス面の表面粗さ(Rzjis)が20μm程度になるように調整した。次に、質量%で、Cr:30%、W:8%、C:1.6%、残部がCoからなるCo基合金(材質C)の組成を有し、平均粒径68μmの粉末を、フレーム速度1400 m/秒の高速フレーム溶射により基材リングのフェイス面に直接肉盛し、約0.5 mmの厚さのシート層を形成した。さらにフェイス面のシート層厚さを0.1 mmに加工してバルブシートサンプルとした。参考例1と同様にして、リグ試験によりバルブ温度の測定を行った結果、比較例1に対し−60℃のバルブ冷却能を示した。
Example 5
A base ring with an outer diameter of 25 mmφ, an inner diameter of 21 mmφ, and a height of 8 mm having a face surface inclined by 45 ° from the axial direction was prepared from a Cu-based alloy containing 1.2% by mass of Cr, similar to Reference Example 1. The surface roughness (Rzjis) of the face surface was adjusted to about 20 μm by shot blasting. Next, a powder having a composition of a Co-based alloy (material C) composed of Cr: 30%, W: 8%, C: 1.6%, the balance being Co, and having an average particle size of 68 μm, is obtained at a frame rate. A sheet layer having a thickness of about 0.5 mm was formed by directly depositing on the face surface of the base material ring by high-speed flame spraying at 1400 m / sec. Furthermore, the sheet layer thickness of the face surface was processed to 0.1 mm to obtain a valve seat sample. As a result of measuring the valve temperature by the rig test in the same manner as in Reference Example 1, it showed a valve cooling ability of −60 ° C. relative to Comparative Example 1.

参考例12〜14
シート層の材質及び厚さ、基材リングの材質及び寸法(高さ、h/a)を表3に示すように変更した(シート層の材質A及びBは、参考例1及び実施例1の材質と同じである。)以外は、実施例5と同様にしてバルブシートサンプルを作製し、参考例1と同様にしてリグ試験によりバルブ温度の測定を行った。その結果を、実施例5の結果も含めて表3に示す。
Reference Examples 12-14
The material and thickness of the sheet layer, and the material and dimensions (height, h / a) of the base ring were changed as shown in Table 3 (the materials A and B of the sheet layer are the same as those in Reference Example 1 and Example 1 . A valve seat sample was prepared in the same manner as in Example 5 except that the material was the same as the material.) In the same manner as in Reference Example 1, the valve temperature was measured by a rig test. The results are shown in Table 3 including the results of Example 5 .

Figure 0006291175
Figure 0006291175

[2] エンジン試験
参考例1、実施例3、5及び比較例1のバルブシート素材について、1.2L直列3気筒、スーパーチャージャー付き直噴ガソリンエンジンで、4000 rpm、全負荷の状態で、5時間のエンジン試験を行った。上記のバルブシート素材は、Alシリンダヘッドの排気ポート部圧入し、機械加工によりフェイス面の加工を行い、シート層の厚さを約0.1 mmとした。また、吸気ポート部には鉄系焼結合金製バルブシートを使用した。5時間の試験の間、比較例1のバルブシートを使用した場合にノッキング現象による出力低下が何度も起きたのに対し、参考例1及び実施例3、5のバルブシートではノッキング等による出力低下は起こらなかった。
[2] Engine test
For the valve seat materials of Reference Example 1, Examples 3 and 5, and Comparative Example 1, a 1.2L inline 3-cylinder, direct-injection gasoline engine with a supercharger was subjected to an engine test for 5 hours at 4000 rpm and full load. It was. The valve seat material was pressed into the exhaust port of the Al cylinder head, the face surface was machined, and the thickness of the seat layer was about 0.1 mm. In addition, an iron-based sintered alloy valve seat was used for the intake port portion. During the 5-hour test, when the valve seat of Comparative Example 1 was used, the output decreased due to the knocking phenomenon many times, whereas in the valve seats of Reference Example 1 and Examples 3 and 5 , the output due to knocking, etc. There was no decline.

1 基材リング
2 シート層
3 バルブ
4 シリンダヘッド
5 パウダーインジェクター
6 インサート
7 シェル
8 エアキャップ
9 レーザービーム
10 原料粉末流
11 シールドガス
21 バーナー
22 カム
23 バルブ
24 バルブシートホルダ
25 熱電対
26 サーモグラフィー
1 Base material ring
2 sheet layers
3 Valve
4 Cylinder head
5 Powder injector
6 Insert
7 shell
8 Air cap
9 Laser beam
10 Raw material powder flow
11 Shielding gas
21 Burner
22 cam
23 Valve
24 Valve seat holder
25 Thermocouple
26 Thermography

Claims (3)

Al合金製シリンダヘッドに圧入されるバルブシートであって、熱伝導率が100 W/(m・K)以上のCu又はCu基合金からなる基材リングのフェイス部にCo基合金からなるシート層が直接肉盛りされ、前記バルブシートの高さhの厚さaに対する比(h/a)が1.5〜4であり、前記シート層の厚さtが0.05〜0.2 mmであり、前記Co基合金が、質量%で、Cr:20.0〜35.0%、W:2.0〜15.0%、C:0.8〜2.0%、残部がCo及び不可避的不純物からなることを特徴とするバルブシート。 A valve seat press-fitted into an Al alloy cylinder head, and a sheet layer made of a Co-based alloy on the face portion of a base ring made of Cu or a Cu-based alloy having a thermal conductivity of 100 W / (m · K) or more There is direct padding, the ratio to the thickness a of the height h of the valve seat (h / a) is 1.5 to 4, Ri thickness t 0.05 to 0.2 mm der of the sheet layer, the Co-based alloy, in mass%, Cr: 20.0~35.0%, W : 2.0~15.0%, C: 0.8~2.0%, the valve seat and the balance of Rukoto a Co and inevitable impurities. 請求項1に記載のバルブシートにおいて、前記Cu基合金が、質量%で、Cr:0.5〜1.5%、残部がCu及び不可避的不純物からなることを特徴とするバルブシート。   2. The valve seat according to claim 1, wherein the Cu-based alloy is, by mass%, Cr: 0.5 to 1.5%, and the balance is made of Cu and inevitable impurities. 請求項1に記載のバルブシートの製造方法であって、熱伝導率が100 W/(m・K)以上のCu又はCu基合金からなる基材リングのフェイス部に前記Co基合金からなるシート層を高速フレーム溶射法又はレーザーメタルデポジション法により直接肉盛りすることを特徴とするバルブシートの製造方法。
The valve seat manufacturing method according to claim 1, wherein the Co base alloy is formed on a face portion of a base ring made of Cu or a Cu base alloy having a thermal conductivity of 100 W / (m · K) or more. A method for producing a valve seat, wherein the layer is directly deposited by a high-speed flame spraying method or a laser metal deposition method.
JP2013142072A 2013-07-05 2013-07-05 Valve seat and manufacturing method thereof Expired - Fee Related JP6291175B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013142072A JP6291175B2 (en) 2013-07-05 2013-07-05 Valve seat and manufacturing method thereof
CN201410320435.4A CN104279019B (en) 2013-07-05 2014-07-04 valve seat and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142072A JP6291175B2 (en) 2013-07-05 2013-07-05 Valve seat and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015014262A JP2015014262A (en) 2015-01-22
JP6291175B2 true JP6291175B2 (en) 2018-03-14

Family

ID=52254298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142072A Expired - Fee Related JP6291175B2 (en) 2013-07-05 2013-07-05 Valve seat and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6291175B2 (en)
CN (1) CN104279019B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240174B2 (en) 2015-11-02 2023-03-15 ワトロー エレクトリック マニュファクチャリング カンパニー Electrostatic chuck for clamping in high temperature semiconductor processing and method of making same
JP7430489B2 (en) 2019-01-16 2024-02-13 セメス株式会社 Electrostatic chuck, electrostatic chuck device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141575A (en) * 2015-05-17 2016-11-23 王华美 A kind of high temperature resistant exhaust valve of electromotor
DE102015211623A1 (en) * 2015-06-23 2016-12-29 Mahle International Gmbh Method for producing a valve seat ring
CN104962782B (en) * 2015-07-14 2017-03-01 四川三鑫南蕾气门座制造有限公司 There is the internal combustion engine high alloy valve seating manufacturing technology of anticorrosive wear-resisting functions
KR101762266B1 (en) * 2015-12-09 2017-07-28 현대자동차주식회사 The method for forming a coating layer for a valve seat of an cylinder head for improved thermal conductivity and the cylinder head using the same
JP6309700B1 (en) * 2017-03-28 2018-04-11 株式会社リケン Sintered valve seat
EP3406865B1 (en) * 2017-03-28 2020-01-29 Kabushiki Kaisha Riken Sintered valve seat
CN106956090A (en) * 2017-03-31 2017-07-18 安徽再制造工程设计中心有限公司 Surfacing cobalt-chromium-tungsten alloy powder and its application method
CN112627927A (en) * 2019-09-24 2021-04-09 上海汽车集团股份有限公司 Engine valve guide pipe and machining method thereof
CN114951985A (en) * 2021-02-26 2022-08-30 浙江三花汽车零部件有限公司 Welding method and welding tool
CN114033523A (en) * 2021-10-31 2022-02-11 东风商用车有限公司 Air valve guide pipe of engine and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578118A (en) * 1978-12-06 1980-06-12 Nissan Motor Co Ltd Valve seat for internal combustion engine
JPH04279708A (en) * 1991-03-07 1992-10-05 Kobe Steel Ltd Engine valve
JPH07119421A (en) * 1993-10-25 1995-05-09 Mitsubishi Heavy Ind Ltd Manufacture of na-sealed hollow engine valve
JPH07279627A (en) * 1994-04-07 1995-10-27 Yamaha Motor Co Ltd Press-in type valve seat
JPH08284621A (en) * 1995-04-06 1996-10-29 Mitsubishi Materials Corp Engine valve made of ti alloy of internal combustion engine having wear resisting flame sprayed layer of excellent thermal shock resistance
CN1109179C (en) * 1998-10-08 2003-05-21 富士乌兹克斯株式会社 Mushroom like valve member made of aluminium or aluminium alloy, and making method thereof
JP2003278597A (en) * 2002-03-20 2003-10-02 Mitsubishi Heavy Ind Ltd Engine member, exhaust vale, piston crown and internal combustion engine
DE10255447A1 (en) * 2002-11-28 2004-06-24 Daimlerchrysler Ag Valve seat and method for producing a valve seat
JP2006316745A (en) * 2005-05-13 2006-11-24 Mitsubishi Materials Pmg Corp Manufacturing method for iron-based sintered alloy valve seat exhibiting excellent wear resistance in high temperature/dry condition and the valve seat
US7754143B2 (en) * 2008-04-15 2010-07-13 L. E. Jones Company Cobalt-rich wear resistant alloy and method of making and use thereof
DE102008054266A1 (en) * 2008-10-31 2010-05-06 Mahle International Gmbh Movable, hot gases exposed closure body of a valve
JP2010274315A (en) * 2009-05-29 2010-12-09 Nippon Piston Ring Co Ltd Valve seat for cast-in insert of light metal alloy
CN101906592B (en) * 2010-08-05 2013-03-27 仪征宝泰合金有限公司 High-wear resistant low-cobalt powder metallurgical valve seat
EP2730810A4 (en) * 2011-07-05 2015-04-01 Nissan Motor Rolling body, method for producing rolling body, and dynamic force transmission device
CN103028732B (en) * 2012-12-10 2014-09-17 林跃春 Powder metallurgy air inlet/outlet valve seat ring of diesel engine automobile and preparation method of powder metallurgy air inlet/outlet valve seat ring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240174B2 (en) 2015-11-02 2023-03-15 ワトロー エレクトリック マニュファクチャリング カンパニー Electrostatic chuck for clamping in high temperature semiconductor processing and method of making same
JP7504857B2 (en) 2015-11-02 2024-06-24 ワトロー エレクトリック マニュファクチャリング カンパニー Electrostatic chuck for clamping in high temperature semiconductor processing and method for manufacturing same - Patents.com
JP7430489B2 (en) 2019-01-16 2024-02-13 セメス株式会社 Electrostatic chuck, electrostatic chuck device

Also Published As

Publication number Publication date
CN104279019B (en) 2017-04-12
JP2015014262A (en) 2015-01-22
CN104279019A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP6291175B2 (en) Valve seat and manufacturing method thereof
US7666246B2 (en) Particle dispersion copper alloy and method for producing the same
US10344636B2 (en) Sintered valve seat and its production method
JP6386676B2 (en) Sintered valve seat
WO2018179590A1 (en) Sintered valve seat
TW201446969A (en) Thermal spraying powder for highly stressed sliding systems
US20190001447A1 (en) Method of manufacturing high-conductivity wear resistant surface on a soft substrate
US20040045641A1 (en) Wear-resistant copper-base alloy
JP4840026B2 (en) Seizure-resistant cast iron
US6096142A (en) High temperature abrasion resistant copper alloy
WO2023176450A1 (en) Composite material, method for producing composite material, and mold
JP2016078022A (en) Alloy powder for padding, padding alloy member using the same, and engine valve
JP7168331B2 (en) copper base alloy
JP5070920B2 (en) Overlay wear-resistant iron-base alloy
US7401586B2 (en) Valve seat rings made of basic Co or Co/Mo alloys, and production thereof
JPS5932654B2 (en) piston ring
JP6411875B2 (en) Piston ring and manufacturing method thereof
US20210115535A1 (en) Copper alloy for laser cladding valve sheet
KR20020019296A (en) Sintered alloy for valve seat manufactured by laser cladding
JP6985961B2 (en) Piston ring and its manufacturing method
KR20020029402A (en) Preliminarily formed article and formed article and parts for internal-combustion engine
CN112533710A (en) Sliding member and member for internal combustion engine
JP6309700B1 (en) Sintered valve seat
WO2022224046A1 (en) Fe-al-si-x-based alloy and its use
JP2003155527A (en) Ni BASED CORROSION RESISTANT AND WEAR RESISTANT ALLOY, AND COMPOSITE AND MEMBER FOR DIE CASTING MACHINE OBTAINED BY USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180209

R150 Certificate of patent or registration of utility model

Ref document number: 6291175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees