CS267070B1 - Condenser Warming Measurement Method - Google Patents
Condenser Warming Measurement Method Download PDFInfo
- Publication number
- CS267070B1 CS267070B1 CS868258A CS825886A CS267070B1 CS 267070 B1 CS267070 B1 CS 267070B1 CS 868258 A CS868258 A CS 868258A CS 825886 A CS825886 A CS 825886A CS 267070 B1 CS267070 B1 CS 267070B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- capacitor
- voltage
- temperature
- measuring
- measured
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Riešenie spadá do oblasti elektrotechnických meraní a týká sa spósobu merania oteplenia kondenzátora, hlavně elektrolytického. Podstatou riešenia je, že sa zmeria závislost C = f (T) kapacity C kondenzátora od teploty T v intervale od minimálnej po maximálnu pracovnú teplotu. Na meraný kondenzátor, ktorého menovité napatie je Um, sa pósobí jednosměrným napStím Ujs o velkosti 0,1 Um až 1,0 Um, na ktoré je nasuperponované striedavé napatie Ustr o maximálnej velkosti danej vzíahom |/2” bstr ~ ujs + 2, pričom celkové meracie napatie Ujs + Ustr je menšie alebo rovné ako Dm. Bezprostredne po odpojení meracieho napatia sa zmeria kapacita C kondenzátora a teplota T kondenzátora sa odčítá zo závislosti C = f (T) .The solution falls into the field of electrical measurements and concerns a method of measuring the heating of a capacitor, mainly electrolytic. The essence of the solution is that the dependence C = f (T) of the capacitance C of the capacitor on the temperature T in the interval from the minimum to the maximum operating temperature is measured. The measured capacitor, whose nominal voltage is Um, is acted upon by a direct voltage Ujs of a magnitude of 0.1 Um to 1.0 Um, on which is superimposed an alternating voltage Ustr of a maximum magnitude given by the relation |/2” bstr ~ ujs + 2, while the total measuring voltage Ujs + Ustr is less than or equal to Dm. Immediately after disconnecting the measuring voltage, the capacitance C of the capacitor is measured and the temperature T of the capacitor is read from the dependence C = f (T).
Description
CS 267 070 BlCS 267 070 Bl
Vynález sa týká spósobu merania oteplenia kondenzátora, hlavně elektrolytického, vplyvom dielektrických strát vo vnútri kondenzátora.The invention relates to a method for measuring the temperature rise of a capacitor, in particular electrolytic, due to dielectric losses inside the capacitor.
Meranie oteplenia vnútri kondenzátora je vzhladom k jeho konštrukcii obtiažne. Povrchová teplota nedává informáciu o teplotných pomeroch vnútri zvitku vplyvom vzduchovej medzery a róznych konštrukčných materiálov kondenzátora a navýše sa obtiažne meria. Je známy spósob, pri ktorom sa na modelovom kondenzátore na meranie oteplenia použiva termočlánok alebo iné tepelné čidlo. Tieto čidlá však skreslujú teplotné poměry v kondenzátore, pretože prispievajú k odvodu tepla.Measuring the warming inside the capacitor is difficult due to its design. The surface temperature does not give information about the temperature conditions inside the coil due to the air gap and various capacitor construction materials, and moreover it is difficult to measure. A method is known in which a thermocouple or other thermal sensor is used on a model capacitor to measure the temperature rise. However, these sensors distort the temperature conditions in the capacitor because they contribute to heat dissipation.
Tieto nevýhody podstatné odstraňuje spósob merania oteplenia kondenzátora podlá vynálezu, ktorého podstatou je, že pre daný typ kondenzátora sa meraním kapacity C kondenzátora v teplotnom intervale od T . do T zistí závislost C = f (T), kde C je kapacita kondenzáť min max tóra, T je teplota kondenzátora, T . je minimálna pracovná teplota kondenzátora a T„„„ je J ť min J max maximálna pracovná teplota kondenzátora. Potom sa na meraný kondenzátor, ktorého menovité napStie je U , pósobí jednosměrným napatím U. o velkosti 0,1 U až 1,0 0 , na ktoré je nasuIU 3 s m iu perponované striedavé napatie Ug^r o maximálnej velkosti danej vzťahom |2 Ug^r = Ujs + 2, pričom celkové meracie napatie Ujs + Ugt£. mus^ kyt menšie alebo rovnaké ako Um· Bezprostredne po odpojení meracieho napatia sa zmeria kapacita C kondenzátora a teplota T kondenzátora sa určí zo závislosti C = f (T).These disadvantages are substantially eliminated by the method of measuring the capacitor warming according to the invention, which is based on the fact that, for a given type of capacitor, the capacitor capacitance C is measured in a temperature range from T. T, to correlate the C = f (T), wherein the capacity of the capacitor C t min max tora, the condenser temperature T, T. the minimum working temperature of the condenser and T '''is J J t min max maximum working temperature of the capacitor. Thereafter, a voltage U of 0.1 U to 1.0 0 is applied to the capacitor to be measured, whose nominal voltage is U, to which an alternating voltage U g r of the maximum size given by | 2 is applied. U g ^ r = Uj s + 2, the total measuring voltage U js + Ugt.. must ^ alkyl or less the same as in m · Immediately after disconnection of the measuring voltage is measured capacity of the capacitor C and the temperature T of the capacitor is determined by the function C = f (T).
Výhodou spósobu merania oteplenia kondenzátora podlá vynálezu je, že sa zisti skutočná středná teplota dielektrika bez zásahu do jeho konštrukcie. Vylúči sa skreslenie teplotných pomerov vplyvom odvodu tepla pri dosial používaných meraniach termočlánkov.An advantage of the method of measuring the temperature rise of a capacitor according to the invention is that the actual mean temperature of the dielectric is determined without interfering with its design. Distortion of temperature conditions due to heat dissipation in thermocouples used up to now is avoided.
Spósob podlá vynálezu sa uskutočňuje následovně. Pre daný typ kondenzátora sa zmeria závislost kapaóity C od teploty T kondenzátora. Meranie sa vykoná v termostate v teplotnom intervale od minimálnej pracovnej teploty Tm^n do maximálnej pracovnej teploty Tmax kondenzátora. Hodnoty T . a T sa určia z katalogu pre každý typ kondenzátora. Tým sa získá min max ciachovaná křivka, určená závislosťou.The process according to the invention is carried out as follows. For a given capacitor type, the dependence of capaity C on the temperature T of the capacitor is measured. The measurement was performed in a thermostat at the temperature range from the minimum operating temperature T m ^ n to the maximum operating temperature Tmax condenser. T values. and T are determined from the catalog for each capacitor type. This gives a min max calibration curve, determined by dependence.
C = f (T)C = f
Potom sa meraný kondenzátor zaťaží meracím napatím, pozostávajúcim z jednosměrného napátia U. o velkosti 0,1 U až 1,0 U , kde U je menovité napatie kondenzátora, a z nasujs ' m m m J perponovaného striedavého napatia U t , ktorého velkost je daná vzťahom \ΠΓ U . = U. + 2 * str js pričom celkové meracie napatie U. + U . musí byť menšie alebo rovnaké ako U . To znamená, r js str m že kondenzátor sa móže prepálovať maximálně o 2 V. Po odpojení meracieho napatia sa bezprostredne zmeria kapacita C kondenzátora. Z ciachovanej křivky určenej závislosťou sa k nameranej hodnotě kapacity C urči teplota T kondenzátora například odčítáním.Thereafter, the capacitor to be measured is loaded with a measuring voltage consisting of a unidirectional voltage U of 0.1 U to 1.0 U, where U is the nominal voltage of the capacitor, and to our mmm J of the alternating voltage U t , given by ΠΓ U. = U. + 2 * str are where the total measuring voltage U. + U. must be less than or equal to U. I.e., r lo p m the capacitor can blow a maximum of 2 M. After disconnecting the measuring voltage is directly measured capacitance C of the capacitor. From the calibration curve determined by dependence, the capacitor temperature T is determined, for example by subtraction, to the measured value of capacitance C.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS868258A CS267070B1 (en) | 1986-11-14 | 1986-11-14 | Condenser Warming Measurement Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS868258A CS267070B1 (en) | 1986-11-14 | 1986-11-14 | Condenser Warming Measurement Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CS825886A1 CS825886A1 (en) | 1989-05-12 |
CS267070B1 true CS267070B1 (en) | 1990-02-12 |
Family
ID=5432931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS868258A CS267070B1 (en) | 1986-11-14 | 1986-11-14 | Condenser Warming Measurement Method |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS267070B1 (en) |
-
1986
- 1986-11-14 CS CS868258A patent/CS267070B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS825886A1 (en) | 1989-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN208537050U (en) | A kind of multichannel three-wire system platinum resistance thermometer sensor, temperature measuring equipment | |
CN107817054A (en) | A kind of infrared thermoviewer temp measuring method for vacuum chamber part | |
CN108801531A (en) | A kind of six-dimension force sensor and the method for improving six-dimension force sensor temperature drift | |
US4320656A (en) | Thermocouple apparatus for indicating liquid level in a container | |
CN108351253A (en) | Temperature sensing circuit | |
CS267070B1 (en) | Condenser Warming Measurement Method | |
JP2594874B2 (en) | Simultaneous measurement of thermal conductivity and kinematic viscosity | |
Febriyanti et al. | Temperature Calibrator with Thermocouple Based Microcontroller | |
CN103900757B (en) | A kind of the method for temperature adjustmemt is carried out to temperature-sensitive shear stress sensor under water | |
SE453432B (en) | ELECTRONIC THERMOMETER | |
JP3953170B2 (en) | Specific heat measurement method and differential scanning calorimeter | |
Taylor et al. | A method to determine and reduce the response time of resistance thermometers under practical conditions | |
DE69720174D1 (en) | Method for measuring the volume coefficient of heat loss in an electrically heated room | |
SU133603A1 (en) | Measuring device | |
SU439745A1 (en) | Device for measuring the temperature coefficient of conductivity of solutions | |
CN106768461A (en) | Thermal Stress Thermometer | |
Cigoy | How to select the right temperature sensor | |
CN207763831U (en) | A kind of photoelectric temperature sensor | |
SU771522A1 (en) | Device for measuring thermal conduction of liquids and gases | |
SU281864A1 (en) | HEAT ELECTRIC MANOMETER | |
SU934253A1 (en) | Device for measuring thermal inertia factor of thermocouples | |
Steinle, JR | Calibration of strain-gage balance for thermal effects | |
Kiruthiga et al. | The predominant role and the need of thermometers | |
SU381918A1 (en) | THERMAL STEAM SENSOR | |
nan Gao et al. | Design and Application Research of Temperature Sampling for Leakage Detectors Based on Deep Learning |