CS266261B1 - Method of pitches treatment - Google Patents
Method of pitches treatment Download PDFInfo
- Publication number
- CS266261B1 CS266261B1 CS878119A CS811987A CS266261B1 CS 266261 B1 CS266261 B1 CS 266261B1 CS 878119 A CS878119 A CS 878119A CS 811987 A CS811987 A CS 811987A CS 266261 B1 CS266261 B1 CS 266261B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- sulfur
- pyrolysis
- gaseous
- pitches
- mercaptobenzothiazole
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000011295 pitch Substances 0.000 title description 7
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000011593 sulfur Substances 0.000 claims abstract description 17
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 claims abstract description 12
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 7
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 4
- 230000007017 scission Effects 0.000 claims abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 238000010092 rubber production Methods 0.000 abstract 1
- 238000000197 pyrolysis Methods 0.000 description 19
- 239000000047 product Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- -1 H2S Chemical class 0.000 description 4
- 150000002898 organic sulfur compounds Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012261 resinous substance Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Spósob spracovania sntíl z výroby gumá renských urýchlovačov na báze 2-merkaptobenztiazolu tak, že smoly sa za norraálneho alebo zvýšeného tlaku, s výhodou pri 5 až 20 MPa, tepelne štiepia bez přístupu vzduchu alebo kyslíka po dobu 0,2 až 6 h pri teplote 200 až 500 °C a z produktov štiepenia sa oddelia plynné podřely a s výhodou sa z nich získá síra a/alebo sirovodík.Method of processing rubber from rubber production 2-mercaptobenzothiazole-based accelerators so that pitch up under norraal or increased pressure, preferably at 5 to 20 MPa, thermally split without access to air or oxygen for 0.2 to 6 h at 200 ° C to 500 ° C and separated from the cleavage products gaseous ones and preferably made them obtain sulfur and / or hydrogen sulfide.
Description
Vynález sa týká spósobu spracovania organických smolovitých látok, vznikajúcich pri výrobě gumárenských urýchlovačov na báze merkaptobenztiazolu tak, že sa podrobujú tepelnému štiepeniu a vzniklý plynný podiel sa použije ako zdroj síry a/alebo sírovodíka.The invention relates to a process for treating organic resinous substances formed in the production of rubber accelerators based on mercaptobenzothiazole by subjecting them to thermal cracking and using the gaseous fraction formed as a source of sulfur and / or hydrogen sulfide.
Pri výrobě gumárenských urýchlovačov na báze merkaptobenztiazolu, najma pri výrobě samotného 2-merkaptobenztiazolu, 2,2'-dibenztiazyldisulfidu, N(morfolinyl)-2-benztiazylsulfenamidu a iných prechádza určitá část surovin a medziproduktov na organické smolovité kondenzáty, technologicky označované ako smoly, ktoré sa z výroby odvádzajú ako nežiadúci odpad a budto sa róznym spósobom spalujú alebo sa skladuji! na skládkách tuhých odpadov. Množstvo týchto smol a ostatných neprchavých odpadov je relativné vysoké, do 35 % vzhladom k výrobě hlavných produktov podlá druhu urýchlovača a spósobu jeho výroby. Obsahuji! vysoký podiel organicky viazanej siry (do 30 hmot. aj dusíka (až 15 hmot. %) a ich skladovanie alebo spalovanie je preto spojené so značnými ekologickými problémami.In the manufacture of rubber accelerators based on mercaptobenzothiazole, in particular in the manufacture of 2-mercaptobenzothiazole itself, 2,2'-dibenzothiazyl disulfide, N (morpholinyl) -2-benzthiazylsulfenamide and others, some raw materials and intermediates are converted to organic pitch condensates, technologically referred to as they are removed from production as unwanted waste and are either incinerated or stored in various ways! at solid waste landfills. The amount of these pitches and other non-volatile wastes is relatively high, up to 35% due to the production of the main products according to the type of accelerator and the method of its production. I contain! a high proportion of organically bound sulfur (up to 30 wt.% and nitrogen (up to 15 wt.%) and their storage or incineration is therefore associated with considerable environmental problems.
V publikovanej odbornej literatúre sa problému spracovania smól venuje len malá poroznost. Časť týchto látok sa móže přidávat: do čestných asfaltov alebo po zmiešaní napr. s polyvinylchloridom použit: ako hydroizolačná hmota. Tieto spósoby však zdaleka nevystihuji! všetky možnosti spracovania týchto látok. Vysoký obsah síry, nevýhodný pri týchto postupoch a pri spalovaní smál ako takých, dává předpoklad pre ich výhodné využitie ako zdroj síry a/alebo sírnych zlúčenín.In the published professional literature, only a small porosity deals with the problem of resin processing. Some of these substances can be added: to honorary asphalts or after mixing e.g. with polyvinyl chloride used: as a waterproofing compound. However, I am far from describing these methods! all possibilities for processing these substances. The high sulfur content, which is disadvantageous in these processes and in the combustion of smears as such, provides a precondition for their advantageous use as a source of sulfur and / or sulfur compounds.
Podlá tohto vynálezu sa organické smolovité kondenzáty z výroby gumárenských urýchlovačov na báze 2-merkaptobenztiazolu spracovávajú tak, že sa za normálneho alebo zvýšeného tlaku, s výhodou pri 5 až 20 MPa, tepelne štiepia bez přístupu vzduchu alebo kyslíka po dobu 0,2 až 6 hodin, s výhodou 0,3 až 3 hodiny, pri teplote 200 až 500 °C, s výhodou 350 až 450 °C, z produktov štiepenia sa oddelia plynné podřely a s výhodou sa z nich získá síra a/alebo sirovodík.According to the invention, organic pitch condensates from the production of rubber accelerators based on 2-mercaptobenzothiazole are treated by thermal cleavage under normal or elevated pressure, preferably at 5 to 20 MPa, without the access of air or oxygen for 0.2 to 6 hours. , preferably 0.3 to 3 hours, at a temperature of 200 to 500 ° C, preferably 350 to 450 ° C, gaseous fractions are separated from the cleavage products and preferably sulfur and / or hydrogen sulfide are obtained therefrom.
Termolabilné smoly sa pri zvýšenej teplote rozkládají! na plynné produkty a polotekutý zvyšok. Do plynnej fázy přitom okrem oxidu uhličitého a dusíka prechádza najma vo formě sírovodíka aj část síry, póvodne viazanej do zložitej organickej zlúčeniny a Sálej určitý podiel uhlovodíkov, ktoré zvyšuji! energetický obsah plynu. Volbu podmienok pyrolýzy je možné upravovat tak množstvo a zloženie plynnej fázy ako aj (do určitej miery) konzistenciu pyrolýzneho zvyšku. Pri nižších tlakoch je zvyšok polotuhý s obsahom tuhých častíc, zatial čo pri vyššom tlaku převládají! polotekuté až tekuté zložky až do teplót okolo 450 °C, nad ktorými už opat převládají! tuhé podřely vo zvyšku. Stúpanře teploty podporuje zvýšeni! tvorbu plynnej fázy a zlepšuje účinnost přechodu síry do plynu najma vo forme sírovodíka, v menšej miere ako nízkomolekulárnych sírnych zlúčenín.Thermolabile resins decompose at elevated temperatures! for gaseous products and semi-liquid residue. In addition to carbon dioxide and nitrogen, a part of the sulfur originally bound to the complex organic compound and, in addition, a certain proportion of hydrocarbons, which increase! energy content of the gas. The choice of pyrolysis conditions makes it possible to adjust both the amount and composition of the gas phase and (to some extent) the consistency of the pyrolysis residue. At lower pressures, the residue is semi-solid with solids content, while at higher pressures they predominate! semi-liquid to liquid components up to temperatures around 450 ° C, over which the abbot already prevails! solid bruises in the rest. Temperature riser supports increase! gas phase formation and improves the efficiency of the sulfur-to-gas transition, especially in the form of hydrogen sulphide, to a lesser extent than low molecular weight sulfur compounds.
Pri pyrolýze za normálneho tlaku prechádza do plynnej podoby len menšia část smól, vačšia část produktov v priebehu pyrolýzy destiluje a získá sa ako kvapalný podiel. Pyrolýzny zvyšok je čierny a tuhý, krehkej konzistencie.In pyrolysis at normal pressure, only a small part of the tar passes into gaseous form, a larger part of the products distills during pyrolysis and is obtained as a liquid part. The pyrolysis residue is black and solid, with a brittle consistency.
Z týchto dóvodov je možné ako optimálně pracovné podmienky uviest teploty medzi 350 a 450 °C, tlaky 5 až 20 MPa a reakčný čas 0,3 až 3 hodiny. Za týchto podmienok přejde do plynnej fázy okolo 50 % síry, prítomnej v póvodných smolách, zatial čo pyrolýzny zvyšok je pri pracovnej teplote nad 80 °C ešte dobré manipulovatelný.For these reasons, temperatures between 350 and 450 ° C, pressures of 5 to 20 MPa and a reaction time of 0.3 to 3 hours can be mentioned as optimal operating conditions. Under these conditions, about 50% of the sulfur present in the original resins passes into the gas phase, while the pyrolysis residue is still easy to handle at operating temperatures above 80 ° C.
Získaný pyrolýzny plyn móže byt použitý ako zdroj síry, pričom obsah uhlovodíkov v ňom (prevažne etán a etylén) ulahčuje jeho spracovanie na síru napr. spálením v Clausovej peci. Je však možné z něho získat síru alebo aj sirovodík niektorým zo známých spósobov, napr. absorpčně, adsorpčne a pod.The obtained pyrolysis gas can be used as a source of sulfur, while the content of hydrocarbons in it (mainly ethane and ethylene) facilitates its processing into sulfur, e.g. by burning in the Claus furnace. However, it is possible to obtain sulfur or hydrogen sulfide from it by any of the known methods, e.g. absorption, adsorption, etc.
Výhody postupu podlá vynálezu sú ilustrované v připojených příkladech. Spočívajú jednak v podstatnom znížení množstva odpadných smól převedením ich značnej časti do zúžitkovatelnej plynnej formy, jednak v ekologicky dóležitom znížení obsahu síry v pyrolýznom zvyšku aThe advantages of the process according to the invention are illustrated in the accompanying examples. They consist, on the one hand, in a substantial reduction in the amount of waste resins by converting a substantial part of them into a recoverable gaseous form, and, on the other hand, in an ecologically significant reduction in the sulfur content of the pyrolysis residue;
CS 266 261 Bl v jej převedení do plynnéj fázy, odkial sa vo vhodnéj formě může různými sposobmi technologicky a ekonomicky izolovať. Pyrolýzny zvyšok je pri teplotách pod 80 °C tuhý, prakticky bez zápachu a móže sa lahko použit na rovnaké účely ako původně smoly predpyrolýzou. *CS 266 261 B1 in its conversion into the gas phase, from where it can be technologically and economically isolated in various ways in a suitable form. The pyrolysis residue is solid at temperatures below 80 ° C, practically odorless and can be easily used for the same purposes as originally pitches by prepyrolysis. *
Příklad 1Example 1
Pyrolýzou smol obsahujúcich C 48,8 hmot. %, H 6,0 hmot. 8, N 11,3 hmot. % a S 19,9 hmot. 8 v inertnom dusíkovom prostředí pri teplote 280 °C 0,5 hodin vzniklo pri tlaku 7,0 MPaBy pyrolysis of pitches containing C 48.8 wt. %, H 6.0 wt. 8, N 11.3 wt. % and S 19.9 wt. 8 in an inert nitrogen medium at 280 ° C for 0.5 hours was formed at a pressure of 7.0 MPa
18,5 hmot. % plynných produktov. Pyrolýzny zvyšok bol v podobě tmavého až čierneho produktu, ktorý bol kvapalný pri teplote nad 80 °C. Plynný produkt obsahoval 8,0 hmot. % sírnych látok, prevážne H2S, dalej 9,0 % organických nesírnych látok, hlavně etán a etylén, a zvyšok boli inerty, t. j. CO2, N2 a O2- Z povodných smol přejde do plynného produktu 7,5 % síry a18.5 wt. % of gaseous products. The pyrolysis residue was a dark to black product which was liquid at a temperature above 80 ° C. The gaseous product contained 8.0 wt. % of sulfur compounds, mainly H2S, 9.0% of organic sulfur compounds, mainly ethane and ethylene, and the remainder were inertes, ie CO2, N 2 and O2- From the flood pit, 7.5% of sulfur passes into the gaseous product, and
9,7 % C a H v podobě CnHn- '9.7% C and H in the form of C n H n - '
Příklad 2 ' .Example 2 '.
Pyrolýzoz smdl rovnakého zloženia v inertnom dusíkatom prostředí po dobu jednej hodiny pri teplote 450 °C a tlaku 15,3 MPa vzniklo 50,8 hmot. % plynného produktu. Pyrolýzny zvyšok bol čierny a kvapalný pri teplote nad 85 °C. V plynnom podřeli bolo 29,2 hmot. % organických sírnych látok, prevážne H2S, 25,5 hmot. 8 organických nesírnych látok a zvyšok inerty, t. j. COj, Nj, O2 a CO. Z původnych smdl přešlo do plynných produktov 65,6 % S. Zvyšok obsahoval 14,0 hmot. % S.Pyrolysis of smdl of the same composition in an inert nitrogen medium for one hour at a temperature of 450 DEG C. and a pressure of 15.3 MPa gave 50.8 wt. % of gaseous product. The pyrolysis residue was black and liquid at a temperature above 85 ° C. It was 29.2 wt. % of organic sulfur compounds, mainly H 2 S, 25.5 wt. 8 organic non-sulfur substances and the remainder of the inert, ie CO 2, N 2, O 2 and CO. 65.6% S was converted from the original smdl to gaseous products. The remainder contained 14.0 wt. % WITH.
Příklad 3Example 3
Pyrolýzou smól rovnakého zloženia v inertnom, dusíkovom prostředí pri teplote 400 °C po dobu 1 hodiny pri atmosférickom tlaku vzniklo 20,0 hmot. % plynného produktu, 61,8 hmot. % kvapalného produktu, oddestilovávaného v priebehu pyrolýzy a 18,2 hmot. % pyrolýzneho zvyšku. Pyrolýzny plyn obsahoval 24,9 hmot. % organických sírnych látok, prevážne H2S, 12,3 hmot. % organických nesírnych látok a zvyšok inerty, t. j. COj, Nj, O2 a CO. Produkt oddestilovávaný v priebehu pyrolýzy obsahoval 8,5 hmot. % S. Pyrolýzny zvyšok bol čierny, krehkej povahy, ktorý sa netopil ani pri teplote nad 350 °C. V plynnom produkte bolo 24,1 % a v kvapalnom produkte 38,2 8 síry z původného obsahu síry v smolách.Pyrolysis of resins of the same composition in an inert, nitrogen medium at 400 DEG C. for 1 hour at atmospheric pressure gave 20.0 wt. % of gaseous product, 61.8 wt. % of liquid product distilled off during pyrolysis and 18.2 wt. % of pyrolysis residue. The pyrolysis gas contained 24.9 wt. % of organic sulfur compounds, mainly H2S, 12.3 wt. % of organic sulfur compounds and the remainder of the inert, t. j. COj, Nj, O2 and CO. The product distilled off during pyrolysis contained 8.5 wt. % S. The pyrolysis residue was black, brittle in nature, which did not melt even at temperatures above 350 ° C. In the gaseous product there was 24.1% and in the liquid product 38.2 8 of sulfur from the original sulfur content in the pitch.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS878119A CS266261B1 (en) | 1987-11-13 | 1987-11-13 | Method of pitches treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS878119A CS266261B1 (en) | 1987-11-13 | 1987-11-13 | Method of pitches treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
CS811987A1 CS811987A1 (en) | 1989-04-14 |
CS266261B1 true CS266261B1 (en) | 1989-12-13 |
Family
ID=5431358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS878119A CS266261B1 (en) | 1987-11-13 | 1987-11-13 | Method of pitches treatment |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS266261B1 (en) |
-
1987
- 1987-11-13 CS CS878119A patent/CS266261B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS811987A1 (en) | 1989-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR850001093B1 (en) | Oil recovery | |
US7241323B2 (en) | Pyrolysis process for producing fuel gas | |
CA1259800A (en) | Pyrolysis and combustion process and system | |
Huang et al. | (Co-) pyrolytic performances and by-products of textile dyeing sludge and spent mushroom substrate | |
KR100308464B1 (en) | Method for producing synthesis gas | |
ATE48151T1 (en) | METHOD AND APPARATUS FOR CONVERTING SLUDGE. | |
AU2007253790B2 (en) | Process for treating a gas stream | |
WO2007133228A2 (en) | Combined gasification and vitrification system | |
Chen et al. | Mechanistic insight into the effect of hydrothermal treatment of sewage sludge on subsequent pyrolysis: evolution of volatile and their interaction with pyrolysis kinetic and products compositions | |
BR0009611A (en) | System and method of oil recovery from pyrolysis of hydrocarbon-containing material | |
Borah et al. | Oxidation of high sulphur coal. Part 1. Desulphurisation and evidence of the formation of oxidised organic sulphur species | |
KR940011375A (en) | Sludge Dry Solids Treatment Method | |
GB1372038A (en) | Method for producing and using heat | |
GB2198744A (en) | Gasification process | |
KR100311754B1 (en) | Partial oxidation of waste plastic material | |
CS266261B1 (en) | Method of pitches treatment | |
US3880986A (en) | Process for the conversion of hydrogen sulfide in gas streams of low hydrogen sulfide concentration to sulfur | |
ATE112587T1 (en) | PROCESS FOR UTILIZING SEWAGE SLUDGE. | |
Steger et al. | Drying and low temperature conversion—A process combination to treat sewage sludge obtained from oil refineries | |
RU2436760C1 (en) | Method to process carbon-bearing gases and vapours | |
DE59606533D1 (en) | Process for the disposal of PVC, preferably for the production of purified and / or pure hydrogen chloride | |
GB2180850A (en) | Producing clean pyrolysis gas | |
KR830007790A (en) | How to produce coke and high calorific gas from coal | |
KR920701298A (en) | Process for preparing copoly (arylene sulfide) | |
US2644797A (en) | Gasification of sulfuric acid wastes |