CS260392B1 - Method of preparation of aldoses - Google Patents
Method of preparation of aldoses Download PDFInfo
- Publication number
- CS260392B1 CS260392B1 CS874635A CS463587A CS260392B1 CS 260392 B1 CS260392 B1 CS 260392B1 CS 874635 A CS874635 A CS 874635A CS 463587 A CS463587 A CS 463587A CS 260392 B1 CS260392 B1 CS 260392B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- aldoses
- preparing
- aldose
- molybdenum
- oxalic acid
- Prior art date
Links
Landscapes
- Saccharide Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Očelom sposobu přípravy aldóz Je zlepšenie spósobov přípravy aldóz, t. j. zjednodušenie a zhospodárnenle týchto spósobov příprav. Uvedený účel sa dosiahne tak, že k fenylhydrazónu aldózy, benzaldehydu, etanolu, vody a molybdénanovej zlúčenine sa přidá kyselina šťavelová v mólovom pomere molybdénu s oxidačným stupňom VI ku kyselině šťavelovej 1 : aspoň 4 a nechá reagovat pri teplotách do 100 °C. Spůsob přípravy aldóz má použitie v organickej chémii.The purpose of the method of preparing aldoses is to improve the methods of preparing aldoses, i.e. to simplify and economize these methods of preparation. The stated purpose is achieved by adding oxalic acid to the phenylhydrazone of aldose, benzaldehyde, ethanol, water and a molybdate compound in a molar ratio of molybdenum with oxidation state VI to oxalic acid of 1: at least 4 and allowing it to react at temperatures up to 100 °C. The method of preparing aldoses has applications in organic chemistry.
Description
Vynález sa týká sposobu přípravy aldóz.The invention relates to a process for the preparation of aldoses.
Aldózy sa v slabo kyslých vodných roztokoch za přítomnosti molybdénanových iónov epimerizujú a vytvárajú rovnovážnu zmes C—2-epimérnych aldóz [V. Bílik: Chem. listy 77, 496 (1983)]. Molybdénanové ióny ako katalytická zložka sa využívajú tiež pri stereoselektívnej hydroxylácii glykalov na odpovedajúce aldózy s cis-usporiadaním hydroxylových skupin na atome uhlíka C—2 a C—3 [V. Bílik: Chem Zvěsti 26, 76 (1972)], oxidačnom rozklade l-deoxy-l-nitroalditolov na odpovedajúce aldózy [V. Bílík: Coll. Czechoslov. Chem. Commun. 39, 1 621 51974)] a oxidačnom odbúravaní fenylhydrazónov aldóz na odpovedajúce aldózy o jeden atom uhlíka nižšie (V. Bílik. P. Biely, M. Matulová: Chem. Zvěsti 33, 782 (1979) ]. Epimerizačná reakcia katalyzovaná molybdénanovými iónmí je reakcia vratná. Preto třeba, aby pri izolácii aldóz získaných reakciami katalyzovanými molybdénanovými iónmi molybdénanové ióny neboli přítomné. Známe sú sposoby odstraňovania molybdénanových iónov na anexoch, ktorých nevýhody sú velké zriedenie roztokov aldóz a velká spotřeba energie na zahustenie týchto roztokov. Uvolnenie aldóz z fenylhydrazónov aldóz sa uskutočňuje vytěsňováním s benzaldehydom [V. Bílik: Chem. Zvěsti 26, 183 (1972), V. Bílik: Coll. Czechoslov. Chem. ommun. 39, 1621 (1974)]. Úplná inhibícia epimerizačnej reakcie aldóz katalyzovanej molybdénanovými iónmi nebola doteraz známa.Aldoses are epimerized in weakly acidic aqueous solutions in the presence of molybdenum ions to form an equilibrium mixture of C-2-epimeric aldoses [V. Bilik: Chem. sheets 77, 496 (1983)]. Molybdenum ions as a catalyst component are also used in the stereoselective hydroxylation of glycals to the corresponding aldoses with cis-arrangement of hydroxyl groups on the C-2 and C-3 [V] carbon atoms. Bílik: Chem Rumors 26, 76 (1972)], by oxidative decomposition of 1-deoxy-1-nitroalditols to the corresponding aldoses [V. White: Coll. Czechoslov. Chem. Commun. 39, 1 621 51974] and the oxidative degradation of aldose phenylhydrazones by the corresponding aldoses by one carbon atom below (V. Bilik. P. Biely, M. Matulova: Chem. Rev. 33, 782 (1979)]. Therefore, in the isolation of aldoses obtained by molybdenum-catalyzed reactions, molybdenum ions are not present, as are known methods for removing molybdenum ions on anion exchangers, the disadvantages of which are the large dilution of aldose solutions and the high energy consumption to thicken these solutions. is carried out by displacement with benzaldehyde [V. Bílik: Chem. Rev. 26, 183 (1972), V. Bílik: Coll. Czechoslov. Chem. ommun. 39, 1621 (1974)] The complete inhibition of molybdenum ion catalyzed aldose reaction has not been known.
Uvedené nevýhody v podstatnej miere odstraňuje sposob přípravy aldóz, ktorého podstata spočívá v tom, že k íenylhydrazónu aldózy, benzaldehydu, etanolu, vody a molybdénanovej zlúčenine sa přidá kyselina šťavelová v mólovom pomere molybdénu s oxidačným stupňom VI ku kyselině šťavelovej 1 : aspoň 4 a nechá reagovat' pri teplote do 100 °C. Výhodou navrhovaného sposobu přípravy aldóz je, že netřeba molybdénanové ióny odstraňovat, najčastejšie anexami, s následným zahušťováním roztokom, čím sa ušetří na mzdách, materíáloch, energií a v podstatnej miere ušetří použitie niektorých zariadení (odpariek, kolón). Příklad 1The above drawbacks are substantially eliminated by the process of preparing aldoses, which comprises adding oxalic acid in the molar ratio of molybdenum to oxidation grade VI to oxalic acid 1: at least 4 and leaving it to the aldehyde, benzaldehyde, ethanol, water, and molybdenum compound. at temperatures up to 100 ° C. The advantage of the proposed method of preparing aldoses is that it is not necessary to remove molybdenum ions, most often by anion exchangers, followed by concentration by the solution, thus saving on wages, materials, energy and substantially saving the use of some equipment (evaporators, columns). Example 1
Zmes 27 g (0,1 molu) íenylhydrazónu L-manózy, 0,25 g (2.10~ó mólov) tetrahydrátu heptamolybdénanu hexaamonného, 0,71 gramov (5,6.10-3 mólov) dihydrátu kyseliny šťavefovej (mólový poměr kyseliny šťavelovej k molybdénu v oxidačnom stupni VI )e 4 : 1), 20,3 ml (0,2 molu) benzaldehydu, 35 ml 96 % hmot. etanolu a 190 ml vody sa zahrieva počas 3 h pri teplote 90 °C. Inhibícia epimerizácie L-manózy sa zisťuje papierovou chromatografiou (WhatmanNo lj s použitím elučného systému A: acetonu, 1-butanolu a vody v objemovom pomere 7 : 2 : 1 a elučného systému B: 1-butanolu, etanolu a vody v objemovom pomere 5 : 1 : 4, s dobou prietoku elučných systémov 18 až 20 h a nasledujúcou detekciou s anilíniumhydrogénftalátom. Chromatografický záznam dokazuje přítomnost L-manózy a v stopovom množstve přítomnost L-glukózy. Pohyblivost vzťahujúca sa na glukózu 1,00 je pre manózu v elučnom systéme A: 1,31 a v elučnom systéme B: 1,30. Příklad 2L-mannose phenylhydrazone 27 g (0.1 mole) mixture, 0.25 g (2.10 ~ 6 moles) hexaammonium heptamolybdate tetrahydrate, 0.71 grams (5.6.10-3 moles) of oxalic acid dihydrate (molar ratio of oxalic acid to molybdenum) 4: 1), 20.3 ml (0.2 mol) of benzaldehyde, 35 ml of 96 wt. ethanol and 190 ml of water are heated for 3 h at 90 ° C. Inhibition of L-mannose epimerization is determined by paper chromatography (WhatmanNo 1j using elution system A: acetone, 1-butanol and water 7: 2: 1 and elution system B: 1-butanol, ethanol and water 5: 5). 1: 4, with an elution time of 18 to 20 h and following detection with aniline hydrogen phthalate The chromatographic record shows the presence of L-mannose and the presence of L-glucose in the trace. 1.31 and in elution system B: 1.30 Example 2
Postupuje sa ako v příklade 1 s tým rozdielom, že sa použije fenylhydrazón D-galaktózy a zmes ea zahrieva počas 2 h pri teplote 100 °C. Chromatograflcký záznam dokazuje přítomnost D-galaktózy a nepřítomnost D-talózy ani v stopovom množstve. Pohyblivost’ vzťahujúca sa na glukózu ‘1,00 je pre galaktózu v elučnom systéme A: 0,82 a v elučnom systéme B: 0,86, pre talózu v elučnom systéme A: 1,76 a v elučnom systéme B: 1,69. V príkladoch prevedenia sa uvádzajú teploty inhibície epimerizácie 90 a 100 °C, ale epimerizácia je inhíbovaná aj pri podstatné nižších teplotách, například pri zahušťovaní roztokov aldóz. Kyselina šťavelová vytvára s molybdénanovými iónmi stabilný komplex, ktorým sa inhibuje epimerizácia aldóz aj podstatné, dlhší čas, ako sa uvádza v príkladoch prevedenia. Nie je ale efektívne skladovat dlhší čas roztoky aldóz pri nižších teplotách, nakolko aldózy sú dobré živné pody pre niektoré mikroorganizmy.,The procedure is as in Example 1 except that phenylhydrazone D-galactose is used and the mixture is heated at 100 ° C for 2 h. The chromatographic data shows the presence of D-galactose and the absence of D-talose in trace amounts. Glucose mobility of 1.00 is for galactose in elution system A: 0.82 and in elution system B: 0.86, for talose in elution system A: 1.76 and in elution system B: 1.69 . In the Examples, epimerization inhibition temperatures of 90 and 100 ° C are given, but the epimerization is also inhibited at substantially lower temperatures, for example, when concentrating aldose solutions. Oxalic acid forms a stable complex with molybdenum ions, which inhibits aldose epimerization as well as substantial, longer time as described in the Examples. However, it is not effective to store aldose solutions at lower temperatures for longer periods, as aldose is a good nutrient for some microorganisms.
Spósob přípravy aldóz može nájsť široké použitie v organickej chémii a biochémii.A method of preparing aldoses can be found widely in organic chemistry and biochemistry.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS874635A CS260392B1 (en) | 1987-06-23 | 1987-06-23 | Method of preparation of aldoses |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS874635A CS260392B1 (en) | 1987-06-23 | 1987-06-23 | Method of preparation of aldoses |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS463587A1 CS463587A1 (en) | 1988-05-16 |
| CS260392B1 true CS260392B1 (en) | 1988-12-15 |
Family
ID=5389571
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS874635A CS260392B1 (en) | 1987-06-23 | 1987-06-23 | Method of preparation of aldoses |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS260392B1 (en) |
-
1987
- 1987-06-23 CS CS874635A patent/CS260392B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS463587A1 (en) | 1988-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Fu et al. | Chloroperoxidase-catalyzed asymmetric synthesis: enantioselective reactions of chiral hydroperoxides with sulfides and bromohydroxylation of glycals | |
| Wagner et al. | Studies on the mechanism of action of cobamide coenzymes: chemical properties of the enzyme-coenzyme complex | |
| Knappe et al. | Post-translational activation introduces a free radical into pyruvate formate-lyase. | |
| Schnatbaum et al. | Electroorganic synthesis 66: Selective anodic oxidation of carbohydrates mediated by TEMPO | |
| Coleman et al. | General acid catalysis of the reduction of p-benzoquinone by an NADH analog. Evidence for concerted hydride and hydron transfer | |
| Oró et al. | The prebiotic synthesis and catalytic role of imidazoles and other condensing agents | |
| US4247716A (en) | Process for producing pyruvic acid | |
| US2983734A (en) | Catalytic hydrogenation | |
| CS260392B1 (en) | Method of preparation of aldoses | |
| Delidovich et al. | Catalytic condensation of glycolaldehyde and glyceraldehyde with formaldehyde in neutral and weakly alkaline aqueous media: kinetics and mechanism | |
| Zhang et al. | Labeling monosaccharides with stable isotopes | |
| EA039078B1 (en) | Method for preparing oligomeric mannuronic diacids | |
| Beélik et al. | Some new reactions and derivatives of kojic acid | |
| Yamauchi et al. | Methylation of nucleosides with trimethylsulfonium hydroxide. Effects of transition metal ions | |
| Yamaguchi et al. | Oxidation of nitroxide radicals by the reaction of hemoglobin with hydrogen peroxide | |
| BR8903445A (en) | PROCESS FOR THE PRODUCTION OF S-CYANIDRINES | |
| CS260390B1 (en) | A method of stabilizing aldoses against, epimerizing in the presence of molybdenum ions | |
| CS260396B1 (en) | A method of stabilizing aldoses against epimerization in the presence of molybdenum ions | |
| US4939304A (en) | Continuous and selective catalytic conversion of cyanohydrins to their corresponding aldehydes | |
| PITTNER et al. | Studies on the biosynthesis of cyclitols, XXXVII. On mechanism and function of Schiff’s base formation as an intermediary reaction step of myo-inositol-1-phosphate synthase from rat testicles | |
| Shapiro et al. | Reaction of uracil and thymine derivatives with sodium bisulfite. Studies on the mechanism and reduction of the adduct | |
| CS260391B1 (en) | Molybdenum ion catalyzed aldose epimerization agent | |
| CS260393B1 (en) | A method of preparing aldoses | |
| Angermaier et al. | Stereospecific Reductions of 2-En-l-ols Catalyzed by Clostridium kluyveri | |
| Qin et al. | Plant tissue-based chemiluminescence flow biosensor for oxalate |