JPS5932654B2 - piston ring - Google Patents

piston ring

Info

Publication number
JPS5932654B2
JPS5932654B2 JP3469578A JP3469578A JPS5932654B2 JP S5932654 B2 JPS5932654 B2 JP S5932654B2 JP 3469578 A JP3469578 A JP 3469578A JP 3469578 A JP3469578 A JP 3469578A JP S5932654 B2 JPS5932654 B2 JP S5932654B2
Authority
JP
Japan
Prior art keywords
piston ring
powder
sprayed
ring
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3469578A
Other languages
Japanese (ja)
Other versions
JPS54126854A (en
Inventor
克己 近藤
彰 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3469578A priority Critical patent/JPS5932654B2/en
Publication of JPS54126854A publication Critical patent/JPS54126854A/en
Publication of JPS5932654B2 publication Critical patent/JPS5932654B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内燃機関用ピストンリングにおいて耐摩耗性、
耐焼付性が要求される摺動面の表面処理技術に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a piston ring for internal combustion engines with wear resistance,
This invention relates to surface treatment technology for sliding surfaces that require seizure resistance.

近年内燃機関において、性能を向上させる目的での高速
回転化、高圧縮化の傾向や排気ガス対策での熱負荷の増
大等はピストン、ピストンリング、シリンダーライナー
の各摺動部に負担がかかる原因となつている。
In recent years, internal combustion engines have seen a trend towards higher rotation speeds and higher compression in order to improve performance, as well as an increase in heat load to combat exhaust gas, which puts strain on the sliding parts of the piston, piston ring, and cylinder liner. It is becoming.

特にディーゼルエンジンではカーボンスーツの発生もあ
つて、高速回転化に対してはピストンリングとシリンダ
ーライナー間の耐摩耗性、耐焼付性、ピストンリングと
ピストン間の耐摩耗性、耐焼付性ζ耐スカツフイング性
が問題になる。従来かかる対策としてシリンダーライナ
ーと接するピストンリング外周面にCrメッキまたはM
o溶射を施し、ピストンと接する上下面にはCrメッキ
および/または形状での対策を行ない、ピストンリング
を装着するピストン側では、耐摩環を鋳ぐるんだものが
採用されている。
Particularly in diesel engines, carbon suits occur, and for high-speed rotation, the wear resistance between the piston ring and cylinder liner, seizure resistance, wear resistance between the piston ring and piston, seizure resistance, ζ anti-scuffing, etc. Gender becomes an issue. Conventionally, as a countermeasure against this problem, Cr plating or M
o The upper and lower surfaces in contact with the piston are coated with Cr plating and/or shaped, and the piston side, where the piston ring is attached, is fitted with a wear-resistant ring.

Crメッキピストンリング(以下、Crメッキリングと
いラ)は、相手シリンダーライナー鋳鉄材との耐焼付性
が良くないため普通鋳鉄では焼付き、スカツフイングを
発生しやすい。
Cr-plated piston rings (hereinafter referred to as Cr-plated ring rollers) do not have good seizure resistance with the mating cylinder liner cast iron material, so ordinary cast iron is prone to seizure and scuffing.

そのためNi、Cr、MoやB、Nbを添加した鋳鉄シ
リンダーラトナーが用いられているが、従来鋳鉄に比較
して加工性が悪くなり、従つてコストも高くなる。Mo
溶射ピストンリング(以下、Mo溶射リングといラ)は
、相手シリンダーライナー鋳鉄材との耐焼付性は良好で
あるが、300〜350℃以上の熱負荷がかかるエンジ
ンでは、Moの酸化により母材ピストンリングと溶射層
間の密着性が問題になつてくるし、Mo材料コストも極
めて高く、高コストピストンリングになる。また、最近
ではFe系+Mo系、Fe系+セラミック系の混合溶射
もみられるが、Mo系はコストが高く、また耐スカツフ
イング性もそこまで要求されるエンジンは少なく、Fe
系+セラミック系の混合溶射は加工性、密着性、また高
温時での硬さの低下等に問題が残る。
For this reason, cast iron cylinder rattoners to which Ni, Cr, Mo, B, and Nb are added are used, but the workability is poorer than that of conventional cast iron, and the cost is also high. Mo
Thermal sprayed piston rings (hereinafter referred to as Mo thermal sprayed rings) have good seizure resistance with the mating cylinder liner cast iron material, but in engines that are subjected to heat loads of 300 to 350°C or higher, the oxidation of Mo causes the base material piston to Adhesion between the ring and the sprayed layer becomes a problem, and the Mo material cost is extremely high, resulting in a high-cost piston ring. In addition, recently mixed thermal spraying of Fe-based + Mo-based or Fe-based + ceramic-based systems has been seen, but Mo-based systems are expensive, and there are few engines that require such high scuffing resistance.
Mixed thermal spraying of ceramic type and ceramic type leaves problems with workability, adhesion, and a decrease in hardness at high temperatures.

Fe系+Mo系の混合溶射は密着性、耐スカツフイング
性、耐摩耗性等はある程度期待できるが、本発明のピス
トンリングに比べるとコストは高くなる。またMoを使
用しているため、耐スカツフイング性は優れているが、
本質的に高温使用時でのMoの酸化が問題となる。本発
明は従来技術のかかる欠点を解消したものであり、ピス
トンリング自体の耐摩耗性、耐焼付性が優れているばか
りでなく、相手材であるシリンダーライナー鋳鉄の耐摩
耗性、耐焼付性も良好であり、かつコスト的にもMo溶
射リングより安くCrメッキリングに匹敵する低コスト
なピストンリングを提供するものである。
Mixed thermal spraying of Fe type and Mo type can be expected to have a certain degree of adhesion, scuffing resistance, wear resistance, etc., but the cost is higher than that of the piston ring of the present invention. Also, since it uses Mo, it has excellent scuffing resistance, but
Essentially, oxidation of Mo during high-temperature use poses a problem. The present invention eliminates the drawbacks of the prior art and not only has excellent wear resistance and seizure resistance of the piston ring itself, but also improves the wear resistance and seizure resistance of the cylinder liner cast iron, which is the mating material. The present invention provides a low-cost piston ring that is of good quality and is cheaper than a Mo sprayed ring and comparable to a Cr-plated ring.

本発明の要旨とするところは、55〜70(f)C〜7
0%Cr−3〜9%C一残部FeよりなるFe−C−C
r合金のスタ/ピング粉末を、粒度44μ(350メツ
シユ)〜10μの丸みを帯びた粉末とした後、該粉末を
プラズマ溶射により少くともピストンリングの摺動面の
一部に溶射したことを特徴とするピストンリングにある
The gist of the present invention is 55-70(f)C-7
Fe-C-C consisting of 0%Cr-3~9%C and balance Fe
The r-alloy star/ping powder is made into a rounded powder with a particle size of 44μ (350 meshes) to 10μ, and then the powder is sprayed onto at least a part of the sliding surface of the piston ring by plasma spraying. It is located in the piston ring.

本発明のFe−C−Cr合金において、C量を3〜91
:fl)としたのは、C%が3q1)以下の場合スタン
ピング能力が劣り、従つて粉末コストが高くなるし、ま
たC%をあまり高くすると密着性、溶射作業性が劣るた
め上限を9%とした。
In the Fe-C-Cr alloy of the present invention, the amount of C is 3 to 91
: fl) was chosen because if the C% is less than 3q1), the stamping ability will be poor and the powder cost will be high, and if the C% is too high, the adhesion and thermal spray workability will be poor, so the upper limit was set at 9%. And so.

またCr%も粉末コストおよび耐摩耗性の点から55〜
70%Crとした。なお、Si,Mn,P,S等は一般
に炭素鋼に自まれる程度の量であればさしつかえない。
また粉末粒度は44μより粗いと気孔率が大になり耐摩
耗性、耐スカツフイング性は悪くなり、10μより細か
すぎると溶射効率が著しく劣る。このため溶射粉末の粒
度を44μ〜10μとした。なお、前記粒度範囲のうち
、37μ〜20μの粒度範囲にあるものが全体の50%
以上あることがさらに好ましい結果をもたらす。
Also, Cr% is 55~55 from the viewpoint of powder cost and wear resistance.
It was set to 70% Cr. Note that Si, Mn, P, S, etc. may be used in amounts that are generally present in carbon steel.
Further, if the powder particle size is coarser than 44μ, the porosity becomes large, resulting in poor wear resistance and scuffing resistance, and if the powder particle size is too fine than 10μ, the thermal spraying efficiency is extremely poor. For this reason, the particle size of the thermal spray powder was set to 44μ to 10μ. Furthermore, among the above particle size ranges, 50% of the total particles are in the particle size range of 37μ to 20μ.
The above conditions bring about more favorable results.

本発明においてはスタンピング粉末を用いる。アトマイ
ズ粉末の場合は粒度のバラツキが大きく、本発明で使用
する44μ〜10μの粒度範囲の溶射粉末の収率は20
〜40%と低く、高価格なものとなるため、実際上使用
には適しなぃ。なお、本発明においては、ジニットミル
またはポールミルを用いて粉末粒子に丸みをもたせた。
本発明に係るピストンリングは、前記の様にして製造し
た溶射粉末を、例えば第1図に示される様な鋳鉄系また
は鋼系ピストンリング1のリング溝2に0.2〜0.3
5mmの厚さにプラズマ溶射し、研削加工によつて仕上
げ厚さ0.1〜0.25mmにすることによつて得るこ
とができる。
In the present invention, stamping powder is used. In the case of atomized powder, the particle size varies widely, and the yield of thermal spray powder in the particle size range of 44μ to 10μ used in the present invention is 20μ
Since it is low at ~40% and expensive, it is not suitable for practical use. In the present invention, the powder particles were rounded using a dinit mill or a pole mill.
In the piston ring according to the present invention, the thermal spray powder produced as described above is applied to the ring groove 2 of a cast iron or steel piston ring 1 as shown in FIG.
It can be obtained by plasma spraying to a thickness of 5 mm and grinding to a finished thickness of 0.1 to 0.25 mm.

なお、本発明の表面処理ピストンリZグは特に高負荷、
高速回転デイーゼルエンジンの低コストなピストンリン
グとして優れた特性を示すが、ガソリンエンジン等の内
燃機関用ピストンリングとしても十分使用することがで
きるものである。
In addition, the surface-treated piston rig of the present invention is particularly suitable for high loads,
It exhibits excellent characteristics as a low-cost piston ring for high-speed rotating diesel engines, but it can also be satisfactorily used as a piston ring for internal combustion engines such as gasoline engines.

実施例 1球状黒鉛ピストンリング母材(形状呼び径=
90φ、T寸=3.8U77!、B寸=2.5m0の外
周面、上下面を加工後、外周面に第1図2のような溝加
工を(溝深さ0.2m0行ない、脱脂、洗浄、乾燥後、
焼成アルミナでプラステイ/グした。
Example 1 Spherical graphite piston ring base material (shape nominal diameter =
90φ, T size = 3.8U77! , After machining the outer circumferential surface and upper and lower surfaces of dimension B = 2.5 m0, grooves were made on the outer circumferential surface as shown in Figure 1 and 2 (groove depth 0.2 m0, and after degreasing, cleaning, and drying,
Plasty/glued with calcined alumina.

次いでふるいにかけ、粒子サイズを350メツシユ(4
4μ)より細かくした63%Cr−8.2%一残Feよ
りなる粉末を、プラズマ溶射法によつて0.3〜0.3
5關コーテイングした。コーテイング後、研削盤により
クラインディング加工して所定の寸法に仕上げ、母材と
溶射層間の密着力を調べるためピストンリングを引張り
試験機にかけ、ハクリするまで引張り、その時の拡げ量
でもつて密着力とした。さらに仕上げ後、350′CX
3OO時間酸化雰囲気中に保持し、徐冷後同様に引張り
試験機にかけ密着力を求めた。なお、この場合使用した
63%Cr−8.2%C−残部FeのFe−C−Cr合
金粉末はスタンピングによつて粉砕されたものをさらに
超音速のジニットミルにかけ、エアー圧力5.5認/(
177!2、流量3Nm″/Minのエアーを流入し、
ノズルから衝突板に高速でたたきつけて第3図に示され
る様に丸味を持たせたものである。
It is then sieved to reduce the particle size to 350 mesh (4
4μ) A finer powder consisting of 63% Cr-8.2% remaining Fe is 0.3 to 0.3 μm by plasma spraying.
5 coated. After coating, the piston ring is finished to the specified dimensions by grinding with a grinder, and in order to check the adhesion between the base metal and the sprayed layer, the piston ring is put on a tensile tester and pulled until it peels off. did. After further finishing, 350'CX
The sample was kept in an oxidizing atmosphere for 30 hours, and after being slowly cooled, it was similarly applied to a tensile tester to determine the adhesion strength. The Fe-C-Cr alloy powder of 63% Cr-8.2% C-balance Fe used in this case was crushed by stamping, then passed through a supersonic dinit mill and heated at an air pressure of 5.5 mm/cm. (
177!2, inflowing air with a flow rate of 3Nm''/Min,
It is struck from a nozzle against a collision plate at high speed to give it a rounded shape as shown in Figure 3.

同様にして、従来の溶射ピストンリングとして用いられ
ているMO溶射リング、文献などの公知資料にみられる
65〜90%MO−10〜35(F6Ni合金溶射ピス
トンリングも密着力を求めるため常温および350℃×
300時間酸化雰囲気中に保持し、徐冷後引張り試験を
行なつた。本発明の溶射ピストンリングは常温で23.
0〜26.0mm1350℃X3OO時間のものは24
.5〜26.0mmとほとんど差がみられなかつた。M
O−Ni合金溶射ピストンリングは常温で22.5〜2
6.0m』 350℃×300時間のものは17.9〜
19.9mmであつたのに対し、MO溶射ピストンリン
グは常温では19.0〜22.5mmと比較的高い値を
示したが、350℃×300時間のものは12.1〜1
4.4mmと極めて低い値を示した。なお、密着力の限
界として引張り試験による値が15〜17mmf)MO
溶射リングをデイーゼルエンジン(2.2e)VC組込
み、1000r.p.m無負荷〜4400r,p.m1
全負荷のくり返しによるアツブダウン台上試験を300
時間行ない、分解後ピストンリングを観察したところ、
溶射層のハクリがみられた点から引張り試験値で17關
以上必要と思われる。
Similarly, MO thermal sprayed rings used as conventional thermal sprayed piston rings, 65 to 90% MO-10 to 35 (F6Ni alloy thermal sprayed piston rings found in literature, etc.) are also used at room temperature and 350% to obtain adhesion. ℃×
The specimen was kept in an oxidizing atmosphere for 300 hours, and after slow cooling, a tensile test was conducted. The sprayed piston ring of the present invention has a temperature of 23% at room temperature.
0-26.0mm 1350℃ x 3OO hours is 24
.. There was almost no difference between 5 and 26.0 mm. M
O-Ni alloy sprayed piston ring is 22.5~2 at room temperature.
6.0m” 350℃ x 300 hours is 17.9~
19.9 mm, while the MO sprayed piston ring showed a relatively high value of 19.0 to 22.5 mm at room temperature, but the value of 12.1 to 1
It showed an extremely low value of 4.4 mm. In addition, the limit of adhesion strength is 15 to 17 mm f) MO by a tensile test.
Diesel engine (2.2e) VC installed with thermal spraying ring, 1000r. p. m no load~4400r, p. m1
A deep down bench test with repeated full loads for 300 times.
When I observed the piston ring after disassembling it for a while, I found that
Since peeling of the sprayed layer was observed, it seems that a tensile test value of 17 degrees or more is required.

実施例 2 実施例1の63%Cr−8.2%C一残Feのスタ/ピ
ング粉末をジニットミルにかけず、74μ(200メツ
シユ)〜5μの粉末粒度のものを用いて実施例1と同様
ブラズマ溶射をした。
Example 2 The star/ping powder of 63% Cr-8.2% C with balance Fe of Example 1 was not subjected to dinit milling, but the powder particle size of 74μ (200 mesh) to 5μ was used to produce plasma in the same manner as in Example 1. I did thermal spraying.

第2図にみられる様に粉末の形状ぱ角ばつており、溶射
効率および溶射歩留りは2/3〜1/2に低下した。ま
た溶射層の表面の気孔(第4図)も第5図の様に、ジニ
ットミル粉砕したものに比べ多くなつている。ここで溶
射効率とは同一条件で洛射を行なつた場合の単位時間あ
たりの皮膜厚さを意味し、溶射歩留りとはある時間溶射
した場合、被溶射物に付着した粉末量と消費粉末量の百
分率を意味する。
As seen in FIG. 2, the shape of the powder varied, and the thermal spraying efficiency and thermal spraying yield decreased to 2/3 to 1/2. Furthermore, as shown in FIG. 5, the number of pores on the surface of the sprayed layer (FIG. 4) is larger than that of the layer pulverized by a dinit mill. Thermal spraying efficiency here means the coating thickness per unit time when spraying is carried out under the same conditions, and the thermal spraying yield is the amount of powder attached to the object to be sprayed and the amount of powder consumed when spraying is carried out for a certain period of time. means the percentage of

実施例 3粉末コストの安価である0.7%C−0.4
8%Si一0.47%Mn−13.0%Cr一残部Fe
(7)Fe一Cr系合金をプラズマ溶射によつてピスト
ンリングに溶射し、研削加工によつて仕上げた後、MO
溶射リング、本発明ピストンリングと一緒VC4(1)
℃の炉中(10−2mmHg真空炉)に5時間保持後、
取り出して張力を測定した。
Example 3 0.7%C-0.4 with low powder cost
8%Si-0.47%Mn-13.0%Cr-balance Fe
(7) After spraying Fe-Cr alloy onto piston rings by plasma spraying and finishing by grinding, MO
Sprayed ring, together with the piston ring of the present invention VC4 (1)
After being kept in a furnace at °C (10-2 mmHg vacuum furnace) for 5 hours,
It was taken out and the tension was measured.

この結果はMO溶射リングと本考案のピストンリングは
ほとんど張力の変化が新品のものに比べてみられなかつ
たのに対し、Fe系の13%Cr鋼粉には張力減退が1
.5〜2.5kgみられた。実施例 4 Crメツキリング、MO溶射リングおよび本発明に係る
ピストンリングを使用した場合のピストンリングおよび
シリンダーライナーのそれぞれの摩耗量を測定した。
This result shows that the MO sprayed ring and the piston ring of this invention showed almost no change in tension compared to new ones, whereas the Fe-based 13% Cr steel powder showed a decrease in tension of 1.
.. The weight was found to be 5 to 2.5 kg. Example 4 The amount of wear of each piston ring and cylinder liner was measured when a Cr metal ring, an MO sprayed ring, and a piston ring according to the present invention were used.

試験はこれらのピストンリングを2200ccエンジン
に組込み、4400r.pm、全負荷で100時間行な
つた。この結果を第6図に示す。第6図において、上方
はピストンリングの摩耗量、下方はシリンダーライナー
の摩耗量を示し、A,B,CはそれぞれMO溶射リング
、Crメツキリングおよび本発明に係るピストンリング
を用いた場合のそれぞれのピストンリングとシリンダー
ライナーの摩耗量を示す。実施例1VCみられる様に5
5〜70Cr−3〜9C一残部FeのFe−C−Cr合
金を溶射したピストンリングは350℃酸化雰囲気中で
も゛充分な耐酸化性を示すのに対し、MO溶射リゾ列濯
0の他にMOO2,MOO3の酸化物が存在し、母材鋳
鉄や鋼との密着力を著しく低下させた。またMO一Ni
合金の混合溶射ピストンリングは、350℃X3OO時
間の酸化試験を行なつた後でも密着力は17〜20mm
と比較的高い値を示し、また耐スカツフイング性、耐焼
付性もMO溶射と同等であるが、MO溶射リングとのコ
スト差はほとんどみられず、硬さもMO溶射層、55〜
70Cr−3−9C一残部Fe溶射層のHv7OO〜9
00(ビツカース硬さ)、Hv85O〜1050に比べ
てHv6OO〜850と低く、自身の摩耗量が本発明に
係るピストンリングの約2倍であつた。一方、本発明の
55〜70Cr−3〜9C一残部Feのピストンリング
は、MO溶射リングに比べて耐スカツフイング性、耐焼
付性が劣るが、相手部材の摩耗量も自身の摩耗量もとも
に少なく、耐摩耗性に優れ、また高温負荷時での密着性
もよい。Crメツキリングに比較すると、溶射層の気孔
の存在によつて、耐焼付性、耐スカツフイング性はCr
メツキリングより優れ、耐摩耗性に関してはCrメツキ
リングとほぼ同じである。55〜70%Cr−3〜9%
C一残部Feの粉末はフエロアロイとして鋳鉄、鋼の合
金化のとき用いられるもので市販での入手が容易である
が、市販粉末はスタンピングによつて製造されたもので
、粒度は74μ〜5μと広い分布を示しており、そのま
ま使用すると溶射層の気孔が多く、また溶射歩留り、溶
射効率も劣るため、適正粒度範囲にふるいわけした後超
音速の気流中に導入し、衝突板に高速でたたきつける方
法によるか、またはボールミル等を使用することにより
粉末粒子に丸味を持たせることが必要である。
In the test, these piston rings were installed in a 2200cc engine and the engine was operated at 4400r. pm for 100 hours under full load. The results are shown in FIG. In Fig. 6, the upper part shows the wear amount of the piston ring, and the lower part shows the wear amount of the cylinder liner. Indicates the amount of wear on piston rings and cylinder liners. Example 1 VC as seen 5
Piston rings thermally sprayed with a Fe-C-Cr alloy of 5-70Cr-3-9C and the balance Fe exhibit sufficient oxidation resistance even in an oxidizing atmosphere at 350°C. , MOO3 oxides were present, which significantly reduced the adhesion to the base material cast iron or steel. Also MOichiNi
Even after conducting an oxidation test at 350°C for 300 hours, the adhesion of the alloy mixed sprayed piston ring is 17 to 20 mm.
The scuffing resistance and seizure resistance are also the same as those of MO sprayed rings, but there is almost no difference in cost compared to MO sprayed rings, and the hardness is also higher than that of MO sprayed rings.
70Cr-3-9C-balance Fe sprayed layer Hv7OO~9
00 (Vickers hardness), which was lower at Hv6OO~850 than Hv850~1050, and its own wear amount was about twice that of the piston ring according to the present invention. On the other hand, the 55-70Cr-3-9C-balance-Fe piston ring of the present invention has inferior scuffing resistance and seizure resistance compared to the MO sprayed ring, but the amount of wear on the mating member and the amount of wear on itself is also small. , excellent abrasion resistance, and good adhesion under high temperature loads. Compared to Cr metal ring, the seizure resistance and scuffing resistance are lower than that of Cr due to the presence of pores in the sprayed layer.
It is superior to Metsuki ring, and its wear resistance is almost the same as Cr Metsuki ring. 55-70% Cr-3-9%
Powder of C and balance Fe is used as a ferroalloy when alloying cast iron and steel, and is easily available commercially, but the commercially available powder is manufactured by stamping and has a particle size of 74μ to 5μ. It shows a wide distribution, and if used as is, the sprayed layer will have many pores, and the spraying yield and efficiency will be poor. Therefore, after sifting it into an appropriate particle size range, it is introduced into a supersonic air stream and struck against a collision plate at high speed. It is necessary to give the powder particles a roundness by a method or by using a ball mill or the like.

スタンピyグ粉末のままであると、粉末粒度が本発明の
ものと同じ範囲内であつても、本発明と同じ溶射条件で
溶射を行なつた場合、溶射量の厚さが43〜55μであ
つたのに対しジニットミルによつて丸味を持たせたもの
は79〜95μと約2倍の厚さを示し優れた溶射効率を
示した。量産時溶射粉末の流動度が変化することは、厚
さのバラツキが大になりその分加工代を多くとらねばな
らないため、コストアツプになる。Fe−Cr合金でも
Crが13%と低い値のものでは、硬さがHv6l3〜
813と本発明リングより150〜250低く、また高
負荷での使用で張力が減退する恐れもあるなどの問題を
かかえてぃる。本発明に係るピストンリングは、従来の
Crメッキ117グでは問題とされる高負荷エッジy1
例えば高速デイーゼルエンジンの様な場合には特に威力
を発揮し、高コストのMO溶射リングを使用しなくても
、本発明の低コストピストンリングで充分対応できる。
If the stamping powder is used as it is, even if the powder particle size is within the same range as that of the present invention, when thermal spraying is carried out under the same thermal spraying conditions as the present invention, the thickness of the sprayed amount will be 43 to 55μ. Compared to the hot one, the one that was rounded by the dinit mill had a thickness of 79 to 95μ, about twice as thick, and showed excellent thermal spraying efficiency. Changes in the fluidity of thermal spray powder during mass production increase the variation in thickness, which requires a correspondingly large processing allowance, leading to increased costs. Fe-Cr alloys with low Cr content of 13% have hardness of Hv6l3~
813, which is 150 to 250 lower than the ring of the present invention, and it also has problems such as the possibility that the tension will decrease when used under high loads. The piston ring according to the present invention has a high load edge y1 which is a problem with conventional Cr plating 117g.
For example, it is particularly effective in high-speed diesel engines, and the low-cost piston ring of the present invention can be used satisfactorily without using a high-cost MO sprayed ring.

本発明に係るピストyリングは、以下に列挙する様な効
果を奏する。
The piston Y ring according to the present invention has the following effects.

(1)従来の溶射リ/グに比べて低コストである。(1) Lower cost than conventional thermal spray rigs.

(2)耐スカツフイング性は、−゛Crメツキリングよ
り優れている。(3)耐摩耗性はMO溶射リングより優
れ、Crメツキリングと同等またはそれ以上である。
(2) The scuffing resistance is superior to that of the -Cr metal ring. (3) Wear resistance is superior to MO sprayed rings and equal to or better than Cr metal rings.

(4)密着力はMO溶射リングより優れ、特に高速高負
荷のデイーゼルエンジンのピストンリングとして優れて
いる。
(4) Adhesion is superior to MO sprayed rings, and is particularly excellent as a piston ring for high-speed, high-load diesel engines.

(5)高温使用による密着力低下、硬さ低下、張力低下
がない。
(5) There is no decrease in adhesion, hardness, or tension due to high temperature use.

(6)使用粉末は広く市販されており、入手が容易であ
る。
(6) The powder used is widely commercially available and easy to obtain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はピストンおよびピストンリングの一部断面図、
第2図はスタンピング粉末形状を示す写真(X5OO)
、第3図はスタンピング粉末を、ジニットミルにかけた
後の粉末形状を示す写真(×500)、第4図はスタン
ピング粉末を溶射した溶射層の表面組織を示す写真(X
lOO)、第5図はスタンピング粉末を、ジニットミル
にかけた後に溶射した溶射層の表面組織を示す写真(X
lOO)、第6図ぱMO溶射リング、Crメツキリング
、本発明に係るピストンリングの3種を用いて摩耗試験
を行なつたときのそれぞれの摩耗量と、相手部材である
シリンダーライナーの摩耗量を示すグラフである。 1・・・ピストンリング、2・・・溶射層、3・・・ピ
ストン、4・・・シリンダーライナー、A・・・MO溶
射リングを使用した場合の摩耗量、B・・・Crメツキ
リングを使用した場合の摩耗量、C・・・本発明に係る
ピストンリングを使用した場合の摩耗量。
Figure 1 is a partial sectional view of the piston and piston ring;
Figure 2 is a photograph showing the shape of stamping powder (X5OO)
, Figure 3 is a photograph (x500) showing the shape of the stamping powder after it has been applied to a dinit mill, and Figure 4 is a photograph (X
Figure 5 is a photograph (X
Fig. 6 shows the amount of wear of each of the three types of thermal sprayed rings, Cr metal rings, and piston rings according to the present invention, and the amount of wear of the cylinder liner, which is the mating member. This is a graph showing. 1... Piston ring, 2... Sprayed layer, 3... Piston, 4... Cylinder liner, A... Amount of wear when using MO sprayed ring, B... Using Cr metal ring Amount of wear when using the piston ring according to the present invention, C... Amount of wear when using the piston ring according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 55〜70%Cr−3〜9%C−残部Feよりなる
Fe−C−Cr合金のスタンピング粉末を、粒度44μ
〜10μの丸味を帯びた粉末とした後、該粉末をプラズ
マ溶射により少くともピストンリングの摺動面の一部に
溶射したことを特徴とするピストンリング。
1 Stamping powder of Fe-C-Cr alloy consisting of 55 to 70% Cr, 3 to 9% C, and balance Fe was stamped with a particle size of 44μ.
A piston ring characterized in that the powder is formed into a rounded powder with a diameter of ~10μ and then sprayed on at least a part of the sliding surface of the piston ring by plasma spraying.
JP3469578A 1978-03-24 1978-03-24 piston ring Expired JPS5932654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3469578A JPS5932654B2 (en) 1978-03-24 1978-03-24 piston ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3469578A JPS5932654B2 (en) 1978-03-24 1978-03-24 piston ring

Publications (2)

Publication Number Publication Date
JPS54126854A JPS54126854A (en) 1979-10-02
JPS5932654B2 true JPS5932654B2 (en) 1984-08-10

Family

ID=12421500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3469578A Expired JPS5932654B2 (en) 1978-03-24 1978-03-24 piston ring

Country Status (1)

Country Link
JP (1) JPS5932654B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569742A (en) * 1978-11-20 1980-05-26 Toyota Motor Corp Piston ring for internal combustion engine
JPS5669367A (en) * 1979-11-09 1981-06-10 Toyota Motor Corp Sliding member
JPS5827862A (en) * 1981-08-12 1983-02-18 Nippon Piston Ring Co Ltd Piston ring
JPS59110355U (en) * 1983-01-17 1984-07-25 日本ピストンリング株式会社 piston ring
JPS6036552U (en) * 1983-08-19 1985-03-13 三菱重工業株式会社 piston ring
JPS6093162A (en) * 1983-10-27 1985-05-24 Toyota Motor Corp Slidable member
JP2701532B2 (en) * 1990-11-07 1998-01-21 トヨタ自動車株式会社 Sliding member
JP2003027205A (en) * 2001-07-09 2003-01-29 Showa Denko Kk Method for producing thermal spraying material
CN107013359B (en) * 2017-05-11 2019-01-25 湘潭大学 A kind of piston and preparation method with compound texturing doping coating

Also Published As

Publication number Publication date
JPS54126854A (en) 1979-10-02

Similar Documents

Publication Publication Date Title
US9291264B2 (en) Coatings and powders, methods of making same, and uses thereof
TW384355B (en) Cylinder element, such as a cylinder liner, a piston skirt or a piston ring, in an internal combustion engine of the diesel type, and a piston ring for such an engine
US7291384B2 (en) Piston ring and thermal spray coating used therein, and method for manufacturing thereof
US20070099014A1 (en) Method for applying a low coefficient of friction coating
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
CN109396453B (en) Preparation method of dispersion-strengthened aluminum bronze spherical powder
US20080274010A1 (en) Wear Resistant Alloy Powders and Coatings
JPS5932654B2 (en) piston ring
CN110894603B (en) Material for preparing wear-resistant self-lubricating coating, wear-resistant self-lubricating coating and preparation method
CN102471862A (en) Sliding member having a thermally sprayed coating and method for producing same
WO2010098382A1 (en) Piston ring
CN108531844A (en) A kind of preparation method of the resistance to high temperature oxidation and wear-resistant coating of rare earth oxide doping for the protection of H13 steel surfaces
CN111850453A (en) Chromium oxide-based antifriction coating and preparation method thereof
JP6411875B2 (en) Piston ring and manufacturing method thereof
CN113463009A (en) Preparation method of wear-resistant coating on surface of aluminum alloy engine cylinder hole
DK180330B1 (en) STAMP RING AND METHOD OF MANUFACTURE THEREOF
JPS59150080A (en) Sliding member
JPS6154107B2 (en)
JP2004307975A (en) Sliding member
CN110643918A (en) Coating material for internal combustion engine cylinder, preparation method thereof and internal combustion engine cylinder
JPS5947523A (en) Sliding member
JPS5949306B2 (en) Fine composite powder for forming wear-resistant thermal spray layers
CN116083835A (en) Wear-resistant self-lubricating composite coating material and preparation method thereof
JPH10299568A (en) Cylinder liner
JPH0434268A (en) Spraying piston ring