CZ201311A3 - Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený z dehydroxylovaných a delaminovaných hořečnato-křemičitých fylosilikátů a jeho použití - Google Patents
Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený z dehydroxylovaných a delaminovaných hořečnato-křemičitých fylosilikátů a jeho použití Download PDFInfo
- Publication number
- CZ201311A3 CZ201311A3 CZ2013-11A CZ201311A CZ201311A3 CZ 201311 A3 CZ201311 A3 CZ 201311A3 CZ 201311 A CZ201311 A CZ 201311A CZ 201311 A3 CZ201311 A3 CZ 201311A3
- Authority
- CZ
- Czechia
- Prior art keywords
- magnesium
- delaminated
- dehydroxylated
- ray amorphous
- geopolymers
- Prior art date
Links
- 229920000876 geopolymer Polymers 0.000 title claims abstract description 17
- 150000002680 magnesium Chemical class 0.000 title description 4
- 239000011777 magnesium Substances 0.000 claims abstract description 16
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 14
- 229910052615 phyllosilicate Inorganic materials 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 6
- 239000000454 talc Substances 0.000 claims description 12
- 229910052623 talc Inorganic materials 0.000 claims description 12
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical class [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 230000002787 reinforcement Effects 0.000 claims description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 229910052909 inorganic silicate Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims 1
- 239000000347 magnesium hydroxide Substances 0.000 claims 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims 1
- 238000001556 precipitation Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 18
- 238000002360 preparation method Methods 0.000 abstract description 4
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical class [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 abstract 1
- 238000006068 polycondensation reaction Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 235000019353 potassium silicate Nutrition 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 229910000323 aluminium silicate Inorganic materials 0.000 description 4
- 239000004567 concrete Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical class O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000010422 painting Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001387 inorganic aluminate Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229960002366 magnesium silicate Drugs 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Vynález se týká rentgeno-amorfního hořečnatého strukturního analogu geopolymerů, způsobu jeho výroby smísením delaminovaného a dehydroxylovaného hořečnato-křemičitého fylosilikátu rentgeno-amorfní struktury s alkalickým činidlem a zvýšením teploty na nejméně 90 .degree.C a jeho použití ve stavebnictví jako materiálu odolného zejména proti povětrnostním vlivům a pH.
Description
Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený z dehydroxylovaných a delaminovaných hořečnato-křemičitých fylosilikátů a jeho použití
Oblast techniky
Vynález se týká rentgeno-amorfního hořečnatého strukturního analogu geopolymerů, způsobu jeho výroby aktivací dehydroxylovaného a delaminovaného hořečnato-křemičitého fylosilikátů rentgeno-amorfní struktury v alkalickém prostředí s využitím zvýšené teploty nejméně 90 °C a jeho použití.
Dosavadní stav techniky
Za geopolymery jsou považovány anorganické polymemí materiály, které jsou připravovány z hlinitokřemičitanových materiálů jejich aktivací v zásaditém prostředí za normální teploty a tlaku. Typicky se používá reakce delaminovaného a dehydroxylovaného kaolinu (metakaolinu) s vodním sklem nebo roztokem NaOH či KOH, při kterém vzniká struktura na obr. 1 [a],
Dioktaedrické hlinitokřemičité materiály (např. kaolin, pyrofylit apod.) v přírodě často mají své hořečnaté trioktaedrické analogy (např. serpentin, mastek apod.) [c], Z této skutečnosti tak plyne možnost připravit také hořečnatý analog hlinitokřemičitých geopolymerů vyrobených alkalickou aktivací. Výrobě alkalicky aktivovaného hořečnatokřemičitého materiálu však bránila skutečnost, že dosud nebylo možné připravit delaminovanou adehydroxylovanou hořečnatou fázi mastku (CZ PV2012-839) a také vznik-*— sraženin Mg(OH)2 v silně alkalickém prostředí během polykondenzace, to znamená vytvoření difuzní bariéry snižující homogenitu produktu a zpomalující reakci.
Reference:
[a] F. Šoukal, T. Opravil, P. Ptáček, B. Foller, J. Brandštetr, P. Roubíček, Geopolymers amorphous ceramics via solution, in: Some thermodynamic, structural and behavioral aspects of materials accentuating non-crystalline states, ed. J. Šesták, M. Holeček, J. Málek, Plzeň, 2009.1SBN 798-80-87269-06-0.
[b] V.D. Gluchovski, Gruntosilikaty. Grosstrojizdat, Kiev 1959.
-2 — [c] M. Chvátal, Úvod do systematické mineralogie, První vydání, vydal: Silikátový svaz, Praha 2005. ISBN: 86821-11-5.
[d] J. Davidovits, Ancient and Modem Concretes: What is the Reál Difference? Concrete intemational 9 (1987) 23 - 35.
obrázku ha vykrQsacb
Přehled tevobr-azení'
Obr.l: Idealizovaná struktura geopolymeru (Gluchovsky [b]).
Obr.2: EDX analýza produktu polykondenzace (spekt. 1) a částic meta-mastku (spekt. 2).
Obr.3: XRD analýza produktu polykondenzace (a) a TG-DTA meta-mastku a produktu (b).
Obr.4: Rozpustnost S1O2 křemičitého fylosilikátu v závislosti na pH.
Podstata vynálezu
Výše uvedený problém přípravy aktivovaného hořečnato-křemičitého materiálu řeší způsob výroby rentgeno-amorfního hořečnatého strukturního analogu geopolymerů aktivací dehydroxylovaného a delaminovaného hořečnato-křemičitého fylosilikátu rentgeno-amorfní struktury ve směsi s alkalickým činidlem o pH nejméně 10 za teploty nejméně 90 °C a následným ztuhnutím této směsi.
Směs hořečnato-křemičitého fylosilikátu s alkalickým činidlem má výhodně pH 12. Dehydroxylovaný a delaminovaný hořečnato-křemičitý fylosilikát rentgeno-amorfní struktury se ve výhodném způsobu podle vynálezu smísí s alkalickým činidlem a vzniklá směs se následně zahřeje na teplotu nejméně 90 °C nebo se dehydroxylovaný a delaminovaný hořečnato-křemičitý fylosilikát rentgeno-amorfní struktury a alkalické činidlo nejprve zahřejí na teplotu nejméně 90 °C a následně se smísí.
Dehydroxylovaným a delaminovaným hořečnato-křemičitým fylosilikátem rentgenoamorfní struktury je podle výhodného provedení delaminovaná a dehydroxylovaná fáze mastku (CZ PV 2012-839).
Alkalickým činidlem použitým ve způsobu podle vynálezu je výhodně sodné nebo draselné vodní sklo nebo hydroxid alkalického kovu nebo jejich směs.
Předmětem vynálezu je také rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený způsobem podle vynálezu a jeho použití ve stavebnictví.
X.
Rentgeno-amorfní hořečnatý strukturní analog geopolymerů je možné používat samostatně nebo například ve směsi s kamenivem, vláknitou výztuží nebo ve směsi s jinými fylosilikáty.
Rozpuštěním a polykondenzací delaminované a nehydroxylované fáze mastku v silně alkalickém prostředí vodního skla nebo hydroxidů alkalických kovů vznikají vazby typu (=SiO-Mg-O-), přičemž pokles pH vyvolaný zvýšením teploty (zahřátím reagující soustavy) nad teplotu 90 °C zabrání precipitaci hydroxidu hořečnatého v silně zásaditém prostředí. To umožní reakci hořečnatých oktaedrů s tetraedry (SÍO4)4·, kterou dokazuje zastoupení Mg Éf v produktu polykondenzace (®br. 2, spektrum 1).
V průběhu procesu nevzniká žádná krystalická fáze a produkt tak zůstává amorfní (0br. 3(a)). V průběhu reakce se také rozpouští delaminovaná a dehydroxylovaná fáze mastku za polykondenzace stavebních jednotek typu (^Si-O-Mg-O-), což se na DTA projeví klesající intenzitou píku krystalizace hořečnato-křemičité fáze (Obr. 3(b)).
Způsobem podle vynálezu se nezískají ryzí geopolymery, které definuje způsob přípravy alkalickou aktivací hlinito-křemičitých materiálů. Ve struktuře geopolymerů jsou přítomny pouze tetraedry [SÍO4] ' a [AIO4] ' tvořící vazby (^Si-O-Al-O-), kdy přebytek záporného náboje kompenzují ionty alkalických kovů, které vstupují do struktury během aktivace.
S ohledem na rozdíly iontového poloměru Mg2+ a Al3+ jsou ve struktuře materiálu podle vynálezu přítomné oktaedry (MgO6)10’, které společně s nepřítomností (AIO4)5· jednotek a zvýšené teploty přípravy neumožňují klasifikovat tento materiál jako geopolymer (definice dle J.Davídovits [d]). Na základě amorfní struktury a přítomnosti stavebních jednotek typu (=Si-O-Mg-O-) lze však vyvinutý materiál považovat za nový typ materiálu připraveného alkalickou aktivací dehydroxylovaných a delaminovaných hořečnatokřemičitých fylosilikátů.
Alkalicky aktivovaný hořečnato-křemičitý materiál podle vynálezu je využitelný především ve specifických aplikacích, kde je kladen velký důraz na odolnostní charakteristiky použitého materiálu, zejména proti povětrnostním vlivům a pH. Materiál lze nanášet na povrch i nástřikem či nátěrem, proto je využitelný též pro sanaci stávajících betonových konstrukcí. Je možné jej používat čistý nebo ve směsi s kamenivem nebo vláknitou výztuží.
ř*roi'É.>cú? η.’’
Příklady uskutečnění·'vynálezu
Příklad 1:
Delaminovaná a dehydroxylovaná fáze mastku a draselné, sodné či směsné vodní sklo o pH 12 se ohřejí na teplotu 90 °C a smísí. Systém se pak důkladně promíchá a následně nechá ztuhnout za zvýšené nebo laboratorní teploty. Prodloužení času, po který se vzorek udržuje za zvýšené teploty a mnohem účinněji s rostoucí teplotou zvyšuje rozsah polykondenzační reakce. Zvýšená rychlost odpařování vody za vyšší teploty také posouvá rovnováhu polykondenzační reakce ve směru reakčních produktů, tj. stavebních jednotek typu (sSi-O-Mg-O-).
Příklad 2:
Delaminovaná a dehydroxylovaná fáze mastku a draselné, sodné či směsné vodní sklo opHll se smísí za běžné teploty a následně ohřejí na teplotu 95 °C. Systém se pak důkladně promíchá a následně nechá ztuhnout za zvýšené nebo laboratorní teploty.
Příklad 3:
Delaminovaná a dehydroxylovaná fáze mastku a draselné, sodné či směsné vodní sklo vodní sklo o pH 10 se smísí a promíchá za běžné teploty a následně nanese na povrch ohřátý na teplotu 90 °C, kde se polykondenzací vytvoří vrstva produktu.
Příklad 4:
Delaminovaná a dehydroxylovaná fáze mastku se rozmíchá ve vodném roztoku sodného či draselného hydroxidu o pH 12 a suspenze ohřeje na teplotu 92 °C. Systém se pak důkladně promíchá a následně nechá ztuhnout za zvýšené nebo laboratorní teploty.
Průmyslová využitelnost
Využitelnost vynálezu spočívá v přípravě nového typu alkalicky aktivovaného hořečnato-křemičitého materiálu, který je využitelný především ve specifických aplikacích, kde bude na použité materiály kladen velký důraz na odolnostní charakteristiky zejména proti povětrnostním vlivům a pH. Další velice širokou oblastí využití se předpokládá sanace stávajících betonových konstrukcí, neboť tento materiál lze nanášet na povrch i nástřikem či nátěrem. Materiál je možné používat čistý nebo ve směsi s kamenivem nebo vláknitou výztuží.
Claims (7)
- PATENTOVÉ NÁROKY1. Způsob výroby rentgeno-amorfního hořečnatého strukturního analogu geopolymerů^ vyznačující se tím, že se delaminovaný a dehydroxylovaný hořečnato-křemičitý íylosilikát rentgeno-amorfní struktury smíchá s alkalickým činidlem o pH nejméně 10, poté se zahřeje na teplotu nejméně 90 °C a následně se vzniklá směs nechá ztuhnout nebo se delaminovaný a dehydroxylovaný hořečnato-křemičitý fylosilikát rentgenoamorfní struktury i alkalické činidlo o pH nejméně 10 zahřejí na teplotu nejméně 90 °C, následně se smísí a vzniklá směs nechá ztuhnout, přičemž rozpuštěním a polykondenzací delaminované a dehydroxylované fáze hořečnato-křemičitého fylosilikátu v silně alkalickém prostředí vznikají vazby typu (=Si-O-Mg-O-), kdy pokles pH vyvolaný zvýšením teploty nad teplotu 90 °C zabrání precipitaci hydroxidu hořečnatého, což umožní reakci hořečnatých oktaedrů s tetraedry (SÍO4)4.
- 2. Způsob výroby podle nároku 1, vyznačující se tím, že pH alkalického činidla je 12.
- 3. Způsob výroby podle nároku 1 až 2, vyznačující se tím, že delaminovaným a dehydroxylovaným hořečnato-křemičitým fylosilikátem rentgeno-amorfní struktury je delaminovaná a dehydroxylovaná fáze mastku.<9
- 4. Způsob výroby podle nároku 1 až 3, vyznačující se tím, že alkalickým činidlem je sodné nebo draselné vodní sklo nebo hydroxid alkalického kovu nebo jejich směs.
- 5. Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený způsobem podle nároků 1 až 4, vyznačující se tím, že obsahuje pouze stavební jednotky typu =Si-O-Mg-O-.
- 6. Použití rentgeno-amorfního hořečnatého strukturního analogu geopolymerů podle nároku 5 ve stavebnictví.
- 7. Použití rentgeno-amorfního hořečnatého strukturního analogu geopolymerů podle nároku 6 ve směsi s kamenivem, vláknitou výztuží nebo ve směsi s jinými fylosilikáty.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-11A CZ201311A3 (cs) | 2013-01-07 | 2013-01-07 | Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený z dehydroxylovaných a delaminovaných hořečnato-křemičitých fylosilikátů a jeho použití |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-11A CZ201311A3 (cs) | 2013-01-07 | 2013-01-07 | Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený z dehydroxylovaných a delaminovaných hořečnato-křemičitých fylosilikátů a jeho použití |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ304496B6 CZ304496B6 (cs) | 2014-05-28 |
CZ201311A3 true CZ201311A3 (cs) | 2014-05-28 |
Family
ID=50771737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2013-11A CZ201311A3 (cs) | 2013-01-07 | 2013-01-07 | Rentgeno-amorfní hořečnatý strukturní analog geopolymerů vyrobený z dehydroxylovaných a delaminovaných hořečnato-křemičitých fylosilikátů a jeho použití |
Country Status (1)
Country | Link |
---|---|
CZ (1) | CZ201311A3 (cs) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210017A (ja) * | 1987-02-27 | 1988-08-31 | Mizusawa Ind Chem Ltd | 複合フイロケイ酸塩及びその製法 |
WO1993016965A1 (en) * | 1992-02-27 | 1993-09-02 | Pretoria Portland Cement Company Limited | Geopolymeric binder material |
US7141112B2 (en) * | 2003-01-31 | 2006-11-28 | Douglas C Comrie | Cementitious materials including stainless steel slag and geopolymers |
CZ301705B6 (cs) * | 2004-04-26 | 2010-06-02 | Svoboda@Pavel | Popílkový beton, jeho složení, zpusob prípravy geopolymerní reakcí aktivovaného úletového popílku a užití |
NZ578307A (en) * | 2009-07-09 | 2010-11-26 | Geopolymer Systems Ltd | Lightweight geopolymer and method for preparing |
-
2013
- 2013-01-07 CZ CZ2013-11A patent/CZ201311A3/cs unknown
Also Published As
Publication number | Publication date |
---|---|
CZ304496B6 (cs) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Criado et al. | An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash | |
Matalkah et al. | Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement | |
Topçu et al. | Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement | |
Alrefaei et al. | Effect of superplasticizers on properties of one-part Ca (OH) 2/Na2SO4 activated geopolymer pastes | |
Nikolov et al. | Geopolymer materials based on natural zeolite | |
Lemougna et al. | Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation | |
Hajimohammadi et al. | One-part geopolymer mixes from geothermal silica and sodium aluminate | |
Bondar et al. | Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans | |
Ruiz-Santaquiteria et al. | Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates | |
Provis et al. | The role of mathematical modelling and gel chemistry in advancing geopolymer technology | |
Hamidi et al. | Concentration of NaOH and the effect on the properties of fly ash based geopolymer | |
Yip et al. | Effect of calcium silicate sources on geopolymerisation | |
Rattanasak et al. | Influence of NaOH solution on the synthesis of fly ash geopolymer | |
Gharzouni et al. | Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation | |
Zhu et al. | Influence of rice husk ash on the waterproof properties of ultrafine fly ash based geopolymer | |
Yip et al. | The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation | |
Heah et al. | Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers | |
Zhang et al. | Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag | |
Sabitha et al. | Reactivity, workability and strength of potassium versus sodium-activated high volume fly ash-based geopolymers | |
Fang et al. | The fate of water in fly ash-based geopolymers | |
Istuque et al. | Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA) | |
Lakhssassi et al. | The effect of aggressive environments on the properties of a low calcium fly ash based geopolymer and the ordinary Portland cement pastes | |
Provis et al. | Nanostructure/microstructure of metakaolin geopolymers | |
Tippayasam et al. | Effect of Thai Kaolin on properties of agricultural ash blended geopolymers | |
BR112020011832B1 (pt) | Composição de geopolímero tendo um tempo de pega controlável e método para fazer a mesma |