CS274351B1 - Method of ethylamine and 2-aminoethanol or 2-methoxyethylamine preparation by electroreduction of oximes - Google Patents
Method of ethylamine and 2-aminoethanol or 2-methoxyethylamine preparation by electroreduction of oximes Download PDFInfo
- Publication number
- CS274351B1 CS274351B1 CS942886A CS942886A CS274351B1 CS 274351 B1 CS274351 B1 CS 274351B1 CS 942886 A CS942886 A CS 942886A CS 942886 A CS942886 A CS 942886A CS 274351 B1 CS274351 B1 CS 274351B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- solution
- reaction
- amines
- oxime
- ethylamine
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Vynález sa týká spůsobu přípravy etylamínu a 2-aminoetanolu alebo 2-metoxyetylamínu elektroredukciou oxímov připravených reakciou glykolaldehydu alebo jeho O-substitutovaných derivátov s hydroxylamínom.The invention relates to a process for the preparation of ethylamine and 2-aminoethanol or 2-methoxyethylamine by electroreduction of oximes prepared by reaction of glycol aldehyde or its O-substituted derivatives with hydroxylamine.
Při reakcii karbonylových zlúčenin s hydroxylamínom rýchlost a rovnováha vznikajúcich oxímov závisí od pH-hodnůt prostrednia a acido-bázických vlastností reaktantov. Zatial čo reakčná rýchlost tvorby oxímov prechádza rýchlostným maximom v kyslom prostředí, hodnoty rovnovážných konštánt tvorby oxímov sa zvyšujú so stúpajúcimi hodnotami pH-prostredia a dosahujú maximum v alkalických prostrediach /lencks W. P.: Amer. Chem. Soc. Bl, (1959) 475; lencks W. P.: Progr. Phys. Org. Chem. 2, (1964) 63/. Keňže elektrochemickej redukcii podlieha len protonizovaná forma oxímov /Lund H.: Acta Chem. Scand. 13, (1959) 249; Haas J. W. Ir., Kadunce R. E.: l.Amer. Chem. Soc. 84, (1962) 4910; Haas 3. W., Ir. Storey 3. D.: Anal. Chem. 34, (1962) 145/, je potřebné zvolit kompromisně hodnoty pH - prostredia elektroredukcie tak, aby sa dosiahlo optimum medzi rýchlostou vzniku, hodnotou rovnováhy a stupňom protonizácie oxímu.In the reaction of carbonyl compounds with hydroxylamine, the rate and equilibrium of the oximes formed depend on the pH-values of the environment and the acid-base properties of the reactants. While the reaction rate of oxime formation goes through the rate maximum in an acidic medium, the equilibrium constant values for oxime formation increase with increasing pH-medium values and reach a maximum in alkaline environments / lencks W. P .: Amer. Chem. Soc. B1, (1959) 475; lencks W.P .: Progr. Phys. Org. Chem. 2, (1964) 63]. Only the protonated form of oximes is subject to electrochemical reduction / Lund H .: Acta Chem. Scand. 13, (1959) 249; Haas, J. W. Ir., Kadunce, R. E., l. Chem. Soc. 84, (1962) 4910; Haas 3.W., Ir. Storey 3. D .: Anal. Chem. 34, (1962) 145], it is necessary to select compromise the pH-environment of the electroreduction so as to achieve an optimum between the rate of formation, the equilibrium value and the degree of protonation of the oxime.
Na základe polarografického štúdia reakcie glykolaldehydu, glyceraldehydu, dihydroxyacetónu a ich 0-metylovanýoh derivátov s hydroxylamínom sa zistilo, že v kyslom prostředí při pH menšom ako 5 je optimum pre rýchlost vzniku a elektroredukcie příslušných oxímov. Vo velmi silné kyslých prostrediach sú koncentrácie oxímov nižšie a sú spůsobené ich hydrolýzou na východiskové zlúčeniny. Pri pH váčšom ako 5 výšky polarografických vln klesajú v důsledku poklesu ich redukovatelnosti protonizovaných foriem. V případe vyšších monosacharidov, tj. pentóz a hexóz sa rýchlosti tvorby oxímov a hodnoty ich rovnovážných konštánt znižujú, čo je spůsobené existenciou rovnováhy medzi cyklickou a acyklickou formou uvedených monosacharidov.Based on a polarographic study of the reaction of glycol aldehyde, glyceraldehyde, dihydroxyacetone and their O-methylated derivatives with hydroxylamine, it was found that in an acidic environment at pH less than 5, it is optimum for the rate of formation and electroruction of the respective oximes. In very strong acidic environments, oxime concentrations are lower and are caused by their hydrolysis to the starting compounds. At pH greater than 5, the polarographic wave heights decrease due to a decrease in their reducibility of the protonated forms. In the case of higher monosaccharides, i. pentoses and hexoses, the rates of oxime formation and their equilibrium constants decrease due to the existence of an equilibrium between the cyclic and acyclic forms of the monosaccharides.
Celkové výtažky produktov závisia od použitého potenciálu pracovnej ortuiovej elektrody a pH hodnot prostredie. Tak například zistilo sa, že aj při optimálnych reakčných podmienkach sa v procese preparatívnej elektroredukcie oxímov glykolaldehydu a jeho 0-metylového derivátu uvolňuje asi 20 % aldehydického komponentu oxímu, čo dovoluje získat produkty v maximálně 80 % výtažkoch. Dokázali sme, že k úplnému potlačeniu regenerácie příslušných aldehydov z východiskových oxímov je potřebné na začiatku reakcie přidat minimálně 50 % nadbytok hydroxylamínu.The overall yields of the products depend on the working potential of the working mercury electrode and the pH of the environment. For example, it has been found that, even under optimal reaction conditions, about 20% of the aldehyde oxime component is released in the process of preparative electroreduction of the oxo oxides of glycol aldehyde and its O-methyl derivative, allowing products to be obtained in a maximum of 80% yields. We have shown that at least 50% excess of hydroxylamine must be added at the beginning of the reaction to completely suppress the recovery of the respective aldehydes from the starting oximes.
Analýzou reakčných produktov oxímov glykolaldehydu a jeho 0-metylového derivátu sa zistilo, že elektroredukcie prebiehajú neobvyklým spůsobom, pretože v každom případe vznikajú dva aminy ako konečné produkty, tj. nielen předpokládaný 2-aminoetanol resp. 2-metoxyetylamín, ale v oboch prípadoch aj neočekávaný etylamfn. Ide o objavenie nového typu elektroredukcie oxímov.Analysis of the reaction products of the oxo-glycol aldehyde and its O-methyl derivative revealed that the electroreduction proceeds in an unusual way, since in each case two amines are formed as the final products, i.e. the. not only the predicted 2-aminoethanol and the like. 2-methoxyethylamine, but in both cases unexpected ethylamine. This is the discovery of a new type of electroreduction of oximes.
Podstata spůsobu přípravy etylamínu a 2-aminoetanolu alebo 2-metoxyetylamínu elektroredukciou oxímov podía vynálezu spočívá v tom, že sa nechá reagovat vodný roztok glykolaldehydu alebo jeho 0-metyl substituovaný derivát s vodným roztokom hydroxylamínu alebo jeho soli, ktorý je přítomný minimálně v 50 % nadbytku za vzniku roztoku příslušného oxímu. Následná elektrorecbkcia vodného roztoku oxímu sa vykonává vo vodnom tlmivom roztoku při pH 1 až 5, za přítomnosti minimálně 50 % nadbytku hydroxylamínu za potenciostatických a pHstatických podmienok pomocou nepretržitej pH statickej kontroly cirkulujúcej alebo pulzujúcej časti elektrolyzovaného roztoku, nachádzajúceho sa v době merania mimo vplyvu elektrického póla reakčného prostredia. Potenciál pracovnej elektrody je v rozsahu -1,0 V až -1,6 V vzhladom k nasýtenej kalomelovej elektróde. Vzniknutá zmes amínov sa rozdělí chromatograficky,_ frakčnou destiláciou volných amínov alebo frakčnou kryštalizáciou ich solí.The principle of the process for the preparation of ethylamine and 2-aminoethanol or 2-methoxyethylamine by electroreduction of oximes according to the invention is to react an aqueous solution of glycol aldehyde or its O-methyl substituted derivative with an aqueous solution of hydroxylamine or its salt present in at least 50% excess. to form a solution of the corresponding oxime. Subsequent electrorecoration of the aqueous oxime solution is carried out in aqueous buffer at pH 1-5, in the presence of at least 50% excess hydroxylamine under potentiostatic and pHstatic conditions by continuous pH static control of the circulating or pulsating portion of the electrolyzed solution present at the time of measurement. reaction environment. The working electrode potential is in the range of -1.0 V to -1.6 V relative to the saturated calomel electrode. The resulting amine mixture is separated by chromatography, fractional distillation of the free amines, or fractional crystallization of their salts.
Při reakcii vodného roztoku glykolaldehydu a jeho 0-metylového derivátu s hydroxylamínom, přidaného vo formě jeho soli, sa elektroredukcia vzniknutých oxímov vykonává při pH 2 až 5, s výhodou pH 3,6 a potenciál! pracovnej elektrody v rozsahu -1,3 až -1,4 V s výhodou -1,4 V,In the reaction of an aqueous solution of glycol aldehyde and its O-methyl derivative with hydroxylamine added in the form of its salt, the electroreduction of the oximes formed is carried out at a pH of 2 to 5, preferably a pH of 3.6 and a potential. a working electrode in the range of -1.3 to -1.4 V, preferably -1.4 V,
CS 274 351 Bl vzhladom k nasýtenej kalomelovej elektróde, pričom vzniknuté zmesi amínov tj. 2-aminoetanol a etylamín v případe oximu glykolaldehydu a zmes 2-metoxy-etylamín a etylamín v případe oximu 2-metyxyacetaldehydu sa delia chromatograficky resp. frakčnou destiláciou volných amínov alebo frakčnou kryštalizáciou ich solí.CS 274 351 B1 with respect to a saturated calomel electrode; The 2-aminoethanol and ethylamine in the case of the glycol aldehyde oxime and the mixture of 2-methoxy-ethylamine and the ethylamine in the case of the 2-methoxyacetaldehyde oxime are separated chromatographically respectively. by fractional distillation of the free amines or by fractional crystallization of their salts.
Výhodou navrhovaného sposobu elektroredukcie oxímov je, že nie je potřebné vychádzaí z čistých oxímov, ale stačia vodné roztoky reakčných komponentov, tj. vodný roztok karbonylovej zlúčeniny a vodný roztok soli hydroxylaminu s jeho minimálně 50 % nadbytkem zmiešat a po zreagovani sa roztok přidá do tlmivého roztoku o požadovanom pH, čím je roztok vytvořeného oximu připraveny k preparatívnej elektroredukcii. Ďalšou výhodou nového postupu je, že použitie potenciostatlckých a pH statických podmínek umožňuje získal produkty prakticky v teoretických výtažkoch a umožňuje získal v jednom stupni nielen očakávaný produkt štvorelektrónovej redukcie. Vzhladom na všeobecná platnosí objavenej zákonitosti elektroredukcie oxímov, je možné tuto využit na přípravu analogických aminoderivátov. Na rozdiel od hydrogenačných metod umožňuje tento spůsob i rozštiepenie jednoduchej C-0 vazby. Hydrogenácia nemůže poskytnul také neobvyklé aminy, aké vznikajú po elektroredukčnom rozštiepení jednoduchej C-0 vazby v -polohe k azometínovej skupině u uvedeného typu oxímov.The advantage of the proposed method of electroreduction of oximes is that it is not necessary to start from pure oximes, but aqueous solutions of the reaction components, ie. an aqueous solution of the carbonyl compound and an aqueous solution of the hydroxylamine salt with at least 50% excess thereof, and after reaction, the solution is added to a buffer of the desired pH, whereby the oxime formed solution is prepared for preparative electroruction. A further advantage of the new process is that the use of potentiostatic and pH static conditions allows the products to be obtained practically in theoretical yields and allows not only the expected four-electron reduction product to be obtained in one stage. Due to the general validity of the discovered laws of electroreduction of oximes, it can be used for the preparation of analogous amino derivatives. In contrast to hydrogenation methods, this method also allows the cleavage of a single C-O bond. Hydrogenation cannot provide such unusual amines as are formed after the electro-reductive cleavage of a single C-O bond at -position to the azomethine group of said type of oximes.
Zariadenie, v ktorom sa vykonali elektroredukcie je bližšie popísané v čs. AO 248 208, pričom jeho podstata spočívá v tom, že umožňuje elektroredukcie uskutečnil v oddelenom katodickom priestore na ortulovej pracovnej elektróde při zvolenom potenciáli vzhladom k referentnej nasýtenej kalomelovej elektróde, udržovanom pomocou potenciostatu a zaisluje kontrolu a udržovanie požadovanej hodnoty pH pomocou pH-statu.The device in which the electroreduction was carried out is described in more detail in MS. AO 248 208, which allows electroreduction to take place in a separate cathodic space on a mercury working electrode at a selected potential relative to a reference saturated calomel electrode maintained by a potentiostat and ensures control and maintenance of the desired pH value by means of a pH-stat.
Příklad 1Example 1
Vodný roztok (50 ml) 0,2 M glykolaldehydu (0,6 g) a 0,3M hydroxylamónium sulfátu (1,23 g) sa nechal reagoval při teplote miestnosti po dobu 30 min. Potom sa k roztoku přidá 50 ml 0,2 M formiátového pufru o pH 3,6 a potřebné množstvo vodného roztoku 1M hydroxidu sodného na opatovné nastavenie uvedenej pH^hodnoty. Reakčný roztok sa preleje do katodického priestoru elektrolyzéra, kde sa elektroredukuje na ortulovej pracovnej elektróde, za intenzívneho miešania jej povrchu a chladenia elektrolyzéra vodou, při potenciostaticky udržovanom potenciáli -1,4V vzhladom k nasýtenej kalomelovej elektróde. Nastavená hodnota pH 3,6 sa udržuje pH-staticky přidáváním potřebného množstva vodného roztoku 1M kyseliny sírovej. Anodický priestor elektrolyzéra sa naplní vodným roztokom 0,lM kyseliny sírovej.An aqueous solution (50 mL) of 0.2 M glycol aldehyde (0.6 g) and 0.3 M hydroxylammonium sulfate (1.23 g) was allowed to react at room temperature for 30 min. 50 ml of 0.2 M formate buffer, pH 3.6, and the necessary amount of aqueous 1M sodium hydroxide solution are then added to the solution to adjust the said pH. The reaction solution is poured into the cathodic space of the electrolyzer, where it is electroreduced on the mercury working electrode, with vigorous stirring of its surface and cooling of the electrolyzer with water, at a potentiostatically maintained potential of -1.4V relative to the saturated calomel electrode. The pH value of 3.6 was maintained pH-statically by adding the required amount of aqueous 1M sulfuric acid. The anodic compartment of the electrolyzer is filled with an aqueous solution of 0.1 M sulfuric acid.
Priebeh elektroredukcie oximu, tvorba příslušných amínov a generácia glykolaldehydu sa sledoval polarograficky, pričom polarografické křivky sa registrovali po zvolených časových intervaloch, od potenciálov meraných vzladom k nasýtenej kalomelovej elektróde. Pokles koncentrácie oximu v priebehu redúkcie sa sledoval registráciou jeho polarografických kriviek od -0,6V v 0,04M formiátovom pufri o pH 3,6 (0,1 ml vzorky v 9,9 ml pufru). Pre sledovaníe tvorby- vzniknutých amínov sa využili polarografické křivky ich kondenzačných produktov s ben zaldehydom v alkalickom prostředí (0,5 ml vzorky v 9 ml O,1M fosfátového pufru a 0,5 ml 0,lM benzaldehydu). Regeneráoia glykolaldehydu sa stanovila registráciou jeho polarografických kriviek od -1,2 V po přidaní 0,5 ml reakčnej vzorky do 9,5 ml vodného roztoku nasýteného hydroxidom vápenatým.The course of the oxime electroreduction, the formation of the appropriate amines and glycol aldehyde generation was monitored polarographically, with polarographic curves being recorded at selected time intervals, from the potentials measured relative to the saturated calomel electrode. The decrease in oxime concentration during reduction was monitored by registering its polarographic curves from -0.6V in 0.04 M formate buffer at pH 3.6 (0.1 ml sample in 9.9 ml buffer). Polarographic curves of their condensation products with benzaldehyde in an alkaline medium (0.5 ml sample in 9 ml 0.1 M phosphate buffer and 0.5 ml 0.1 M benzaldehyde) were used to monitor the formation of the amines formed. Glycol aldehyde regeneration was determined by registering its polarographic curves from -1.2 V after adding 0.5 ml of the reaction sample to 9.5 ml of an aqueous solution saturated with calcium hydroxide.
Po skončení elektroredukcie.(3 h) sa v surovom produkte ^3C NMR spektrometrickou analýzou dokázal vznik 2-aminoetanolu a etylamínu ako konečných produktov elektroredukcie v pomere 1:2. Reakčný roztok sa vyzrála mravčanom barnatým a vzniklá zrazenina odfiltruje. Vákuovo zahuštěný filtrát z vodného kúpeía na malý objem sa nanesie na celulózovú kolonu (1 m/ 0 5 cm) a dělí v systéme butanol: kyselina mravčia: voda = 8:1:1, při prietoku kolony 13 ml/h. Jednotlivé frakcie sa spojili podlá chromatografického sledovania na Whatmann 3M papieri v uvedenom systéme a detekcii 0,1 % ninhydrínom v butanole při 105 °C. 2 prvejUpon completion of the electroreduction (3 h), crude product showed < 3 > C NMR spectroscopy analysis of the formation of 2-aminoethanol and ethylamine as the final products of the electroreduction at a ratio of 1: 2. The reaction solution was matured with barium formate and the resulting precipitate was filtered off. The vacuum-concentrated small volume water bath filtrate is applied to a cellulose column (1 m / 0 5 cm) and separated in a butanol: formic acid: water = 8: 1: 1 system at a flow rate of 13 ml / h. The individual fractions were combined by chromatography on Whatmann 3M paper in the system and detection with 0.1% ninhydrin in butanol at 105 ° C. 2 first
CS 274 351 61 frakcie sa získal etylamóniumformiát (0,57 g), ktorý sa s kyselinou pikrovou previedol na pikrát etylamínu s t. t. 167-L68 °C; lit. /M itchell J., 3r., Bryant W. M. 0.: 3. Amer.The fraction gave a fraction of ethyl ammonium formate (0.57 g) which was converted with picric acid to ethylamine picrate of m.p. t. 167-168 ° C; lit. / M itchell J., 3r., Bryant W. M. 0: 3. Amer.
Chem. Soc. 65 (1943) 128/ udává t. t. 170 °C, resp. lit. /Jacobs W. A., Elderfield R. C.:Chem. Soc. 65 (1943) 128 / t. t. 170 ° C, respectively. lit. / Jacobs W.A., Elderfield R.C .:
J. Amer. Chem. Soc. 58 (1936) 1059/ t. t. 166 °C. Z druhej frakcie sa získal 2-hydroxyetylamóniumformiát (0,2 g), ktorý sa s kyselinou pikrovou previedol na pikrát 2-hydroxyetylamínu s t. t. 158-159 °C; lit. /Adkins H., Billica H. R.: J. Amer. Chem. Soc. 70 (1948) 3121/ udává t. t. 159,5-160 °C.J. Amer. Chem. Soc. 58 (1936) 1059 / t. t. Mp 166 ° C. From the second fraction 2-hydroxyethylammonium formate (0.2 g) was obtained, which was converted with picric acid to 2-hydroxyethylamine picrate with m.p. t. 158-159 [deg.] C .; lit. / Adkins H., Billica H. R., J. Amer. Chem. Soc. 70 (1948) 3121; t. 159.5-160 ° C.
Příklad 2Example 2
Vodný roztok (50 ml) 0,2 M 2-metoxyacetaldehydu (0,74 g) a 0,3M hydroxylamónium sulfátu (1,23 g) sa nechá reagovat při laboratórnej teplote po dobu 30 min. Po skončení reakcie sa k roztoku přidá 50 ml 0,2M formiátového pufru o pH 3,6 a potřebné množstvo vodného roztoku ÍM hydroxidu sodného na opatovné nastavenie uvedenej pH-hodnoty. Reakčný roztok sa elektroredukuje v katodickom priestore elektrolyzéra na ortuíovej pracovnej elektróde, za intenzívneho miešania jej povrchu a chladenia elektrolyzéra vodou, pri potenciostaticky udržovanom potenciál! -1,4V vzhladom k nasýtenej kalomelovej elektróde. Nastavená hodnota pH 3,6 sa udržuje pH-staticky přidáváním potřebného množstva ÍM kyseliny sírovej. Priebeh elektroredukcie oxímu, tvorba příslušných amínov a generácia 2-metoxyacetaldehydu sa sledoval polarografickou metódovu opísanou v příklade 1.An aqueous solution (50 mL) of 0.2 M 2-methoxyacetaldehyde (0.74 g) and 0.3 M hydroxylammonium sulfate (1.23 g) was allowed to react at room temperature for 30 min. After completion of the reaction, 50 ml of 0.2 M formate buffer, pH 3.6, and the necessary amount of aqueous 1M sodium hydroxide solution are added to the solution to adjust the said pH value carefully. The reaction solution is electroreduced in the cathodic space of the electrolyzer on the orthodox working electrode, with vigorous mixing of its surface and cooling of the electrolyzer with water, at a potentiostatically maintained potential. -1.4V relative to saturated calomel electrode. The set pH of 3.6 is maintained pH-statically by adding the required amount of 1M sulfuric acid. The course of electroreduction of the oxime, formation of the corresponding amines and generation of 2-methoxyacetaldehyde was followed by the polarographic method described in Example 1.
Po skončení elektroredukcie (3 h) sa reakčný roztok vákuovo zahustil a zbytok analyzo13 val pomocou C NMR spektrometrie. Dokázal sa vznik 2-metoxyetylamínu a etylamínu v pomere 1:1. K reakčnému zbytku sa za miešania a chladenia postupné přidalo 2,3 g hydroxidu sodného. Uvolněné aminy sa vyextrahovali do éteru, z kterého po vysušení so síranem sodným sa získali frakčnou destiláciou. V prvej frakcii sa získal etylamín (0,21 g) s t. t. 166 °C jeho pikrátu a v druhej frakcii sa získal 2-metoxyetylamín (0,36 g) s t. t. 145-147 °C jeho pikrátu; lit. /Lambert A., Scaife C. W., Wilde-Smith A.E.: Chem. Soc. 1947, 1474/ udává t. t. 148-150 °C.After completion of the electroreduction (3 h), the reaction solution was concentrated in vacuo and the residue analyzed by C NMR spectrometry. The formation of 2-methoxyethylamine and ethylamine in a 1: 1 ratio was shown. 2.3 g of sodium hydroxide were gradually added to the reaction residue with stirring and cooling. The liberated amines were extracted into ether from which, after drying with sodium sulfate, they were obtained by fractional distillation. Ethylamine (0.21 g) with m.p. t. 166 ° C of its picrate and in the second fraction 2-methoxyethylamine (0.36 g) was obtained with m.p. t. 145-147 ° C of its picrate; lit. (Lambert, A., Scaife, CW, Wilde-Smith, A.E .: Chem. Soc. 1947, 1474; t. 148-150 ° C.
Riešenie může nájst tiež uplatnenie v organickej elektrosyntéze analogických aminoderivátov.The solution may also find application in organic electrosynthesis of analogous amino derivatives.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS942886A CS274351B1 (en) | 1986-12-17 | 1986-12-17 | Method of ethylamine and 2-aminoethanol or 2-methoxyethylamine preparation by electroreduction of oximes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS942886A CS274351B1 (en) | 1986-12-17 | 1986-12-17 | Method of ethylamine and 2-aminoethanol or 2-methoxyethylamine preparation by electroreduction of oximes |
Publications (2)
Publication Number | Publication Date |
---|---|
CS942886A1 CS942886A1 (en) | 1990-09-12 |
CS274351B1 true CS274351B1 (en) | 1991-04-11 |
Family
ID=5444598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS942886A CS274351B1 (en) | 1986-12-17 | 1986-12-17 | Method of ethylamine and 2-aminoethanol or 2-methoxyethylamine preparation by electroreduction of oximes |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS274351B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2513037B1 (en) * | 2009-12-17 | 2014-04-02 | Basf Se | Method for producing higher ethanolamines |
-
1986
- 1986-12-17 CS CS942886A patent/CS274351B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS942886A1 (en) | 1990-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2964810B1 (en) | Electrochemical method for coupling phenol to aniline | |
UA124418C2 (en) | Method for the preparation of (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and recovery of (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide by electrochemical methods | |
US20130053582A1 (en) | Process for the electrochemical preparation of gamma-hydroxycarboxylic esters and gamma-lactones | |
Lampard et al. | Tetrathiafulvalene as a catalyst for radical–polar crossover reactions | |
US7229539B1 (en) | Destructible surfactants and uses thereof | |
Michejda Jr et al. | Specific acid catalysis in the decomposition of trialkyltriazenes | |
JP2010203780A (en) | Method of predicting old scent generation level in sake | |
CS274351B1 (en) | Method of ethylamine and 2-aminoethanol or 2-methoxyethylamine preparation by electroreduction of oximes | |
EP2964812B1 (en) | Electrochemical coupling of a phenol to a naphthol | |
CN110461817B (en) | Stable 1, 3-bis (carbamoylthio) -2- (N, N-dimethylamino) -propane hydrochloride and process for producing the same | |
DE69409001T2 (en) | CHIRAL NITRILES, THEIR PRODUCTION AND THEIR USE IN THE PRODUCTION OF VERAPAMIL AND ITS ANALOGS | |
CN114105858B (en) | 3-azido indoline compound and method for electrochemically synthesizing 3-azido indoline compound | |
DE2944106C2 (en) | Process for the preparation of cyclo-1,3,2-oxazaphosphoryl derivatives | |
Knittel et al. | Elektrolytische Untersuchungen an Vinylaziden, 6. Mitt. Elektrolytische Reduktion von Azidochalkonen | |
Inesi et al. | Electrochemically induced Favorskii rearrangement. α, β-Unsaturated amides and esters in the electrochemical reduction of polyhaloketones | |
Asahara et al. | A Mechanistic Approach to the Electrolytic Reductive Dimerization of Acrylonitrile | |
CN104292149B (en) | A kind of method preparing ornithine lactams | |
CN104897838B (en) | Method for separating and analyzing is extracted while a kind of highly polar organic acids and base mixture | |
Thomas et al. | Acid catalyzed CIDNP [chemically induced dynamic nuclear polarization] during photoinduced electron transfer | |
CN115490875B (en) | Zinc-based microporous metal-organic framework material, preparation method and application thereof in saccharin detection | |
JPH10221325A (en) | Method of analyzing epsilon-caprolactam | |
CN117343346B (en) | Ultrasensitive europium-based MOFs sensor for visually identifying clenbuterol hydrochloride, and preparation method and application thereof | |
Pak et al. | Electrochemical reduction of diphenyl 4-nitrobenzyl phosphate | |
SU859918A1 (en) | Method of dialkildithyocarbamin acid quantitative determination | |
US5380423A (en) | Anion-selective membrane and a sensor provided therewith |