CS264992B1 - A method for preparing a cross-linked protein - Google Patents

A method for preparing a cross-linked protein Download PDF

Info

Publication number
CS264992B1
CS264992B1 CS881072A CS107288A CS264992B1 CS 264992 B1 CS264992 B1 CS 264992B1 CS 881072 A CS881072 A CS 881072A CS 107288 A CS107288 A CS 107288A CS 264992 B1 CS264992 B1 CS 264992B1
Authority
CS
Czechoslovakia
Prior art keywords
protein
cross
weight
linked
preparing
Prior art date
Application number
CS881072A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS107288A1 (en
Inventor
Jiri Ing Csc Zemek
Oubomir Ing Csc Floch
Maria Ing Bejdova
Original Assignee
Zemek Jiri
Oubomir Ing Csc Floch
Bejdova Maria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zemek Jiri, Oubomir Ing Csc Floch, Bejdova Maria filed Critical Zemek Jiri
Priority to CS881072A priority Critical patent/CS264992B1/en
Publication of CS107288A1 publication Critical patent/CS107288A1/en
Publication of CS264992B1 publication Critical patent/CS264992B1/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Riešenie sa týká přípravy sletovaného proteinu pre účely přípravy štandardných chromolytických substrátov. Podstata riešenia spočívá v tom, že protein sa sieťuje za použitia homobifunkčného činidla odvodeného od L-aminokyselinových zložiek primárnéj štruktúry proteinu, akým je L-etylester kyseliny 2,6-diizotiokyanátohexánovej v množstve 0,5 až 10 % hmot. vztiahnuté na hmotnost suchého proteinu, pri pH 7 až 12 upraveném pomocou roztokov zriedených lúhov alebo kyselin alebo tlmivých roztokov 1 až 50 mmol.l-^, s výhodou fosfátových alebo borátových, pri teplote 10 až 50 °C po dobu 10 až 120 min.The solution relates to the preparation of a spliced protein for the purposes of preparing standard chromolytic substrates. The essence of the solution is that the protein is cross-linked using a homobifunctional agent derived from the L-amino acid components of the primary structure of the protein, such as L-ethyl ester of 2,6-diisothiocyanatohexane acid in an amount of 0.5 to 10% by weight. based on the weight of the dry protein, at a pH of 7 to 12 adjusted using solutions of dilute alkalis or acids or buffer solutions of 1 to 50 mmol.l-^, preferably phosphate or borate, at a temperature of 10 to 50 °C for a period of 10 to 120 min.

Description

Vynález sa týká spósobu přípravy sletovaných proteinov a to tak pre účely přípravy štandardných chromolytických substrátov, afinantov proteolytických enzýmov obecného typu, hydrogélov proteinového typu, alebo nosičov k imobilizácii enzýmov a buniek.The present invention relates to a process for the preparation of fused proteins for the purpose of preparing standard chromolytic substrates, affinity proteolytic enzymes of general type, protein type hydrogels, or carriers for immobilizing enzymes and cells.

Doteraz známe spósoby sietovania proteinov využívajú prevažne homobifunkčné látky typu glutaraldehydu (S. Avrameas, Immunochemistry, 6/1969/43) , alebo heterobifunkčně látky typu 2-chlormetyloxiránu (AO 194 592; AO 218 709). Zatial čo v príprave sieťovania glutaraldehydom vznikajú nedefinované oligomérne a polymérne štruktúry, obsahujúce alfa-nenasýtené aldehydy, ktoré taktiež sa zúčastňujú reakcie sietovania (F. M. Richards, J. R. Knowles,Previously known protein crosslinking methods use predominantly homobifunctional glutaraldehyde-type substances (S. Avrameas, Immunochemistry, 6/1969/43), or heterobifunctional 2-chloromethyloxirane type substances (AO 194 592; AO 218 709). While the preparation of glutaraldehyde crosslinking results in undefined oligomeric and polymeric structures containing alpha-unsaturated aldehydes, which also participate in the crosslinking reaction (F. M. Richards, J. R. Knowles,

J. Mol. Biol. 37/1968) (231) Schiffove bázy, ktoré v priebehu sietovania vznikajú, nezaručují stabilitu výsledného produktu. V pripade sietovania 2-chlorometyl-oxiránom je potřebná poměrně vysoká alkalita (pH 14) na premenu intermediárneho chlorohydrinu na oxiránovú skupinu, čo je sprevádzané degradačnými reakciami v primárnej štruktúre proteinu. Navýše uvedená reakcia sietovania je sprevádzaná vysokou tvorbou solí, čo negativné ovplyvňuje hydrodynamické vlastnosti připravovaného proteinového gélu. Pri príprave váčších množstiev sletovaného proteinu za použitia 2-chlorometyloxiránu vznikajú technologické problémy s homogénnou distribúciou lúhu v priereze reakčnej zmesi, čo má za následok nerovnoměrnost zosietovania gélu na jednej straně a lokálnu degradáciu proteinu na vodorozpustné fragmenty v dósledku vysokej alkality na straně druhej.J. Mol. Biol. (231) The Schiff bases that arise during crosslinking do not guarantee the stability of the resulting product. In the case of 2-chloromethyl-oxirane cross-linking, a relatively high alkalinity (pH 14) is required to convert the intermediate chlorohydrin to the oxirane group, which is accompanied by degradation reactions in the primary protein structure. The above-mentioned crosslinking reaction is accompanied by high salt formation, which negatively affects the hydrodynamic properties of the prepared protein gel. When preparing larger amounts of cross-linked protein using 2-chloromethyloxirane, technological problems arise with homogeneous liquor distribution across the cross-section of the reaction mixture, resulting in uneven gel cross-linking on the one hand and local degradation of the protein to water-soluble fragments due to high alkalinity.

Uvedené nedostatky odstraňuje postup podlá vynálezu, ktorého podstata spočívá v tom, že v prvom stupni sa protein sieťuje za použitia homobifunkčného činidla odvodeného od L-aminokyselinových zložiek primárnej štruktúry proteinu akým je L-etylester kyseliny 2,6-diizotiokyanátohexánovej, v množstve 0,5 až 10 % hmot. vztiahnuté na hmotnost suchého proteinu, v prostředí roztoku o pH 7 až 12, s výhodou borátového alebo fosfátového pufru, pri teplote 10 až 50 °C po dobu 10 až 120 minút. V druhom stupni sa sletovaný protein vyperie od zložiek tlmivého roztoku a adjustuje pre Salšie použitie. Hydrogél sletovaného proteinu možno použit ako selekčnú pódu k sledovaniu mikr.obiálnych producentov enzýmov proteolytického typu alebo v suchom stave po defibrácii v rýchlootáčkovom mixéri a následnom vysušení a vysitovaní ako afinant k izolácii proteolytických enzýmov zo zmesi enzýmov, alebo ako nerozpustný protein k priprave štandardných chromolytických substrátov k stanoveniu aktivit proteolytických enzýmov v chemickej úpravě so zlúčeninami obsahujícími chromofórové skupiny.The above-mentioned drawbacks are eliminated by the process according to the invention, wherein in the first step the protein is crosslinked using a homobifunctional agent derived from the L-amino acid components of the primary structure of the protein, such as 2,6-diisothiocyanato-hexanoic acid L-ethyl ester, in an amount of 0.5. up to 10 wt. based on the weight of the dry protein, in a solution medium having a pH of 7 to 12, preferably borate or phosphate buffer, at a temperature of 10 to 50 ° C for 10 to 120 minutes. In a second step, the cross-linked protein is washed from buffer components and adjusted for saler use. The fused protein hydrogel can be used as a selection platform to monitor microbial producers of proteolytic type enzymes or in the dry state after defibrating in a high speed mixer and then drying and sieving as an affinity to isolate proteolytic enzymes from the enzyme mixture or as insoluble protein to prepare to determine the activities of proteolytic enzymes in chemical treatment with compounds containing chromophoric groups.

Výhodou uvedeného postupu je skutočnosť, že v priebehu reakcie nedochádza k tvorbě vedlajších produktov, reakcia sieťovania prebieha kontrolované v jednom smere bez tvorby sprievodných soli, umožňuje přípravu nových proteinových gélov v širokom rozsahu fyzikálnych a chemických vlastností pre Specifické potřeby ich využívania. Vysušený sletovaný protein sa dobré skladuje. Podlá reakčných podmienok možno reakciu sietovania viesť tak, aby přednostně reagovali len tiolové skupiny proteinu, alebo tak tiolové, ako aj primárné amino-skupiny proteinu.The advantage of this process is that there is no byproduct formation during the reaction, the crosslinking reaction is controlled in one direction without the formation of concomitant salts, allows the preparation of new protein gels over a wide range of physical and chemical properties for the specific needs of their use. The dried fused protein is well stored. Depending on the reaction conditions, the crosslinking reaction may be conducted so that only the thiol groups of the protein, or both the thiol groups and the primary amino groups of the protein, react preferentially.

Přiklad 1Example 1

Lyofilizovaný albumin hovSzieho séra (5 g) sa rozpúšta za miešania na elektromagnetickéj miešačke v 100 ml borátového pufru (10 mmol.l ; pH 12) za přídavku 0,01 ml n-oktanolu.Lyophilized bovine serum albumin (5 g) was dissolved with stirring in an electromagnetic mixer in 100 ml borate buffer (10 mmol.l; pH 12) with the addition of 0.01 ml n-octanol.

K rozpustnému proteinu sa přidá 0,5 g etylesteru 2,6-diizokyanátu lyzinu za rýchleho premiešania a reakčná zmes sa vyleje do formy (40x40 cm) o.výške 0,5 cm. Reakcia sietovania sa ukončí po 10 minútach pri 50 °C. Vzniknutý hydrogél sletovaného proteinu sa vyperie v destilovanej vodě od zvyškov borátového pufru. Získaný produkt po vymytí a Salšom napučaní vo vodě má suchú hmotnost 1,1 % a modul elasticity penetrometricky 26 mm.0.5 g of lysine 2,6-diisocyanate ethyl ester was added to the soluble protein with rapid stirring and the reaction mixture was poured into a mold (40x40 cm) of 0.5 cm height. The crosslinking reaction is terminated after 10 minutes at 50 ° C. The resulting hydrogel of the fused protein is washed in distilled water from the borate buffer residues. The product obtained after washing and swelling in water has a dry weight of 1.1% and a modulus of elasticity of 26 mm.

Príklad2Example 2

Postup podlá příkladu 1 s tým rozdielom, že ako protein sa použije ovalbumín. Získaný produkt má suchú hmotnost 1,8 ta modul elasticity penetrometricky 24 mm.The procedure of Example 1 except that ovalbumin is used as the protein. The product obtained has a dry weight of 1.8 t and a modulus of elasticity of 24 mm penetrometrically.

Příklad 3Example 3

Postup podlá příkladu 1, s tým rozdielom, že ako protein sa použije kazeín. Reakcia sieťovania sa uskotoční v prostředí fosfátového pufru (40 mmol.I-1; pH 7) a za přídavku 25 mg etylesteru 2,6-diizotiokyanátu L-lyzínu. Reakcia sieťovania sa ukončí po 10 minútach pri 10 °C. Získaný produkt sa za mokra defibruje vo vysokootáčkovom mixéri, premýva destilovanou vodou a etanolom a suší za izbovej teploty (20 °C). Získaný suchý gél sa sítuje na velkosť častíc 0,06 až 0,3 mm napučací objem 33 ml.g 3 a použije ako afinant proteolytických enzýmov (pepsín, trypsin, chymotrypsin) obecného typu.The procedure of Example 1 except that casein is used as the protein. The crosslinking reaction was carried out in phosphate buffer (40 mmol.I -1 ; pH 7) and 25 mg of L-lysine 2,6-diisothiocyanate ethyl ester was added. The crosslinking reaction was terminated after 10 minutes at 10 ° C. The product obtained is wet-defibrated in a high speed mixer, washed with distilled water and ethanol, and dried at room temperature (20 ° C). The obtained dry gel is screened to a particle size of 0.06-0.3 mm with a swelling volume of 33 ml.g 3 and used as an affinity of proteolytic enzymes (pepsin, trypsin, chymotrypsin) of the general type.

Vynález má široké uplatnenie predovšetkým v enzýmovom inžinierstve, potravinárstve a v obecnej aplikovanéj mikrobiologii.The invention has broad application in particular in enzymatic engineering, food processing and in general applied microbiology.

Claims (1)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION Spósob přípravy sieťovaného proteinu vyznačený tým, že protein sa sieťuje za použitia homobifunkčného činidla odvodeného od L-aminokyselinových zložiek primárnej štruktúry proteinu akým je L-etylester kyseliny 2,6-diizotiokynátohexánovej v množstve 0,5 až 10 % hmot. vztiahnuté na hmotnost suchého proteinu, pri pH 7 až 12 upraveném pomocou roztokov zriedených lúhov alebo kyselin, alebo pomocou tlmivých roztokov 1 až 50 mmol.l 3, s výhodou fosfátových alebo borátových, pri teplote 10 až 50 °C po dobu 10 až 120 minút.A process for the preparation of a cross-linked protein, characterized in that the protein is cross-linked using a homobifunctional reagent derived from the L-amino acid components of the primary structure of the protein, such as 2,6-diisothiocyanato-hexanoic acid L-ethyl ester in an amount of 0.5-10% by weight. based on dry protein, at pH 7-12 adjusted with dilute solutions of acids or acids, or with buffer solutions of 1-50 mmol.l 3 , preferably phosphate or borate, at 10 to 50 ° C for 10 to 120 minutes .
CS881072A 1988-02-19 1988-02-19 A method for preparing a cross-linked protein CS264992B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS881072A CS264992B1 (en) 1988-02-19 1988-02-19 A method for preparing a cross-linked protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS881072A CS264992B1 (en) 1988-02-19 1988-02-19 A method for preparing a cross-linked protein

Publications (2)

Publication Number Publication Date
CS107288A1 CS107288A1 (en) 1988-10-14
CS264992B1 true CS264992B1 (en) 1989-09-12

Family

ID=5344156

Family Applications (1)

Application Number Title Priority Date Filing Date
CS881072A CS264992B1 (en) 1988-02-19 1988-02-19 A method for preparing a cross-linked protein

Country Status (1)

Country Link
CS (1) CS264992B1 (en)

Also Published As

Publication number Publication date
CS107288A1 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US3711574A (en) Copolymers of acrylamide gas
US5514572A (en) Method to maintain the activity in polyethylene glycol-modified proteolytic enzymes
HoRIUCHI et al. γ‐Glutamyl Transpeptidase: Sidedness of Its Active Site on Renal Brush‐Border Membrane
Axéan et al. Chemical fixation of enzymes to cyanogen halide activated polysaccharide carriers
US3619371A (en) Production of a polymeric matrix having a biologically active substance bound thereto
US4592998A (en) Process for coupling biological substances by covalent bonds
Fuchsbauer et al. Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using β-galactosidase as model system
CA1040561A (en) Cyanogen halide activation of carbohydrates and protein binding thereto
US5976527A (en) High surface area support having bound latex particles containing oxirane groups for immobilization of substances
DE1944048C3 (en) Process for the production of a water-soluble enzyme system
US3843446A (en) Preparation of enzymatically active membranes
Kosakowski et al. The Subunit Structure of Phenylalanyl‐tRNA Synthetase of Escherichia coli
Silman et al. Some water‐insoluble papain derivatives
US4245064A (en) Activated solid carrier and a method of its preparation
JPH05501499A (en) Immobilized enzyme preparations, their preparation and use
Berger et al. Cocoonase: III. Purification, preliminary characterization, and activation of the zymogen of an insect protease
US3977941A (en) Protein-enzyme complex membranes
US3846306A (en) Bonding of enzymes,enzyme derivatives and other biologically active molecules to polymeric materials
US3985620A (en) Substrate for determining proteinase
EP0302284B1 (en) Stabilized enzymes
Kennedy et al. Preparation of a water-insoluble trans-2, 3-cyclic carbonate derivative of macroporous cellulose and its use as a matrix for enzyme immobilisation
CS264992B1 (en) A method for preparing a cross-linked protein
US5053225A (en) Functional organic thin film chemically bonded to biologically active agent
Friess et al. Insoluble collagen matrices for prolonged delivery of proteins
CA2154013A1 (en) Analytical element, composition and method using modified apo-horseradish peroxidase